cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 36 results. Next

A005592 a(n) = F(2n+1) + F(2n-1) - 1.

Original entry on oeis.org

1, 2, 6, 17, 46, 122, 321, 842, 2206, 5777, 15126, 39602, 103681, 271442, 710646, 1860497, 4870846, 12752042, 33385281, 87403802, 228826126, 599074577, 1568397606, 4106118242, 10749957121, 28143753122, 73681302246, 192900153617, 505019158606, 1322157322202
Offset: 0

Views

Author

Keywords

Comments

For any m, the maximum element in the continued fraction of F(2n+m)/F(m) is a(n). - Benoit Cloitre, Jan 10 2006
The continued fraction [a(n);1,a(n)-1,1,a(n)-1,...] = phi^(2n), where phi = 1.618... is the golden ratio, A001622. - Thomas Ordowski, Jun 07 2013
a(n) is the number of labeled subgraphs of the n-cycle C_n. For example, a(3)=17. There are 7 subgraphs of the triangle C_3 with 0 edges, 6 with 1 edge, 3 with 2 edges, and 1 with 3 edges (C_3 itself); here 7+6+3+1 = 17. - John P. McSorley, Oct 31 2016
a(n) equals the sum of the n-th row of triangle A277919. - John P. McSorley, Nov 25 2016

Examples

			G.f. = 1 + 2*x + 6*x^2 + 17*x^3 + 46*x^4 + 122*x^5 + 321*x^6 + 842*x^7 + ...
		

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Equals A004146+1 and A005248+1.
Bisection of A014217; the other bisection is A002878, which also bisects A000032.

Programs

  • Haskell
    a005592 n = a005592_list !! (n-1)
    a005592_list = map (subtract 1) $
                       tail $ zipWith (+) a001519_list $ tail a001519_list
    -- Reinhard Zumkeller, Aug 09 2013
  • Magma
    [Fibonacci(2*n+1)+Fibonacci(2*n-1)-1: n in [1..30]]; // Vincenzo Librandi, Aug 23 2011
    
  • Maple
    A005592:=-(2-2*z+z**2)/(z-1)/(z**2-3*z+1); # conjectured by Simon Plouffe in his 1992 dissertation
    # second Maple program:
    F:= n-> (<<0|1>, <1|1>>^n)[1,2]:
    a:= n-> F(2*n+1)+F(2*n-1)-1:
    seq(a(n), n=0..30);  # Alois P. Heinz, Nov 04 2016
  • Mathematica
    Table[Fibonacci[2n+1]+Fibonacci[2n-1]-1,{n,30}] (* Harvey P. Dale, Aug 22 2011 *)
    a[n_] := LucasL[2n]-1; Array[a, 30] (* Jean-François Alcover, Dec 09 2015 *)
  • PARI
    a(n)=fibonacci(2*n+1)+fibonacci(2*n-1)-1 \\ Charles R Greathouse IV, Aug 23 2011
    
  • Sage
    [lucas_number2(n,3,1)-1 for n in range(1,29)] # Zerinvary Lajos, Jul 06 2008
    

Formula

a(n) = Lucas(2*n)-1, with Lucas(n)=A000032(n).
a(n) = floor(r^(2*n)), where r = golden ratio = (1+sqrt(5))/2.
a(n) = floor(Fibonacci(5*n)/Fibonacci(3*n)). - Gary Detlefs, Mar 11 2011
a(n) = +4*a(n-1) -4*a(n-2) +1*a(n-3). - Joerg Arndt, Mar 11 2011
a(n) = A001519(2*n-1) + A001519(2*n+1) - 1. - Reinhard Zumkeller, Aug 09 2013
a(n) = 3*a(n) - a(n-1) + 1; a(n) = A004146(n) + 1, n>0. - Richard R. Forberg, Sep 04 2013
a(n) = 2*cosh(2*n*arcsinh(1/2)) - 1. - Ilya Gutkovskiy, Oct 31 2016
a(n) = floor(sqrt(5)*Fibonacci(2*n)), for n > 0 (Seamons, 1966). - Amiram Eldar, Feb 05 2022

Extensions

Formulae and comments by Clark Kimberling, Nov 24 2010
a(0)=1 prepended by Alois P. Heinz, Nov 04 2016

A203976 a(n) = 3*a(n-2) - a(n-4), a(0)=0, a(1)=1, a(2)=5, a(3)=4.

Original entry on oeis.org

0, 1, 5, 4, 15, 11, 40, 29, 105, 76, 275, 199, 720, 521, 1885, 1364, 4935, 3571, 12920, 9349, 33825, 24476, 88555, 64079, 231840, 167761, 606965, 439204, 1589055, 1149851, 4160200, 3010349, 10891545, 7881196, 28514435, 20633239, 74651760, 54018521, 195440845
Offset: 0

Views

Author

Michael Somos, Jan 08 2012

Keywords

Comments

a(n+1) = p(n+2) where p(x) is the unique degree-n polynomial such that p(k) = Lucas(k) for k = 1, ..., n+1.
This is a divisibility sequence; that is, if n divides m, then a(n) divides a(m).
a(n) = row sums of triangle A226377(n), based on differences among Lucas Numbers. - Richard R. Forberg, Aug 01 2013
A strong divisibility sequence, i.e., gcd(a(n),a(m)) = a(gcd(n,m)) for all natural numbers n and m. The sequence of convergents of the 2-periodic continued fraction [0; 1, -5, 1, -5, ...] = 1/(1 - 1/(5 - 1/(1 - 1/(5 - ...)))) = 1/2*(5 - sqrt(5)) begins [0/1, 1/1, 5/4, 4/3, 15/11, 11/8, 40/29,...]. The present sequence is the sequence of numerators; the sequence of denominators [1, 1, 4, 3, 11, 8, 29,...] is A005013. - Peter Bala, May 19 2014
It appears that the first homology group of the branched n-th cyclic covering of the group of figure-eight knot is the direct sum of cyclic groups of orders a(n) and A005013(n), so the order of that group is the product of these numbers, i. e. A004146(n); see the table on p. 156 of the paper by Fox. - Andrey Zabolotskiy, Mar 16 2023

Examples

			a(3) = 4 since p(x) = (-x^2 + 7*x - 4) / 2 interpolates p(1) = 1, p(2) = 3, p(3) = 4, and p(4) = 4.
		

Crossrefs

Cf. A000032, A000045, A201157 (bisection), A002878 (bisection). A005013.

Programs

  • Haskell
    a203976 n = a203976_list !! n
    a203976_list = 0 : 1 : 5 : 4 : zipWith (-)
       (map (* 3) $ drop 2 a203976_list) a203976_list
    -- Reinhard Zumkeller, Jan 10 2012
    
  • Magma
    I:=[0,1,5,4]; [n le 4 select I[n] else 3*Self(n-2)-Self(n-4): n in [1..40]]; // Vincenzo Librandi, Mar 29 2016
  • Mathematica
    LinearRecurrence[{0,3,0,-1},{0,1,5,4},40] (* Harvey P. Dale, Apr 06 2013 *)
  • PARI
    {a(n) = if( n%2, fibonacci(n+1) + fibonacci(n-1), 5 * fibonacci(n))}
    
  • PARI
    {a(n) = if( n<0, -a(-n), polcoeff( x * (1 + 5*x + x^2) / (1 - 3*x^2 + x^4) + x * O(x^n), n))}
    
  • PARI
    {a(n) = if( n<0, -a(-n), subst( polinterpolate( vector( n, k, fibonacci(k-1) + fibonacci(k+1) )), x, n + 1))}
    

Formula

a(1) = 1, a(2) = 5, a(3) = 4, a(n) * a(n-3) = a(n-1) * a(n-2) - 5. a(-n) = -a(n).
G.f.: x * (1 + 5*x + x^2) / ( (x^2+x-1)*(x^2-x-1) ).
a(2*n) = 5 * A000045(2*n) (Fibonacci). a(2*n+1) = A000032(2*n+1) (Lucas).
a(A004277(n)) = A054888(n+1). - Reinhard Zumkeller, Jan 11 2012
a(n) = A000032(n+1) - A061084(n). - R. J. Mathar, Jun 23 2013
a(2n) = a(2n-1) + a(2n+1), for n>0. - Richard R. Forberg, Aug 01 2013
a(n) = (2^(-1-n)*((-5-sqrt(5)+(-1)^n*(-5+sqrt(5)))*((-1+sqrt(5))^n-(1+sqrt(5))^n)))/sqrt(5). - Colin Barker, Mar 28 2016
E.g.f.: exp(-phi*x)*(exp(x) - 1)*(phi*exp(sqrt(5)*x) - 1/phi), where phi = (1 + sqrt(5))/2. - G. C. Greubel, Mar 28 2016

A032170 "CHK" (necklace, identity, unlabeled) transform of 1, 2, 3, 4, ...

Original entry on oeis.org

1, 2, 5, 10, 24, 50, 120, 270, 640, 1500, 3600, 8610, 20880, 50700, 124024, 304290, 750120, 1854400, 4600200, 11440548, 28527320, 71289000, 178526880, 447910470, 1125750120, 2833885800, 7144449920, 18036373140, 45591631800, 115381697740, 292329067800
Offset: 1

Views

Author

Keywords

Comments

Apparently, for n > 2, the same as A072337. - Ralf Stephan, Feb 01 2004
a(n) is the number of prime period-n periodic orbits of Arnold's cat map. - Bruce Boghosian, Apr 26 2009
From Petros Hadjicostas, Nov 17 2017: (Start)
A first proof of the g.f., given below, can be obtained using the first of Vladeta Jovovic's formulae. If b(n) = A004146(n), then B(x) = Sum_{n >= 1} b(n)*x^n = x*(1 + x)/((1 - x)*(1 - 3*x + x^2)) (see the documentation for sequence A004146). From Jovovich's first formula, A(x) = Sum_{n >= 1} a(n)*x^n = Sum_{n >= 1} (1/n)*Sum_{d | n} mu(d)*b(n/d)*x^n. Letting m = n/d, we get A(x) = Sum_{d >= 1} (mu(d)/d)*Sum_{m >= 1} b(m)*(x^d)^m/m = Sum_{d >= 1} (mu(d)/d)*f(x^d), where f(y) = Sum_{m >= 1} b(m)*y^m/m = int(B(w)/w, w = 0..y) = int((1 + w)/((1 - w)*(1 - 3*w + w^2)), w = 0..y) = log((1 - y)^2/(1 - 3*y + y^2)) for |y| < (3 - sqrt(5))/2.
A second proof of the g.f. can be obtained using C. G. Bower's definition of the CHK transform of a sequence (e(n): n>=1) with g.f. E(x) (see the links below). If (c_k(n): n >= 1) = CHK_k(e(n): n >= 1), then (c_k(n): n >= 1) = (1/k)*(MOEBIUS*AIK)k (e_n: n >= 1) = (1/k)*Sum{d | gcd(n,k)} mu(d)*AIK_{k/d}(e(n/d): n multiple of d), where the * between MOEBIUS and AIK denotes Dirichlet convolution and (d_k(n): n >= 1) = AIK_k(e(n): n >= 1) has g.f. E(x)^k. (There is a typo in the given definition of CHK in the link.)
If C(x) is the g.f. of CHK(e(n): n >= 1) = Sum_{k = 1..n} CHK_k(e(n): n >= 1), then C(x) = Sum_{n>=1} Sum_{k = 1..n} c_k(n)*x^n = Sum_{k >= 1} (1/k) Sum_{n >= k} Sum_{d | gcd(n,k)} mu(d)*d_{k/d}(n/d)*x^n. Letting m = n/d and s = k/d and using the fact that E(0) = 0, we get C(x) = Sum_{d >= 1} (mu(d)/d)*Sum_{s >= 1} (1/s)*Sum_{m >= s} d_s(m)*(x^d)^m = Sum_{d >= 1} (mu(d)/d)*Sum_{s >= 1} E(x^d)^s. Thus, C(x) = -Sum_{d >= 1} (mu(d)/d)*log(1 - E(x^d)).
For the sequence (e(n): n >= 1) = (n: n >= 1), we have E(x) = Sum_{n>=1} n*x^n = x/(1 - x)^2, and thus A(x) = C(x) = -Sum_{d >= 1} (mu(d)/d)*log(1 - x/(1-x)^2), from which we can easily get the g.f. given in the formula section.
Apparently, for this sequence and for sequences A032165, A032166, A032167, the author assumes that C(0) = 0 (i.e., he assumes the CHK transform has no constant term), while for sequences A032164, A108529, and possibly others, he assumes that the CHK transform starts with the constant term 1 (i.e., he assumes C(x) = 1 - Sum_{d >= 1} (mu(d)/d)*log(1 - E(x^d))). (End)
From Petros Hadjicostas, Jul 13 2020: (Start)
We elaborate further on Michel Marcus's claim below. Consider his sequence (b(n): n >= 1) with b(1) = 3 and b(n) = a(n) for n >= 2.
Using the identity -Sum_{k >= 1} (mu(k)/k)*log(1 - x^k) = x for |x| < 1 and the g.f. of (a(n): n >= 1) below, we see that Sum_{n >= 1} b(n)*x^n = 3*x - a(1)*x + Sum_{n >= 1} a(n)*x^n = 2*x + Sum_{k >= 1} (mu(k)/k)*(2*log(1 - x^k) - log(1 - 3*x^k + x^(2*k))) = -Sum_{k >= 1} (mu(k)/k)*log(1 - 3*x^k + x^(2*k)).
Following Kam Cheong Au (2020), let d(w,N) be the dimension of the Q-span of weight w and level N of colored multiple zeta values (CMZV). Here Q are the rational numbers.
Deligne's bound says that d(w,N) <= D(w,N), where 1 + Sum_{w >= 1} D(w,N)*t^w = (1 - a*t + b*t^2)^(-1) when N >= 3, where a = phi(N)/2 + omega(N) and b = omega(N) - 1 (with omega(N) being the number of distinct primes of N).
For N = 6, a = phi(6)/2 + omega(6) = 2/2 + 2 = 3 and b = omega(6) - 1 = 1. It follows that D(w, N=6) = A001906(w+1) = Fibonacci(2*(w+1)).
For some reason, Kam Cheong Au (2020) assumes Deligne's bound is tight, i.e., d(w,N) = D(w,N). He sets Sum_{w >= 1} c(w,N)*t^w = log(1 + Sum_{w >= 1} d(w,N)*t^w) = log(1 + Sum_{w >= 1} D(w,N)*t^w) = -log(1 - a*t + b*t^2) for N >= 3.
For N = 6, we get that c(w, N=6) = A005248(w)/w.
He defines d*(w,N) = Sum_{k | w} (mu(k)/k)*c(w/k,N) to be the "number of primitive constants of weight w and level N". (Using the terminology of A113788, we may perhaps call d*(w,N) the number of irreducible colored multiple zeta values at weight w and level N.)
Using standard techniques of the theory of g.f.'s, we can prove that Sum_{w >= 1} d*(w,N)*t^w = Sum_{s >= 1} (mu(s)/s) Sum_{k >= 1} c(k,N)*(t^s)^k = -Sum_{s >= 1} (mu(s)/s)*log(1 - a*t^s + b*t^(2*s)).
For N = 6, we saw that a = 3 and b = 1, and hence d*(w, N=6) = b(w) for w >= 1 (as claimed by Michel Marcus below). See Table 1 on p. 6 in Kam Cheong Au (2020). (End)

Crossrefs

Programs

  • Mathematica
    Table[DivisorSum[n, MoebiusMu[n/#] (LucasL[2 #] - 2) &]/n, {n, 31}] (* Michael De Vlieger, Nov 18 2017 *)

Formula

a(n) = (1/n)*Sum_{d | n} mu(n/d)*A004146(d). - Vladeta Jovovic, Feb 15 2003
Inverse EULER transform of Fibonacci(2*n). - Vladeta Jovovic, May 04 2006
G.f.: Sum_{n >= 1} (mu(n)/n)*f(x^n), where f(y) = log((1 - y)^2/(1 - 3*y + y^2)). - Petros Hadjicostas, Nov 17 2017
It appears that the sequence b(1) = 3, b(n) = a(n) for n >= 2 is related to the rational sequence (c(w, N=6): w >= 1) = (A005248(w)/w: w >= 1) whose g.f. is log(1/(1 - a*t + b*t^2)), where a = phi(N)/2 + omega(N) and b = omega(N) - 1 when N = 6, where phi is A000010 and omega is A001221. See Kam Cheong Au (2020). - Michel Marcus, Jul 13 2020 [Edited by Petros Hadjicostas, Jul 13 2020]

A049682 a(n) = (Lucas(8*n) - 2)/45.

Original entry on oeis.org

0, 1, 49, 2304, 108241, 5085025, 238887936, 11222647969, 527225566609, 24768378982656, 1163586586618225, 54663801192073921, 2568035069440856064, 120642984462528161089, 5667652234669382715121, 266259012044998459449600, 12508505913880258211416081
Offset: 0

Views

Author

Keywords

Comments

This is a divisibility sequence.

Examples

			G.f. = x + 49*x^2 + 2304*x^3 + 108241*x^4 + 5085025*x^5 + 238887936*x^6 + ...
		

Crossrefs

Programs

  • GAP
    List([0..20], n-> (Fibonacci(4*n)/3)^2 ); # G. C. Greubel, Dec 14 2019
  • Magma
    [(Fibonacci(4*n)/3)^2: n in [0..20]]; // G. C. Greubel, Dec 02 2017
    
  • Maple
    with(combinat); seq( fibonacci(4*n)^2/9, n=0..20); # G. C. Greubel, Dec 14 2019
  • Mathematica
    LinearRecurrence[{48,-48,1},{0,1,49},20] (* or *) CoefficientList[Series[ (-x-x^2)/ (x^3-48x^2+48x-1),{x,0,20}],x] (* Harvey P. Dale, Apr 22 2011 *)
  • MuPAD
    numlib::fibonacci(4*n)^2/9 $ n = 0..25; // Zerinvary Lajos, May 09 2008
    
  • PARI
    vector(21, n, (fibonacci(4*(n-1))/3)^2) \\ G. C. Greubel, Dec 02 2017
    
  • Sage
    [(fibonacci(4*n)/3)^2 for n in (0..20)] # G. C. Greubel, Dec 14 2019
    

Formula

a(n) = (1/45)*(-2 + ((47 + 7*sqrt(45))/2)^n + ((47 - 7*sqrt(45))/2)^n). - Ralf Stephan, Apr 14 2004
From R. J. Mathar, Jun 03 2009: (Start)
a(n) = (A004187(n))^2.
a(n) = 48*a(n-1) - 48*a(n-2) + a(n-3).
G.f.: x*(1 + x)/((1 - x)*(1 - 47*x + x^2)). (End)
From R. K. Guy, Feb 24 2010: (Start)
a(n) = F(4*n)^2/9.
a(n) - a(n-1) = A004187(2n-1). (End)
From Peter Bala, Jun 03 2016: (Start)
exp( Sum_{n >= 1} 45*a(n)*x^n/n ) = 1 + 15/7*Sum_{n >= 1} Fibonacci(8*n)*x^n.
This is the particular case k = 4 of the relation exp( Sum_{n >= 1} 5*F(k*n)^2*x^n/n ) = 1 + 5*Fibonacci(k)/Lucas(k) * ( Sum_{n >= 1} F(2*k*n)*x^n ). (End)
Lim_{n->infinity} a(n+1)/a(n) = (47 + 21*sqrt(5))/2 = phi^8, where phi is the golden ratio (A001622). - Ilya Gutkovskiy, Jun 06 2016
a(n) = a(-n) for all n in Z. - Michael Somos, Jun 12 2016
0 = a(n)*(+a(n) -98*a(n+1) -2*a(n+2)) + a(n+1)*(+2401*a(n+1) -98*a(n+2)) + a(n+2)^2 for all integer n. - Michael Somos, Jun 12 2016

Extensions

More terms from N. J. A. Sloane, Feb 26 2010

A049683 a(n) = (Lucas(6*n) - 2)/16.

Original entry on oeis.org

0, 1, 20, 361, 6480, 116281, 2086580, 37442161, 671872320, 12056259601, 216340800500, 3882078149401, 69661065888720, 1250017107847561, 22430646875367380, 402501626648765281, 7222598632802407680, 129604273763794572961, 2325654329115499905620
Offset: 0

Views

Author

Keywords

Comments

This is the r = 20 member of the r-family of sequences S_r(n), n >= 1, defined in A092184 where more information can be found.

Crossrefs

Programs

  • GAP
    List([0..30], n-> (Lucas(1,-1,6*n)[2] - 2)/16 ); # G. C. Greubel, Dec 14 2019
  • Magma
    [(Lucas(6*n) -2)/16: n in [0..30]]; // G. C. Greubel, Dec 02 2017
    
  • Maple
    with(combinat); seq( (5*fibonacci(3*n)^2 -2*(1-(-1)^n))/16, n=0..30); # G. C. Greubel, Dec 14 2019
  • Mathematica
    LinearRecurrence[{19,-19,1}, {0,1,30}, 20] (* or *) Table[(LucasL[6*n] -2)/16, {n,0,30}] (* G. C. Greubel, Dec 02 2017 *)
  • PARI
    concat(0, Vec(x*(1+x)/((1-x)*(1-18*x+x^2)) + O(x^30))) \\ Colin Barker, Jun 03 2016
    
  • PARI
    vector(31, n, (5*fibonacci(3*n-3)^2 -2*(1+(-1)^n))/16 ) \\ G. C. Greubel, Dec 14 2019
    
  • Sage
    [(lucas_number2(6*n,1,-1) -2)/16 for n in (0..30)] # G. C. Greubel, Dec 14 2019
    

Formula

a(n) = (-2 + (9 + 4*sqrt(5))^n + (9 - 4*sqrt(5))^n)/16. - Ralf Stephan, Apr 14 2004
a(n) = (T(n, 9) - 1)/8 with Chebyshev's polynomials of the first kind evaluated at x = 9: T(n, 9) = A023039(n). Wolfdieter Lang, Oct 18 2004
G.f.: x*(1 + x)/((1 - x)*(1 - 18*x + x^2)) = x*(1 + x)/(1 - 19*x + 19*x^2 - x^3). (from the Stephan link, see A092184).
exp( Sum_{n >= 1} 16*a(n)*x^n/n ) = 1 + 2*Sum_{n >= 1} Fibonacci(6*n)*x^n. - Peter Bala, Jun 03 2016
a(n) = 19*a(n-1) - 19*a(n-2) + a(n-3) for n>2. - Colin Barker, Jun 03 2016

A127595 a(n) = F(4n) - 2F(2n) where F(n) = Fibonacci numbers A000045.

Original entry on oeis.org

0, 1, 15, 128, 945, 6655, 46080, 317057, 2176335, 14925184, 102320625, 701373311, 4807434240, 32951037313, 225850798095, 1548007091840, 10610205501105, 72723448842367, 498453982018560, 3416454544730369, 23416728143799375
Offset: 0

Views

Author

Peter Bala, Apr 10 2007

Keywords

Comments

a(n) is a divisibility sequence; that is, if h|k then a(h)|a(k).

Examples

			G.f. = x + 15*x^2 + 128*x^3 + 945*x^4 + 6655*x^5 + ... - _Michael Somos_, Dec 30 2022
		

Crossrefs

Programs

  • Mathematica
    With[{r = 3}, CoefficientList[Series[x (1 + (r + 2) x + x^2)/((1 - r x + x^2)*(1 - (r^2 - 2)*x + x^2)), {x, 0, 20}], x]] (* Michael De Vlieger, Nov 09 2021 *)
  • PARI
    {a(n) = my(w = quadgen(5)^(2*n)); imag(w^2 - 2*w)}; /* Michael Somos, Dec 30 2022 */

Formula

a(n) = F(2n)*(L(2n)-2) = A001906(n)*A004146(n), where L(n) are the Lucas numbers A000032.
a(2n) = 5*(F(2n))^3*L(2n), a(2n+1) = F(2n+1)*L(2n+1)^3.
a(n) = [(Phi^(2n))-1]^2*[(Phi^(4n))-1]/[sqrt(5)*(Phi^(4n))].
G.f.: A(x)=x*(1+(r+2)*x+x^2)/((1-r*x+x^2)*(1-(r^2-2)*x+x^2)) at r=3. The case r=2 is A000578.
a(n) = -a(-n) for all n in Z. - Michael Somos, Dec 30 2022

A259913 Discriminant of the number field containing the number with periodic continued fraction [1,n,1,n,1,n,...].

Original entry on oeis.org

5, 12, 21, 8, 5, 60, 77, 24, 13, 140, 165, 12, 221, 28, 285, 5, 357, 44, 437, 120, 21, 572, 69, 168, 29, 780, 93, 56, 957, 1020, 1085, 8, 1221, 1292, 1365, 40, 1517, 1596, 1677, 440, 205, 1932, 2021, 33, 5, 92, 2397, 156, 53, 12, 2805, 728, 3021, 348, 3245
Offset: 1

Views

Author

Clark Kimberling, Jul 20 2015

Keywords

Comments

a(n) is the first term in row n of the triangle at A259911.
It appears that a(n) = 5 if n is a nonzero term of A004146.

Examples

			[1,3,1,3,1,3,...] = (1/6)(3 + sqrt(21)), so that a(3) = 21.
		

Crossrefs

Cf. A259911.

Programs

  • Mathematica
    v = Table[FromContinuedFraction[{1, {n, 1}}], {n, 1, 60}];
    Flatten[NumberFieldDiscriminant[v]]

A316659 Irregular triangle read by rows: row n consists of the coefficients in the expansion of the polynomial x*(x^2 - 2) + x*(((v - w)/2)^n + ((v + w)/2)^n), where v = 3 + 2*x and w = sqrt(5 + 4*x).

Original entry on oeis.org

0, 0, 0, 1, 0, 1, 2, 1, 0, 5, 8, 3, 0, 16, 30, 16, 2, 0, 45, 104, 81, 24, 2, 0, 121, 340, 356, 170, 35, 2, 0, 320, 1068, 1411, 932, 315, 48, 2, 0, 841, 3262, 5209, 4396, 2079, 532, 63, 2, 0, 2205, 9760, 18281, 18784, 11440, 4144, 840, 80, 2, 0, 5776, 28746
Offset: 0

Views

Author

Keywords

Comments

The triangle is related to the Kauffman bracket polynomial for the Turk's Head Knot ((3,n)-torus knot). Column 1 matches the determinant of the Turk's Head Knots THK(3,k) A004146.

Examples

			The triangle T(n,k) begins:
n\k: 0      1      2       3       4       5       6      7      8    9  10 11
0:   0      0      0       1
1:   0      1      2       1
2:   0      5      8       3
3:   0     16     30      16       2
4:   0     45    104      81      24       2
5:   0    121    340     356     170      35       2
6:   0    320   1068    1411     932     315      48      2
7:   0    841   3262    5209    4396    2079     532     63      2
8:   0   2205   9760   18281   18784   11440    4144    840     80    2
9:   0   5776  28746   61786   74838   55809   26226   7602   1260   99   2
10:  0  15125  83620  202841  282980  249815  144488  54690  13080 1815 120  2
...
		

Crossrefs

Row sums: A000302 (Powers of 4).
Row 1: row 1 of A300184, A300192 and row 0 of A300454.
Row 2: row 2 of A300454.

Programs

  • Mathematica
    v = 3 + 2*x; w = Sqrt[5 + 4*x];
    row[n_] := CoefficientList[x*(x^2 - 2) + x*(((v - w)/2)^n + ((v + w)/2)^n), x];
    Array[row, 15, 0] // Flatten
  • Maxima
    v : 3 + 2*x$ w : sqrt(5 + 4*x)$
    p(n, x) := expand(x*(x^2 - 2) + x*(((v - w)/2)^n + ((v + w)/2)^n))$
    for n:0 thru 15 do print(makelist(ratcoef(p(n, x), x, k), k, 0, max(3, n + 1)));

Formula

T(n,1) = A004146(n).
T(n,2) = A122076(n,1) = A099920(2*n-1).
G.f.: (x^3 - 2*x)/(1 - y) + (2*x - 3*x*y - 2*x^2*y)/(1 - 3*y - 2*x*y + y^2 + 2*x*y^2 + x^2*y^2).

A074392 a(n) = Lucas(n+1) + (3*(-1)^n - 1)/2.

Original entry on oeis.org

2, 1, 5, 5, 12, 16, 30, 45, 77, 121, 200, 320, 522, 841, 1365, 2205, 3572, 5776, 9350, 15125, 24477, 39601, 64080, 103680, 167762, 271441, 439205, 710645, 1149852, 1860496, 3010350, 4870845, 7881197, 12752041, 20633240, 33385280, 54018522
Offset: 0

Views

Author

Mario Catalani (mario.catalani(AT)unito.it), Aug 22 2002

Keywords

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[(2-x)/(1-x-2*x^2+x^3+x^4), {x, 0, 40}], x]
  • PARI
    Vec((2-x) / ((x-1)*(1+x)*(x^2+x-1)) + O(x^50)) \\ Colin Barker, Jul 12 2017

Formula

a(n) = Sum (L(2i+e), (i=0, 1, .., Floor(n/2))), where L(n) are Lucas numbers and e=2(n/2 - Floor(n/2)).
Convolution of L(n) with the sequence (1, 0, 1, 0, 1, 0, ...)
a(n) = a(n-1) + 2*a(n-2) - a(n-3) - a(n-4) for n>3.
G.f.: ( 2-x ) / ( (x-1)*(1+x)*(x^2+x-1) ).
a(n) = 2*A052952(n)-A052952(n-1). - R. J. Mathar, Oct 04 2013
a(n) = 2^(-1-n) * (3*(-2)^n - 2^n + (1-sqrt(5))^(1+n) + (1+sqrt(5))^(1+n)). - Colin Barker, Jul 12 2017

A117202 Binomial transform of n*F(n).

Original entry on oeis.org

0, 1, 4, 15, 52, 170, 534, 1631, 4880, 14373, 41810, 120406, 343884, 975325, 2749852, 7713435, 21540304, 59917826, 166094370, 458998523, 1264919720, 3477182961, 9536877614, 26102772910, 71309161752, 194468551225, 529490287924
Offset: 0

Views

Author

Paul Barry, Mar 02 2006

Keywords

Comments

Binomial transform of A045925.
Number of acyclic subgraphs of the wheel graph W_n (on n+1 vertices) with exactly n-1 edges. - Emil R. Vaughan, Jun 12 2007
Equivalently, number of two-component spanning forests of the wheel graph W_n (on n+1 vertices). - Harry Richman, Jul 31 2023
Starting (1, 4, 15, 52, ...) = binomial transform of A136376. - Gary W. Adamson, Sep 03 2008

Crossrefs

Cf. A136376.
Cf. A004146 (number of spanning trees of wheel graph).

Programs

  • Mathematica
    Table[n Fibonacci[2n-1],{n,0,26}] (* or *) Table[Sum[Fibonacci[2k]*BernoulliB[2n-2k]*Binomial[2n,2k],{k,1,n}],{n,0,26}] (* or *) CoefficientList[Series[x(1-2x+2x^2)/(1-3x+x^2)^2 ,{x,0,26}],x] (* Indranil Ghosh, Feb 26 2017 *)
  • PARI
    a(n) = n*fibonacci(2*n-1); \\ Indranil Ghosh, Feb 26 2017
    
  • PARI
    concat(0, Vec(x*(1-2*x+2*x^2) / (1-3*x+x^2)^2 + O(x^30))) \\ Colin Barker, Feb 26 2017

Formula

G.f.: x*(1-2x+2x^2)/(1-3x+x^2)^2.
a(n) = 6*a(n-1)-11*a(n-2)+6*a(n-3)-a(n-4).
a(n) = Sum_{k=0..n} C(n,k)*k*F(k).
From Benoit Cloitre, Nov 29 2006: (Start)
a(n) = Sum_{k=1..n} F(2k)*B(2n-2k)*binomial(2n,2k) where F=Fibonacci numbers and B=Bernoulli numbers;
a(n) = n*F(2n-1). (End)
a(n) = (2^(-1-n)*(-(-5+sqrt(5))*(3+sqrt(5))^n + (3-sqrt(5))^n*(5+sqrt(5)))*n) / 5. - Colin Barker, Feb 26 2017
a(n) = (1/sqrt(5)) * n * (((1 + sqrt(5)) / 2)^(2*n-1) - ((1 - sqrt(5)) / 2)^(2*n-1)). - Harry Richman, Jul 31 2023
a(n) = round((1/sqrt(5)) * n * phi^(2n-1)), where phi = (1+sqrt(5))/2 is the golden ratio A001622. - Harry Richman, Jul 31 2023
Previous Showing 11-20 of 36 results. Next