cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A001110 Square triangular numbers: numbers that are both triangular and square.

Original entry on oeis.org

0, 1, 36, 1225, 41616, 1413721, 48024900, 1631432881, 55420693056, 1882672131025, 63955431761796, 2172602007770041, 73804512832419600, 2507180834294496361, 85170343853180456676, 2893284510173841030625, 98286503002057414584576, 3338847817559778254844961, 113422539294030403250144100
Offset: 0

Views

Author

Keywords

Comments

Satisfies a recurrence of S_r type for r=36: 0, 1, 36 and a(n-1)*a(n+1)=(a(n)-1)^2. First observed by Colin Dickson in alt.math.recreational, Mar 07 2004. - Rainer Rosenthal, Mar 14 2004
For every n, a(n) is the first of three triangular numbers in geometric progression. The third number in the progression is a(n+1). The middle triangular number is sqrt(a(n)*a(n+1)). Chen and Fang prove that four distinct triangular numbers are never in geometric progression. - T. D. Noe, Apr 30 2007
The sum of any two terms is never equal to a Fermat number. - Arkadiusz Wesolowski, Feb 14 2012
Conjecture: No a(2^k), where k is a nonnegative integer, can be expressed as a sum of a positive square number and a positive triangular number. - Ivan N. Ianakiev, Sep 19 2012
For n=2k+1, A010888(a(n))=1 and for n=2k, k > 0, A010888(a(n))=9. - Ivan N. Ianakiev, Oct 12 2013
For n > 0, these are the triangular numbers which are the sum of two consecutive triangular numbers, for instance 36 = 15 + 21 and 1225 = 595 + 630. - Michel Marcus, Feb 18 2014
The sequence is the case P1 = 36, P2 = 68, Q = 1 of the 3-parameter family of 4th order linear divisibility sequences found by Williams and Guy. - Peter Bala, Apr 03 2014
For n=2k, k > 0, a(n) is divisible by 12 and is therefore abundant. I conjecture that for n=2k+1 a(n) is deficient [true for k up to 43 incl.]. - Ivan N. Ianakiev, Sep 30 2014
The conjecture is true for all k > 0 because: For n=2k+1, k > 0, a(n) is odd. If a(n) is a prime number, it is deficient; otherwise a(n) has one or two distinct prime factors and is therefore deficient again. So for n=2k+1, k > 0, a(n) is deficient. - Muniru A Asiru, Apr 13 2016
Numbers k for which A139275(k) is a perfect square. - Bruno Berselli, Jan 16 2018

Examples

			a(2) = ((17 + 12*sqrt(2))^2 + (17 - 12*sqrt(2))^2 - 2)/32 = (289 + 24*sqrt(2) + 288 + 289 - 24*sqrt(2) + 288 - 2)/32 = (578 + 576 - 2)/32 = 1152/32 = 36 and 6^2 = 36 = 8*9/2 => a(2) is both the 6th square and the 8th triangular number.
		

References

  • A. H. Beiler, Recreations in the Theory of Numbers, Dover, NY, 1964, p. 193.
  • John H. Conway and Richard K. Guy, The Book of Numbers, New York: Springer-Verlag, 1996. See pp. 38, 204.
  • L. E. Dickson, History of the Theory of Numbers. Carnegie Institute Public. 256, Washington, DC, Vol. 1, 1919; Vol. 2, 1920; Vol. 3, 1923; see Vol. 2, p. 10.
  • Martin Gardner, Time Travel and other Mathematical Bewilderments, Freeman & Co., 1988, pp. 16-17.
  • Miodrag S. Petković, Famous Puzzles of Great Mathematicians, Amer. Math. Soc. (AMS), 2009, p. 64.
  • J. H. Silverman, A Friendly Introduction to Number Theory, Prentice Hall, 2001, p. 196.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • James J. Tattersall, Elementary Number Theory in Nine Chapters, Cambridge University Press, 1999, pages 257-259.
  • David Wells, The Penguin Dictionary of Curious and Interesting Numbers. Penguin Books, NY, 1986, Revised edition 1987. See p. 93.

Crossrefs

Other S_r type sequences are S_4=A000290, S_5=A004146, S_7=A054493, S_8=A001108, S_9=A049684, S_20=A049683, S_36=this sequence, S_49=A049682, S_144=A004191^2.
Cf. A001014; intersection of A000217 and A000290; A010052(a(n))*A010054(a(n)) = 1.
Cf. A005214, A054686, A232847 and also A233267 (reveals an interesting divisibility pattern for this sequence).
Cf. A240129 (triangular numbers that are squares of triangular numbers), A100047.
See A229131, A182334, A299921 for near-misses.

Programs

  • Haskell
    a001110 n = a001110_list !! n
    a001110_list = 0 : 1 : (map (+ 2) $
       zipWith (-) (map (* 34) (tail a001110_list)) a001110_list)
    -- Reinhard Zumkeller, Oct 12 2011
    
  • Magma
    [n le 2 select n-1 else Floor((6*Sqrt(Self(n-1)) - Sqrt(Self(n-2)))^2): n in [1..20]]; // Vincenzo Librandi, Jul 22 2015
  • Maple
    a:=17+12*sqrt(2); b:=17-12*sqrt(2); A001110:=n -> expand((a^n + b^n - 2)/32); seq(A001110(n), n=0..20); # Jaap Spies, Dec 12 2004
    A001110:=-(1+z)/((z-1)*(z**2-34*z+1)); # Simon Plouffe in his 1992 dissertation
  • Mathematica
    f[n_]:=n*(n+1)/2; lst={}; Do[If[IntegerQ[Sqrt[f[n]]],AppendTo[lst,f[n]]],{n,0,10!}]; lst (* Vladimir Joseph Stephan Orlovsky, Feb 12 2010 *)
    Table[(1/8) Round[N[Sinh[2 n ArcSinh[1]]^2, 100]], {n, 0, 20}] (* Artur Jasinski, Feb 10 2010 *)
    Transpose[NestList[Flatten[{Rest[#],34Last[#]-First[#]+2}]&, {0,1},20]][[1]]  (* Harvey P. Dale, Mar 25 2011 *)
    LinearRecurrence[{35, -35, 1}, {0, 1, 36}, 20] (* T. D. Noe, Mar 25 2011 *)
    LinearRecurrence[{6,-1},{0,1},20]^2 (* Harvey P. Dale, Oct 22 2012 *)
    (* Square = Triangular = Triangular = A001110 *)
    ChebyshevU[#-1,3]^2==Binomial[ChebyshevT[#/2,3]^2,2]==Binomial[(1+ChebyshevT[#,3])/2,2]=={1,36,1225,41616,1413721}[[#]]&@Range[5]
    True (* Bill Gosper, Jul 20 2015 *)
    L=0;r={};Do[AppendTo[r,L];L=1+17*L+6*Sqrt[L+8*L^2],{i,1,19}];r (* Kebbaj Mohamed Reda, Aug 02 2023 *)
  • PARI
    a=vector(100);a[1]=1;a[2]=36;for(n=3,#a,a[n]=34*a[n-1]-a[n-2]+2);a \\ Charles R Greathouse IV, Jul 25 2011
    
  • Scheme
    ;; With memoizing definec-macro from Antti Karttunen's IntSeq-library.
    (definec (A001110 n) (if (< n 2) n (+ 2 (- (* 34 (A001110 (- n 1))) (A001110 (- n 2))))))
    ;; Antti Karttunen, Dec 06 2013
    
  • Scheme
    ;; For testing whether n is in this sequence:
    (define (inA001110? n) (and (zero? (A068527 n)) (inA001109? (floor->exact (sqrt n)))))
    (define (inA001109? n) (= (* 8 n n) (floor->exact (* (sqrt 8) n (ceiling->exact (* (sqrt 8) n))))))
    ;; Antti Karttunen, Dec 06 2013
    

Formula

a(0) = 0, a(1) = 1; for n >= 2, a(n) = 34 * a(n-1) - a(n-2) + 2.
G.f.: x*(1 + x) / (( 1 - x )*( 1 - 34*x + x^2 )).
a(n-1) * a(n+1) = (a(n)-1)^2. - Colin Dickson, posting to alt.math.recreational, Mar 07 2004
If L is a square-triangular number, then the next one is 1 + 17*L + 6*sqrt(L + 8*L^2). - Lekraj Beedassy, Jun 27 2001
a(n) - a(n-1) = A046176(n). - Sophie Kuo (ejiqj_6(AT)yahoo.com.tw), May 27 2006
a(n) = A001109(n)^2 = A001108(n)*(A001108(n)+1)/2 = (A000129(n)*A001333(n))^2 = (A000129(n)*(A000129(n) + A000129(n-1)))^2. - Henry Bottomley, Apr 19 2000
a(n) = (((17+12*sqrt(2))^n) + ((17-12*sqrt(2))^n)-2)/32. - Bruce Corrigan (scentman(AT)myfamily.com), Oct 26 2002
Limit_{n->oo} a(n+1)/a(n) = 17 + 12*sqrt(2). See UWC problem link and solution. - Jaap Spies, Dec 12 2004
From Antonio Alberto Olivares, Nov 07 2003: (Start)
a(n) = 35*(a(n-1) - a(n-2)) + a(n-3);
a(n) = -1/16 + ((-24 + 17*sqrt(2))/2^(11/2))*(17 - 12*sqrt(2))^(n-1) + ((24 + 17*sqrt(2))/2^(11/2))*(17 + 12*sqrt(2))^(n-1). (End)
a(n+1) = (17*A029547(n) - A091761(n) - 1)/16. - R. J. Mathar, Nov 16 2007
a(n) = A001333^2 * A000129^2 = A000129(2*n)^2/4 = binomial(A001108,2). - Bill Gosper, Jul 28 2008
Closed form (as square = triangular): ( (sqrt(2)+1)^(2*n)/(4*sqrt(2)) - (1-sqrt(2))^(2*n)/(4*sqrt(2)) )^2 = (1/2) * ( ( (sqrt(2)+1)^n / 2 - (sqrt(2)-1)^n / 2 )^2 + 1 )*( (sqrt(2)+1)^n / 2 - (sqrt(2)-1)^n / 2 )^2. - Bill Gosper, Jul 25 2008
a(n) = (1/8)*(sinh(2*n*arcsinh(1)))^2. - Artur Jasinski, Feb 10 2010
a(n) = floor((17 + 12*sqrt(2))*a(n-1)) + 3 = floor(3*sqrt(2)/4 + (17 + 12*sqrt(2))*a(n-1) + 1). - Manuel Valdivia, Aug 15 2011
a(n) = (A011900(n) + A001652(n))^2; see the link about the generalized proof of square triangular numbers. - Kenneth J Ramsey, Oct 10 2011
a(2*n+1) = A002315(n)^2*(A002315(n)^2 + 1)/2. - Ivan N. Ianakiev, Oct 10 2012
a(2*n+1) = ((sqrt(t^2 + (t+1)^2))*(2*t+1))^2, where t = (A002315(n) - 1)/2. - Ivan N. Ianakiev, Nov 01 2012
a(2*n) = A001333(2*n)^2 * (A001333(2*n)^2 - 1)/2, and a(2*n+1) = A001333(2*n+1)^2 * (A001333(2*n+1)^2 + 1)/2. The latter is equivalent to the comment above from Ivan using A002315, which is a bisection of A001333. Using A001333 shows symmetry and helps show that a(n) are both "squares of triangular" and "triangular of squares". - Richard R. Forberg, Aug 30 2013
a(n) = (A001542(n)/2)^2.
From Peter Bala, Apr 03 2014: (Start)
a(n) = (T(n,17) - 1)/16, where T(n,x) denotes the Chebyshev polynomial of the first kind.
a(n) = U(n-1,3)^2, for n >= 1, where U(n,x) denotes the Chebyshev polynomial of the second kind.
a(n) = the bottom left entry of the 2 X 2 matrix T(n, M), where M is the 2 X 2 matrix [0, -17; 1, 18].
See the remarks in A100047 for the general connection between Chebyshev polynomials of the first kind and 4th-order linear divisibility sequences. (End)
a(n) = A096979(2*n-1) for n > 0. - Ivan N. Ianakiev, Jun 21 2014
a(n) = (6*sqrt(a(n-1)) - sqrt(a(n-2)))^2. - Arkadiusz Wesolowski, Apr 06 2015
From Daniel Poveda Parrilla, Jul 16 2016 and Sep 21 2016: (Start)
a(n) = A000290(A002965(2*n)*A002965(2*n + 1)) (after Hugh Darwen).
a(n) = A000217(2*(A000129(n))^2 - (A000129(n) mod 2)).
a(n) = A000129(n)^4 + Sum_{k=0..(A000129(n)^2 - (A000129(n) mod 2))} 2*k. This formula can be proved graphically by taking the corresponding triangle of a square triangular number and cutting both acute angles, one level at a time (sum of consecutive even numbers), resulting in a square of squares (4th powers).
a(n) = A002965(2*n)^4 + Sum_{k=A002965(2*n)^2..A002965(2*n)*A002965(2*n + 1) - 1} 2*k + 1. This formula takes an equivalent sum of consecutives, but odd numbers. (End)
E.g.f.: (exp((17-12*sqrt(2))*x) + exp((17+12*sqrt(2))*x) - 2*exp(x))/32. - Ilya Gutkovskiy, Jul 16 2016

A080239 Antidiagonal sums of triangle A035317.

Original entry on oeis.org

1, 1, 2, 3, 6, 9, 15, 24, 40, 64, 104, 168, 273, 441, 714, 1155, 1870, 3025, 4895, 7920, 12816, 20736, 33552, 54288, 87841, 142129, 229970, 372099, 602070, 974169, 1576239, 2550408, 4126648, 6677056, 10803704, 17480760, 28284465, 45765225, 74049690
Offset: 1

Views

Author

Paul Barry, Feb 11 2003

Keywords

Comments

Convolution of Fibonacci sequence with sequence (1, 0, 0, 0, 1, 0, 0, 0, 1, ...).
There is an interesting relation between a(n) and the Fibonacci sequence f(n). Sqrt(a(4n-2)) = f(2n). By using this fact we can calculate the value of a(n) by the following (1),(2),(3),(4) and (5). (1) a(1) = 1. (2) If n = 2 (mod 4), then a(n) = f((n+2)/2)^2. (3) If n = 3 (mod 4), then a(n) = (f((n+5)/2)^2-2f((n+1)/2)^2-1)/3. (4) If n = 0 (mod 4), then a(n) = (f((n+4)/2)^2+f(n/2)^2-1)/3. (5) If n = 1 (mod 4), then a(n) = (2f((n+3)/2)^2-f((n-1)/2)^2+1)/3. - Hiroshi Matsui and Ryohei Miyadera, Aug 08 2006
Sequences of the form s(0)=a, s(1)=b, s(n) = s(n-1) + s(n-2) + k if n mod m = p, else s(n) = s(n-1) + s(n-2) will have a form fib(n-1)*a + fib(n)*b + P(x)*k. a(n) is the P(x) sequence for m=4...s(n) = fib(n)*a + fib(n-1)*b + a(n-4-p)*k. - Gary Detlefs, Dec 05 2010
A different formula for a(n) as a function of the Fibonacci numbers f(n) may be conjectured. The pattern is of the form a(n) = f(p)*f(p-q) - 1 if n mod 4 = 3, else f(p)*f(p-q) where p = 2,2,4,4,4,4,6,6,6,6,8,8,8,8... and q = 0,1,3,2,0,1,3,2,0,1,3,2... p(n) = 2 * A002265(n+4) = 2*(floor((n+3)/2) - floor((n+3)/4)) (see comment by Jonathan Vos Post at A002265). A general formula for sequences having period 4 with terms a,b,c,d is given in A121262 (the discrete Fourier transform, as for all periodic sequences) and is a function of t(n)= 1/4*(2*cos(n*Pi/2) + 1 + (-1)^n). r4(a,b,c,d,n) = a*t(n+3) + b*t(n+2) + c*t(n+1) + d*t(n). This same formula may be used to subtract the 1 at n mod 4 = 3. a(n) = f(p(n))*f(p(n) - r4(1,0,3,2,n)) - r4(0,0,1,0,n). - Gary Detlefs, Dec 09 2010
This sequence is the sequence B4,1 on p. 34 of "Pascal-like triangles and Fibonacci-like sequences" in the references. In this article the authors treat more general sequences that have this sequence as an example. - Hiroshi Matsui and Ryohei Miyadera, Apr 11 2014
It is easy to see that a(n) = a(n-4) + f(n), where f(n) is the Fibonacci sequence. By using this repeatedly we have for a natural number m
a(4m) =a(4) + f(4m) + f(4m-4) + ... + f(8),
a(4m+1) = a(1) + f(4m) + f(4m-4) + ... + f(5),
a(4m+2) = a(2) + f(4m) + f(4m-4) + ... + f(6) and
a(4m+3) = a(3) + f(4m) + f(4m-4) + ... + f(7).
- Wataru Takeshita and Ryohei Miyadera, Apr 11 2014
a(n-1) counts partially ordered partitions of (n-1) into (1,2,3,4) where the position (order) of 2's is unimportant. E.g., a(5)=6 (n-1)=4 These are (4),(31),(13),(22),(211,121,112=one),(1111). - David Neil McGrath, May 12 2015

Crossrefs

Programs

  • GAP
    List([1..40], n-> Sum([0..Int((n-1)/4)], k-> Fibonacci(n-4*k) )); # G. C. Greubel, Jul 13 2019
  • Haskell
    a080239 n = a080239_list !! (n-1)
    a080239_list = 1 : 1 : zipWith (+)
       (tail a011765_list) (zipWith (+) a080239_list $ tail a080239_list)
    -- Reinhard Zumkeller, Jan 06 2012
    
  • Magma
    I:=[1,1,2,3,6,9]; [n le 6 select I[n] else Self(n-1)+Self(n-2)+Self(n-4)-Self(n-5)-Self(n-6): n in [1..50]]; // Vincenzo Librandi, Jun 07 2015
    
  • Maple
    f:=proc(n) option remember; local t1; if n <= 2 then RETURN(1); fi: if n mod 4 = 1 then t1:=1 else t1:=0; fi: f(n-1)+f(n-2)+t1; end; [seq(f(n), n=1..100)]; # N. J. A. Sloane, May 25 2008
    with(combinat): f:=n-> fibonacci(n): p:=n-> 2*(floor((n+3)/2)-floor((n+3)/4)): t:=n-> 1/4*(2*cos(n*Pi/2)+1+(-1)^n): r4:=(a,b,c,d,n)-> a*t(n+3)+b*t(n+2)+c*t(n+1)+d*t(n): seq(f(p(n))*f(p(n)-r4(1,0,3,2,n))-r4(0,0,1,0,n), n = 1..33); # Gary Detlefs, Dec 09 2010
    with(combinat): a:=proc(n); add(fibonacci(n-4*k),k=0..floor((n-1)/4)) end: seq(a(n), n = 1..33); # Johannes W. Meijer, Apr 19 2012
  • Mathematica
    (*f[n] is the Fibonacci sequence and a[n] is the sequence of A080239*) f[n_]:= f[n] =f[n-1] +f[n-2]; f[1]=1; f[2]=1; a[n_]:= Which[n==1, 1, Mod[n, 4]==2, f[(n+2)/2]^2, Mod[n, 4]==3, (f[(n+5)/2]^2 - 2f[(n + 1)/2]^2 -1)/3, Mod[n, 4]==0, (f[(n+4)/2]^2 + f[n/2]^2 -1)/3, Mod[n, 4] == 1, (2f[(n+3)/2]^2 -f[(n-1)/2]^2 +1)/3] (* Hiroshi Matsui and Ryohei Miyadera, Aug 08 2006 *)
    a=0; b=0; lst={a,b}; Do[z=a+b+1; AppendTo[lst,z]; a=b; b=z; z=a+b; AppendTo[lst,z]; a=b; b=z; z=a+b; AppendTo[lst,z]; a=b; b=z; z=a+b; AppendTo[lst,z]; a=b; b=z,{n,4!}]; lst (* Vladimir Joseph Stephan Orlovsky, Feb 16 2010 *)
    (* Let f[n] be the Fibonacci sequence and a2[n] the sequence A080239 expressed by another formula discovered by Wataru Takeshita and Ryohei Miyadera *)
    f=Fibonacci; a2[n_]:= Block[{m, s}, s = Mod[n, 4]; m = (n-s)/4;
    Which[n==1, 1, n==2, 1, n==3, 2, s==0, 3 + Sum[f[4 i], {i, 2, m}], s == 1, 1 + Sum[f[4i+1], {i, 1, m}], s==2, 1 + Sum[f[4i+2], {i, 1, m}], s == 3, 2 + Sum[f[4i+3], {i, 1, m}]]]; Table[a2[n], {n, 1, 40}] (* Ryohei Miyadera, Apr 11 2014, minor update by Jean-François Alcover, Apr 29 2014 *)
    LinearRecurrence[{1, 1, 0, 1, -1, -1}, {1, 1, 2, 3, 6, 9}, 41] (* Vincenzo Librandi, Jun 07 2015 *)
  • PARI
    vector(40, n, f=fibonacci; sum(k=0,((n-1)\4), f(n-4*k))) \\ G. C. Greubel, Jul 13 2019
    
  • Sage
    [sum(fibonacci(n-4*k) for k in (0..floor((n-1)/4))) for n in (1..40)] # G. C. Greubel, Jul 13 2019
    

Formula

G.f.: x/((1-x^4)(1 - x - x^2)) = x/(1 - x - x^2 - x^4 + x^5 + x^6).
a(n) = a(n-1) + a(n-2) + a(n-4) - a(n-5) - a(n-6).
a(n) = Sum_{j=0..floor(n/2)} Sum_{k=0..floor((n-j)/2)} binomial(n-j-2k, j-2k) for n>=0.
Another recurrence is given in the Maple code.
If n mod 4 = 1 then a(n) = a(n-1) + a(n-2) + 1, else a(n)= a(n-1) + a(n-2). - Gary Detlefs, Dec 05 2010
a(4n) = A058038(n) = Fibonacci(2n+2)*Fibonacci(2n).
a(4n+1) = A081016(n) = Fibonacci(2n+2)*Fibonacci(2n+1).
a(4n+2) = A049682(n+1) = Fibonacci(2n+2)^2.
a(4n+3) = A081018(n+1) = Fibonacci(2n+2)*Fibonacci(2n+3).
a(n) = 8*a(n-4) - 8*a(n-8) + a(n-12), n>12. - Gary Detlefs, Dec 10 2010
a(n+1) = a(n) + a(n-1) + A011765(n+1). - Reinhard Zumkeller, Jan 06 2012
a(n) = Sum_{k=0..floor((n-1)/4)} Fibonacci(n-4*k). - Johannes W. Meijer, Apr 19 2012

A273622 a(n) = (1/3)*(Lucas(3*n) - Lucas(n)).

Original entry on oeis.org

1, 5, 24, 105, 451, 1920, 8149, 34545, 146376, 620125, 2626999, 11128320, 47140601, 199691245, 845906424, 3583318305, 15179181851, 64300049280, 272379384749, 1153817597625, 4887649790376, 20704416783605, 87705316964399, 371525684705280, 1573808055889201, 6666757908429845
Offset: 1

Views

Author

Peter Bala, May 27 2016

Keywords

Comments

This is a divisibility sequence, that is, a(n) divides a(m) whenever n divides m. The sequence satisfies a linear recurrence of order 4. Cf. A273623.
More generally, for distinct integers r and s with r == s (mod 2), the sequence Lucas(r*n) - Lucas(s*n) is a fourth-order divisibility sequence. When r is even (resp. odd) the normalized sequence (Lucas(r*n) - Lucas(s*n))/(Lucas(r) - Lucas(s)), with initial term equal to 1, has the o.g.f. x*(1 - x^2)/( (1 - Lucas(r)*x + x^2)*(1 - Lucas(s)*x + x^2) ) (resp. x*(1 + x^2)/( (1 - Lucas(r)*x - x^2)*(1 - Lucas(s)*x - x^2) )) and belongs to the 3-parameter family of fourth-order divisibility sequences found by Williams and Guy, with parameter values P1 = (Lucas(r) + Lucas(s)), P2 = Lucas(r)*Lucas(s) and Q = 1 (resp. Q = -1). For particular cases see A004146 (r = 2, s = 0), A049684 (r = 4, s = 0), A215465 (r = 4, s = 2), A049683 (r = 6, s = 0), A049682 (r = 8, s = 0) and A037451 (r = 3, s = -1).

Crossrefs

Programs

  • Magma
    [1/3*(Lucas(3*n) - Lucas(n)): n in [1..25]]; // Vincenzo Librandi, Jun 02 2016
    
  • Maple
    #A273622
    with(combinat):
    Lucas := n->fibonacci(n+1) + fibonacci(n-1):
    seq(1/3*(Lucas(3*n) - Lucas(n)), n = 1..24);
  • Mathematica
    LinearRecurrence[{5,-2,-5,-1}, {1, 5, 24, 105}, 100] (* G. C. Greubel, Jun 02 2016 *)
    Table[1/3 (LucasL[3 n] - LucasL[n]), {n, 1, 30}] (* Vincenzo Librandi, Jun 02 2016 *)
  • PARI
    a(n)=([0,1,0,0; 0,0,1,0; 0,0,0,1; -1,-5,-2,5]^(n-1)*[1;5;24;105])[1,1] \\ Charles R Greathouse IV, Jun 07 2016

Formula

a(n) = (1/3)*( (2 + sqrt(5))^n + (2 - sqrt(5))^n - ((1 + sqrt(5))/2)^n - ((1 - sqrt(5))/2)^n ).
a(n) = -a(-n).
a(n) = 5*a(n-1) - 2*a(n-2) - 5*a(n-3) - a(n-4).
O.g.f.: x*(1 + x^2)/((1 - x - x^2 )*(1 - 4*x - x^2)).
a(n) = (A014448(n) - A000032(n))/3. - R. J. Mathar, Jun 07 2016
a(n) = Fibonacci(n) + Sum_{k=1..n} Fibonacci(n-k)*Lucas(3*k). - Yomna Bakr and Greg Dresden, Jun 16 2024
E.g.f.: (2*exp(2*x)*cosh(sqrt(5)*x) - 2*exp(x/2)*cosh(sqrt(5)*x/2))/3. - Stefano Spezia, Jun 17 2024

A049683 a(n) = (Lucas(6*n) - 2)/16.

Original entry on oeis.org

0, 1, 20, 361, 6480, 116281, 2086580, 37442161, 671872320, 12056259601, 216340800500, 3882078149401, 69661065888720, 1250017107847561, 22430646875367380, 402501626648765281, 7222598632802407680, 129604273763794572961, 2325654329115499905620
Offset: 0

Views

Author

Keywords

Comments

This is the r = 20 member of the r-family of sequences S_r(n), n >= 1, defined in A092184 where more information can be found.

Crossrefs

Programs

  • GAP
    List([0..30], n-> (Lucas(1,-1,6*n)[2] - 2)/16 ); # G. C. Greubel, Dec 14 2019
  • Magma
    [(Lucas(6*n) -2)/16: n in [0..30]]; // G. C. Greubel, Dec 02 2017
    
  • Maple
    with(combinat); seq( (5*fibonacci(3*n)^2 -2*(1-(-1)^n))/16, n=0..30); # G. C. Greubel, Dec 14 2019
  • Mathematica
    LinearRecurrence[{19,-19,1}, {0,1,30}, 20] (* or *) Table[(LucasL[6*n] -2)/16, {n,0,30}] (* G. C. Greubel, Dec 02 2017 *)
  • PARI
    concat(0, Vec(x*(1+x)/((1-x)*(1-18*x+x^2)) + O(x^30))) \\ Colin Barker, Jun 03 2016
    
  • PARI
    vector(31, n, (5*fibonacci(3*n-3)^2 -2*(1+(-1)^n))/16 ) \\ G. C. Greubel, Dec 14 2019
    
  • Sage
    [(lucas_number2(6*n,1,-1) -2)/16 for n in (0..30)] # G. C. Greubel, Dec 14 2019
    

Formula

a(n) = (-2 + (9 + 4*sqrt(5))^n + (9 - 4*sqrt(5))^n)/16. - Ralf Stephan, Apr 14 2004
a(n) = (T(n, 9) - 1)/8 with Chebyshev's polynomials of the first kind evaluated at x = 9: T(n, 9) = A023039(n). Wolfdieter Lang, Oct 18 2004
G.f.: x*(1 + x)/((1 - x)*(1 - 18*x + x^2)) = x*(1 + x)/(1 - 19*x + 19*x^2 - x^3). (from the Stephan link, see A092184).
exp( Sum_{n >= 1} 16*a(n)*x^n/n ) = 1 + 2*Sum_{n >= 1} Fibonacci(6*n)*x^n. - Peter Bala, Jun 03 2016
a(n) = 19*a(n-1) - 19*a(n-2) + a(n-3) for n>2. - Colin Barker, Jun 03 2016

A221366 The simple continued fraction expansion of F(x) := Product_{n >= 0} (1 - x^(4*n+3))/(1 - x^(4*n+1)) when x = (1/2)*(7 - 3*sqrt(5)).

Original entry on oeis.org

1, 5, 1, 45, 1, 320, 1, 2205, 1, 15125, 1, 103680, 1, 710645, 1, 4870845, 1, 33385280, 1, 228826125, 1, 1568397605, 1, 10749957120, 1, 73681302245, 1, 505019158605, 1, 3461452808000, 1, 23725150497405, 1
Offset: 0

Views

Author

Peter Bala, Jan 15 2013

Keywords

Comments

The function F(x) := Product_{n >= 0} (1 - x^(4*n+3))/(1 - x^(4*n+1)) is analytic for |x| < 1. When x is a quadratic irrational of the form x = 1/2*(N - sqrt(N^2 - 4)), N an integer greater than 2, the real number F(x) has a predictable simple continued fraction expansion. The first examples of these expansions, for N = 2, 4, 6 and 8, are due to Hanna. See A174500 through A175503. The present sequence is the case N = 7. See also A221364 (N = 3), A221365 (N = 5) and A221367 (N = 9).
If we denote the present sequence by [1, c(1), 1, c(2), 1, c(3), ...] then for k = 1, 2, ..., the simple continued fraction expansion of F((1/2*(7 - sqrt(45)))^k) is given by the sequence [1; c(k), 1, c(2*k), 1, c(3*k), 1, ...]. Examples are given below.

Examples

			F(1/2*(7 - sqrt(45))) = 1.16725 98258 10214 95210 ... = 1 + 1/(5 + 1/(1 + 1/(45 + 1/(1 + 1/(320 + 1/(1 + 1/(2205 + ...))))))).
F((1/2*(7 - sqrt(45)))^2) = 1.02173 93445 69104 86504 ... = 1 + 1/(45 + 1/(1 + 1/(2205 + 1/(1 + 1/(103680 + 1/(1 + 1/(4870845 + ...))))))).
F((1/2*(7 - sqrt(45)))^3) = 1.00311 52648 91110 10148 ... = 1 + 1/(320 + 1/(1 + 1/(103680 + 1/(1 + 1/(33385280 + 1/(1 + 1/(10749957120 + ...))))))).
		

Crossrefs

Cf. A174500 (N = 4), A221364 (N = 3), A221365 (N = 5), A221369 (N = 9).

Programs

  • Mathematica
    LinearRecurrence[{0,8,0,-8,0,1},{1,5,1,45,1,320},40] (* or *) Riffle[ LinearRecurrence[{8,-8,1},{5,45,320},20],1,{1,-1,2}] (* Harvey P. Dale, Jan 04 2018 *)

Formula

a(2*n-1) = (1/2*(7 + sqrt(45)))^n + (1/2*(7 - sqrt(45)))^n - 2 = A081070(n); a(2*n) = 1.
a(4*n-1) = 45*A049682(n) = 45*(A004187(n))^2;
a(4*n+1) = 5*(A033890(n))^2.
a(n) = 8*a(n-2)-8*a(n-4)+a(n-6). G.f.: -(x^4+5*x^3-7*x^2+5*x+1) / ((x-1)*(x+1)*(x^2-3*x+1)*(x^2+3*x+1)). - Colin Barker, Jan 20 2013

A003751 Number of spanning trees in K_5 x P_n.

Original entry on oeis.org

125, 300125, 663552000, 1464514260125, 3232184906328125, 7133430745792512000, 15743478429512478120125, 34745849760772636969860125, 76684074678559433693601792000, 169241718069731503830237768828125, 373516395095822778319979141039280125
Offset: 1

Views

Author

Keywords

Comments

This is a divisibility sequence.

References

  • F. Faase, On the number of specific spanning subgraphs of the graphs G X P_n, Ars Combin. 49 (1998), 129-154.

Programs

  • Mathematica
    (125*Fibonacci[4*Range[20]]^4)/81 (* or *) LinearRecurrence[ {2255,-105985,105985,-2255,1},{125,300125,663552000,1464514260125,3232184906328125},20] (* Harvey P. Dale, Apr 24 2013 *)

Formula

a(n) = 2255a(n-1)- 105985a(n-2) +105985a(n-3) -2255a(n-4) +a(n-5).
a(n) = 125*(A004187(n))^4 = 125*(A049682(n))^2. [R. Guy, seqfan list, Mar 28 2009] [From R. J. Mathar, Jun 03 2009]
G.f.: -(125x(x^3+146x^2+146x+1)/(x^5-2255x^4+105985x^3-105985x^2+2255x-1)) [Paul Raff, Oct 29 2009]
a(n) = 125*F(4n)^4/81. - R. K. Guy, Feb 24 2010

Extensions

Added recurrence from Faase's web page. - N. J. A. Sloane, Feb 03 2009
More terms from Harvey P. Dale, Apr 24 2013
Showing 1-6 of 6 results.