cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A001110 Square triangular numbers: numbers that are both triangular and square.

Original entry on oeis.org

0, 1, 36, 1225, 41616, 1413721, 48024900, 1631432881, 55420693056, 1882672131025, 63955431761796, 2172602007770041, 73804512832419600, 2507180834294496361, 85170343853180456676, 2893284510173841030625, 98286503002057414584576, 3338847817559778254844961, 113422539294030403250144100
Offset: 0

Views

Author

Keywords

Comments

Satisfies a recurrence of S_r type for r=36: 0, 1, 36 and a(n-1)*a(n+1)=(a(n)-1)^2. First observed by Colin Dickson in alt.math.recreational, Mar 07 2004. - Rainer Rosenthal, Mar 14 2004
For every n, a(n) is the first of three triangular numbers in geometric progression. The third number in the progression is a(n+1). The middle triangular number is sqrt(a(n)*a(n+1)). Chen and Fang prove that four distinct triangular numbers are never in geometric progression. - T. D. Noe, Apr 30 2007
The sum of any two terms is never equal to a Fermat number. - Arkadiusz Wesolowski, Feb 14 2012
Conjecture: No a(2^k), where k is a nonnegative integer, can be expressed as a sum of a positive square number and a positive triangular number. - Ivan N. Ianakiev, Sep 19 2012
For n=2k+1, A010888(a(n))=1 and for n=2k, k > 0, A010888(a(n))=9. - Ivan N. Ianakiev, Oct 12 2013
For n > 0, these are the triangular numbers which are the sum of two consecutive triangular numbers, for instance 36 = 15 + 21 and 1225 = 595 + 630. - Michel Marcus, Feb 18 2014
The sequence is the case P1 = 36, P2 = 68, Q = 1 of the 3-parameter family of 4th order linear divisibility sequences found by Williams and Guy. - Peter Bala, Apr 03 2014
For n=2k, k > 0, a(n) is divisible by 12 and is therefore abundant. I conjecture that for n=2k+1 a(n) is deficient [true for k up to 43 incl.]. - Ivan N. Ianakiev, Sep 30 2014
The conjecture is true for all k > 0 because: For n=2k+1, k > 0, a(n) is odd. If a(n) is a prime number, it is deficient; otherwise a(n) has one or two distinct prime factors and is therefore deficient again. So for n=2k+1, k > 0, a(n) is deficient. - Muniru A Asiru, Apr 13 2016
Numbers k for which A139275(k) is a perfect square. - Bruno Berselli, Jan 16 2018

Examples

			a(2) = ((17 + 12*sqrt(2))^2 + (17 - 12*sqrt(2))^2 - 2)/32 = (289 + 24*sqrt(2) + 288 + 289 - 24*sqrt(2) + 288 - 2)/32 = (578 + 576 - 2)/32 = 1152/32 = 36 and 6^2 = 36 = 8*9/2 => a(2) is both the 6th square and the 8th triangular number.
		

References

  • A. H. Beiler, Recreations in the Theory of Numbers, Dover, NY, 1964, p. 193.
  • John H. Conway and Richard K. Guy, The Book of Numbers, New York: Springer-Verlag, 1996. See pp. 38, 204.
  • L. E. Dickson, History of the Theory of Numbers. Carnegie Institute Public. 256, Washington, DC, Vol. 1, 1919; Vol. 2, 1920; Vol. 3, 1923; see Vol. 2, p. 10.
  • Martin Gardner, Time Travel and other Mathematical Bewilderments, Freeman & Co., 1988, pp. 16-17.
  • Miodrag S. Petković, Famous Puzzles of Great Mathematicians, Amer. Math. Soc. (AMS), 2009, p. 64.
  • J. H. Silverman, A Friendly Introduction to Number Theory, Prentice Hall, 2001, p. 196.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • James J. Tattersall, Elementary Number Theory in Nine Chapters, Cambridge University Press, 1999, pages 257-259.
  • David Wells, The Penguin Dictionary of Curious and Interesting Numbers. Penguin Books, NY, 1986, Revised edition 1987. See p. 93.

Crossrefs

Other S_r type sequences are S_4=A000290, S_5=A004146, S_7=A054493, S_8=A001108, S_9=A049684, S_20=A049683, S_36=this sequence, S_49=A049682, S_144=A004191^2.
Cf. A001014; intersection of A000217 and A000290; A010052(a(n))*A010054(a(n)) = 1.
Cf. A005214, A054686, A232847 and also A233267 (reveals an interesting divisibility pattern for this sequence).
Cf. A240129 (triangular numbers that are squares of triangular numbers), A100047.
See A229131, A182334, A299921 for near-misses.

Programs

  • Haskell
    a001110 n = a001110_list !! n
    a001110_list = 0 : 1 : (map (+ 2) $
       zipWith (-) (map (* 34) (tail a001110_list)) a001110_list)
    -- Reinhard Zumkeller, Oct 12 2011
    
  • Magma
    [n le 2 select n-1 else Floor((6*Sqrt(Self(n-1)) - Sqrt(Self(n-2)))^2): n in [1..20]]; // Vincenzo Librandi, Jul 22 2015
  • Maple
    a:=17+12*sqrt(2); b:=17-12*sqrt(2); A001110:=n -> expand((a^n + b^n - 2)/32); seq(A001110(n), n=0..20); # Jaap Spies, Dec 12 2004
    A001110:=-(1+z)/((z-1)*(z**2-34*z+1)); # Simon Plouffe in his 1992 dissertation
  • Mathematica
    f[n_]:=n*(n+1)/2; lst={}; Do[If[IntegerQ[Sqrt[f[n]]],AppendTo[lst,f[n]]],{n,0,10!}]; lst (* Vladimir Joseph Stephan Orlovsky, Feb 12 2010 *)
    Table[(1/8) Round[N[Sinh[2 n ArcSinh[1]]^2, 100]], {n, 0, 20}] (* Artur Jasinski, Feb 10 2010 *)
    Transpose[NestList[Flatten[{Rest[#],34Last[#]-First[#]+2}]&, {0,1},20]][[1]]  (* Harvey P. Dale, Mar 25 2011 *)
    LinearRecurrence[{35, -35, 1}, {0, 1, 36}, 20] (* T. D. Noe, Mar 25 2011 *)
    LinearRecurrence[{6,-1},{0,1},20]^2 (* Harvey P. Dale, Oct 22 2012 *)
    (* Square = Triangular = Triangular = A001110 *)
    ChebyshevU[#-1,3]^2==Binomial[ChebyshevT[#/2,3]^2,2]==Binomial[(1+ChebyshevT[#,3])/2,2]=={1,36,1225,41616,1413721}[[#]]&@Range[5]
    True (* Bill Gosper, Jul 20 2015 *)
    L=0;r={};Do[AppendTo[r,L];L=1+17*L+6*Sqrt[L+8*L^2],{i,1,19}];r (* Kebbaj Mohamed Reda, Aug 02 2023 *)
  • PARI
    a=vector(100);a[1]=1;a[2]=36;for(n=3,#a,a[n]=34*a[n-1]-a[n-2]+2);a \\ Charles R Greathouse IV, Jul 25 2011
    
  • Scheme
    ;; With memoizing definec-macro from Antti Karttunen's IntSeq-library.
    (definec (A001110 n) (if (< n 2) n (+ 2 (- (* 34 (A001110 (- n 1))) (A001110 (- n 2))))))
    ;; Antti Karttunen, Dec 06 2013
    
  • Scheme
    ;; For testing whether n is in this sequence:
    (define (inA001110? n) (and (zero? (A068527 n)) (inA001109? (floor->exact (sqrt n)))))
    (define (inA001109? n) (= (* 8 n n) (floor->exact (* (sqrt 8) n (ceiling->exact (* (sqrt 8) n))))))
    ;; Antti Karttunen, Dec 06 2013
    

Formula

a(0) = 0, a(1) = 1; for n >= 2, a(n) = 34 * a(n-1) - a(n-2) + 2.
G.f.: x*(1 + x) / (( 1 - x )*( 1 - 34*x + x^2 )).
a(n-1) * a(n+1) = (a(n)-1)^2. - Colin Dickson, posting to alt.math.recreational, Mar 07 2004
If L is a square-triangular number, then the next one is 1 + 17*L + 6*sqrt(L + 8*L^2). - Lekraj Beedassy, Jun 27 2001
a(n) - a(n-1) = A046176(n). - Sophie Kuo (ejiqj_6(AT)yahoo.com.tw), May 27 2006
a(n) = A001109(n)^2 = A001108(n)*(A001108(n)+1)/2 = (A000129(n)*A001333(n))^2 = (A000129(n)*(A000129(n) + A000129(n-1)))^2. - Henry Bottomley, Apr 19 2000
a(n) = (((17+12*sqrt(2))^n) + ((17-12*sqrt(2))^n)-2)/32. - Bruce Corrigan (scentman(AT)myfamily.com), Oct 26 2002
Limit_{n->oo} a(n+1)/a(n) = 17 + 12*sqrt(2). See UWC problem link and solution. - Jaap Spies, Dec 12 2004
From Antonio Alberto Olivares, Nov 07 2003: (Start)
a(n) = 35*(a(n-1) - a(n-2)) + a(n-3);
a(n) = -1/16 + ((-24 + 17*sqrt(2))/2^(11/2))*(17 - 12*sqrt(2))^(n-1) + ((24 + 17*sqrt(2))/2^(11/2))*(17 + 12*sqrt(2))^(n-1). (End)
a(n+1) = (17*A029547(n) - A091761(n) - 1)/16. - R. J. Mathar, Nov 16 2007
a(n) = A001333^2 * A000129^2 = A000129(2*n)^2/4 = binomial(A001108,2). - Bill Gosper, Jul 28 2008
Closed form (as square = triangular): ( (sqrt(2)+1)^(2*n)/(4*sqrt(2)) - (1-sqrt(2))^(2*n)/(4*sqrt(2)) )^2 = (1/2) * ( ( (sqrt(2)+1)^n / 2 - (sqrt(2)-1)^n / 2 )^2 + 1 )*( (sqrt(2)+1)^n / 2 - (sqrt(2)-1)^n / 2 )^2. - Bill Gosper, Jul 25 2008
a(n) = (1/8)*(sinh(2*n*arcsinh(1)))^2. - Artur Jasinski, Feb 10 2010
a(n) = floor((17 + 12*sqrt(2))*a(n-1)) + 3 = floor(3*sqrt(2)/4 + (17 + 12*sqrt(2))*a(n-1) + 1). - Manuel Valdivia, Aug 15 2011
a(n) = (A011900(n) + A001652(n))^2; see the link about the generalized proof of square triangular numbers. - Kenneth J Ramsey, Oct 10 2011
a(2*n+1) = A002315(n)^2*(A002315(n)^2 + 1)/2. - Ivan N. Ianakiev, Oct 10 2012
a(2*n+1) = ((sqrt(t^2 + (t+1)^2))*(2*t+1))^2, where t = (A002315(n) - 1)/2. - Ivan N. Ianakiev, Nov 01 2012
a(2*n) = A001333(2*n)^2 * (A001333(2*n)^2 - 1)/2, and a(2*n+1) = A001333(2*n+1)^2 * (A001333(2*n+1)^2 + 1)/2. The latter is equivalent to the comment above from Ivan using A002315, which is a bisection of A001333. Using A001333 shows symmetry and helps show that a(n) are both "squares of triangular" and "triangular of squares". - Richard R. Forberg, Aug 30 2013
a(n) = (A001542(n)/2)^2.
From Peter Bala, Apr 03 2014: (Start)
a(n) = (T(n,17) - 1)/16, where T(n,x) denotes the Chebyshev polynomial of the first kind.
a(n) = U(n-1,3)^2, for n >= 1, where U(n,x) denotes the Chebyshev polynomial of the second kind.
a(n) = the bottom left entry of the 2 X 2 matrix T(n, M), where M is the 2 X 2 matrix [0, -17; 1, 18].
See the remarks in A100047 for the general connection between Chebyshev polynomials of the first kind and 4th-order linear divisibility sequences. (End)
a(n) = A096979(2*n-1) for n > 0. - Ivan N. Ianakiev, Jun 21 2014
a(n) = (6*sqrt(a(n-1)) - sqrt(a(n-2)))^2. - Arkadiusz Wesolowski, Apr 06 2015
From Daniel Poveda Parrilla, Jul 16 2016 and Sep 21 2016: (Start)
a(n) = A000290(A002965(2*n)*A002965(2*n + 1)) (after Hugh Darwen).
a(n) = A000217(2*(A000129(n))^2 - (A000129(n) mod 2)).
a(n) = A000129(n)^4 + Sum_{k=0..(A000129(n)^2 - (A000129(n) mod 2))} 2*k. This formula can be proved graphically by taking the corresponding triangle of a square triangular number and cutting both acute angles, one level at a time (sum of consecutive even numbers), resulting in a square of squares (4th powers).
a(n) = A002965(2*n)^4 + Sum_{k=A002965(2*n)^2..A002965(2*n)*A002965(2*n + 1) - 1} 2*k + 1. This formula takes an equivalent sum of consecutives, but odd numbers. (End)
E.g.f.: (exp((17-12*sqrt(2))*x) + exp((17+12*sqrt(2))*x) - 2*exp(x))/32. - Ilya Gutkovskiy, Jul 16 2016

A273622 a(n) = (1/3)*(Lucas(3*n) - Lucas(n)).

Original entry on oeis.org

1, 5, 24, 105, 451, 1920, 8149, 34545, 146376, 620125, 2626999, 11128320, 47140601, 199691245, 845906424, 3583318305, 15179181851, 64300049280, 272379384749, 1153817597625, 4887649790376, 20704416783605, 87705316964399, 371525684705280, 1573808055889201, 6666757908429845
Offset: 1

Views

Author

Peter Bala, May 27 2016

Keywords

Comments

This is a divisibility sequence, that is, a(n) divides a(m) whenever n divides m. The sequence satisfies a linear recurrence of order 4. Cf. A273623.
More generally, for distinct integers r and s with r == s (mod 2), the sequence Lucas(r*n) - Lucas(s*n) is a fourth-order divisibility sequence. When r is even (resp. odd) the normalized sequence (Lucas(r*n) - Lucas(s*n))/(Lucas(r) - Lucas(s)), with initial term equal to 1, has the o.g.f. x*(1 - x^2)/( (1 - Lucas(r)*x + x^2)*(1 - Lucas(s)*x + x^2) ) (resp. x*(1 + x^2)/( (1 - Lucas(r)*x - x^2)*(1 - Lucas(s)*x - x^2) )) and belongs to the 3-parameter family of fourth-order divisibility sequences found by Williams and Guy, with parameter values P1 = (Lucas(r) + Lucas(s)), P2 = Lucas(r)*Lucas(s) and Q = 1 (resp. Q = -1). For particular cases see A004146 (r = 2, s = 0), A049684 (r = 4, s = 0), A215465 (r = 4, s = 2), A049683 (r = 6, s = 0), A049682 (r = 8, s = 0) and A037451 (r = 3, s = -1).

Crossrefs

Programs

  • Magma
    [1/3*(Lucas(3*n) - Lucas(n)): n in [1..25]]; // Vincenzo Librandi, Jun 02 2016
    
  • Maple
    #A273622
    with(combinat):
    Lucas := n->fibonacci(n+1) + fibonacci(n-1):
    seq(1/3*(Lucas(3*n) - Lucas(n)), n = 1..24);
  • Mathematica
    LinearRecurrence[{5,-2,-5,-1}, {1, 5, 24, 105}, 100] (* G. C. Greubel, Jun 02 2016 *)
    Table[1/3 (LucasL[3 n] - LucasL[n]), {n, 1, 30}] (* Vincenzo Librandi, Jun 02 2016 *)
  • PARI
    a(n)=([0,1,0,0; 0,0,1,0; 0,0,0,1; -1,-5,-2,5]^(n-1)*[1;5;24;105])[1,1] \\ Charles R Greathouse IV, Jun 07 2016

Formula

a(n) = (1/3)*( (2 + sqrt(5))^n + (2 - sqrt(5))^n - ((1 + sqrt(5))/2)^n - ((1 - sqrt(5))/2)^n ).
a(n) = -a(-n).
a(n) = 5*a(n-1) - 2*a(n-2) - 5*a(n-3) - a(n-4).
O.g.f.: x*(1 + x^2)/((1 - x - x^2 )*(1 - 4*x - x^2)).
a(n) = (A014448(n) - A000032(n))/3. - R. J. Mathar, Jun 07 2016
a(n) = Fibonacci(n) + Sum_{k=1..n} Fibonacci(n-k)*Lucas(3*k). - Yomna Bakr and Greg Dresden, Jun 16 2024
E.g.f.: (2*exp(2*x)*cosh(sqrt(5)*x) - 2*exp(x/2)*cosh(sqrt(5)*x/2))/3. - Stefano Spezia, Jun 17 2024

A049682 a(n) = (Lucas(8*n) - 2)/45.

Original entry on oeis.org

0, 1, 49, 2304, 108241, 5085025, 238887936, 11222647969, 527225566609, 24768378982656, 1163586586618225, 54663801192073921, 2568035069440856064, 120642984462528161089, 5667652234669382715121, 266259012044998459449600, 12508505913880258211416081
Offset: 0

Views

Author

Keywords

Comments

This is a divisibility sequence.

Examples

			G.f. = x + 49*x^2 + 2304*x^3 + 108241*x^4 + 5085025*x^5 + 238887936*x^6 + ...
		

Crossrefs

Programs

  • GAP
    List([0..20], n-> (Fibonacci(4*n)/3)^2 ); # G. C. Greubel, Dec 14 2019
  • Magma
    [(Fibonacci(4*n)/3)^2: n in [0..20]]; // G. C. Greubel, Dec 02 2017
    
  • Maple
    with(combinat); seq( fibonacci(4*n)^2/9, n=0..20); # G. C. Greubel, Dec 14 2019
  • Mathematica
    LinearRecurrence[{48,-48,1},{0,1,49},20] (* or *) CoefficientList[Series[ (-x-x^2)/ (x^3-48x^2+48x-1),{x,0,20}],x] (* Harvey P. Dale, Apr 22 2011 *)
  • MuPAD
    numlib::fibonacci(4*n)^2/9 $ n = 0..25; // Zerinvary Lajos, May 09 2008
    
  • PARI
    vector(21, n, (fibonacci(4*(n-1))/3)^2) \\ G. C. Greubel, Dec 02 2017
    
  • Sage
    [(fibonacci(4*n)/3)^2 for n in (0..20)] # G. C. Greubel, Dec 14 2019
    

Formula

a(n) = (1/45)*(-2 + ((47 + 7*sqrt(45))/2)^n + ((47 - 7*sqrt(45))/2)^n). - Ralf Stephan, Apr 14 2004
From R. J. Mathar, Jun 03 2009: (Start)
a(n) = (A004187(n))^2.
a(n) = 48*a(n-1) - 48*a(n-2) + a(n-3).
G.f.: x*(1 + x)/((1 - x)*(1 - 47*x + x^2)). (End)
From R. K. Guy, Feb 24 2010: (Start)
a(n) = F(4*n)^2/9.
a(n) - a(n-1) = A004187(2n-1). (End)
From Peter Bala, Jun 03 2016: (Start)
exp( Sum_{n >= 1} 45*a(n)*x^n/n ) = 1 + 15/7*Sum_{n >= 1} Fibonacci(8*n)*x^n.
This is the particular case k = 4 of the relation exp( Sum_{n >= 1} 5*F(k*n)^2*x^n/n ) = 1 + 5*Fibonacci(k)/Lucas(k) * ( Sum_{n >= 1} F(2*k*n)*x^n ). (End)
Lim_{n->infinity} a(n+1)/a(n) = (47 + 21*sqrt(5))/2 = phi^8, where phi is the golden ratio (A001622). - Ilya Gutkovskiy, Jun 06 2016
a(n) = a(-n) for all n in Z. - Michael Somos, Jun 12 2016
0 = a(n)*(+a(n) -98*a(n+1) -2*a(n+2)) + a(n+1)*(+2401*a(n+1) -98*a(n+2)) + a(n+2)^2 for all integer n. - Michael Somos, Jun 12 2016

Extensions

More terms from N. J. A. Sloane, Feb 26 2010

A132584 a(0)=0, a(1)=4; for n > 1, a(n) = 18*a(n-1) - a(n-2) + 8.

Original entry on oeis.org

0, 4, 80, 1444, 25920, 465124, 8346320, 149768644, 2687489280, 48225038404, 865363202000, 15528312597604, 278644263554880, 5000068431390244, 89722587501469520, 1610006506595061124, 28890394531209630720, 518417095055178291844, 9302617316461999622480
Offset: 0

Views

Author

Mohamed Bouhamida, Nov 14 2007

Keywords

Comments

The old definition given for this sequence was "Sequence allows us to find X values of the equation: X(X + 1) - 5*Y^2 = 0".
With this old definition, if X = a(n), then Y = A207832(n). Now, with u = 2X+1, this Diophantine equation becomes the Pell-Fermat equation u^2 - 20*Y^2 = 1, and then, u = A023039(n) and Y = A207832(n). - Bernard Schott, Jan 25 2023

Crossrefs

Programs

  • Magma
    I:=[0,4,80]; [n le 3 select I[n] else 18*Self(n-1)-Self(n-2)+8: n in [1..30]]; // Vincenzo Librandi, Dec 24 2018
  • Mathematica
    LinearRecurrence[{19, -19, 1}, {0, 4, 80}, 40] (* Vincenzo Librandi, Dec 24 2018 *)
    nxt[{a_,b_}]:={b,18b-a+8}; NestList[nxt,{0,4},20][[;;,1]] (* Harvey P. Dale, Aug 25 2024 *)

Formula

a(n) = (A023039(n) - 1)/2. - Max Alekseyev, Nov 13 2009
G.f.: -4*x*(x+1)/((x-1)*(x^2-18*x+1)). - Colin Barker, Oct 24 2012
From Amiram Eldar, Jan 11 2022: (Start)
a(n) = 5*Fibonacci(3*n)^2/4 - 1 if n is odd and 5*Fibonacci(3*n)^2/4 if n is even.
A000217(a(n)) = A292443(n). (End)
a(n) = (Lucas(6*n)-2)/4. - Jeffrey Shallit, Jan 20 2023
a(n) = 4 * A049683(n). - Alois P. Heinz, Jan 20 2023

Extensions

More terms from Max Alekseyev, Nov 13 2009
New definition by Antti Karttunen, Oct 24 2012

A276472 Modified Pascal's triangle read by rows: T(n,k) = T(n-1,k) + T(n-1,k-1), 12. T(n,n) = T(n,n-1) + T(n-1,n-1), n>1. T(1,1) = 1, T(2,1) = 1. n>=1.

Original entry on oeis.org

1, 1, 2, 4, 3, 5, 11, 7, 8, 13, 29, 18, 15, 21, 34, 76, 47, 33, 36, 55, 89, 199, 123, 80, 69, 91, 144, 233, 521, 322, 203, 149, 160, 235, 377, 610, 1364, 843, 525, 352, 309, 395, 612, 987, 1597, 3571, 2207, 1368, 877, 661, 704, 1007, 1599, 2584, 4181
Offset: 1

Views

Author

Yuriy Sibirmovsky, Sep 12 2016

Keywords

Comments

The recurrence relations for the border terms are the only way in which this differs from Pascal's triangle.
Column T(2n,n+1) appears to be divisible by 4 for n>=2; T(2n-1,n) divisible by 3 for n>=2; T(2n,n-2) divisible by 2 for n>=3.
The symmetry of T(n,k) can be observed in a hexagonal arrangement (see the links).
Consider T(n,k) mod 3 = q. Terms with q = 0 show reflection symmetry with respect to the central column T(2n-1,n), while q = 1 and q = 2 are mirror images of each other (see the link).

Examples

			Triangle T(n,k) begins:
n\k 1    2    3    4   5    6    7    8    9
1   1
2   1    2
3   4    3    5
4   11   7    8    13
5   29   18   15   21   34
6   76   47   33   36   55   89
7   199  123  80   69   91   144 233
8   521  322  203  149  160  235 377  610
9   1364 843  525  352  309  395 612  987  1597
...
In another format:
__________________1__________________
_______________1_____2_______________
____________4_____3_____5____________
________11_____7_____8_____13________
____29_____18_____15____21_____34____
_76_____47____33_____36____55_____89_
		

Crossrefs

Programs

  • Mathematica
    Nm=12;
    T=Table[0,{n,1,Nm},{k,1,n}];
    T[[1,1]]=1;
    T[[2,1]]=1;
    T[[2,2]]=2;
    Do[T[[n,1]]=T[[n-1,1]]+T[[n,2]];
    T[[n,n]]=T[[n-1,n-1]]+T[[n,n-1]];
    If[k!=1&&k!=n,T[[n,k]]=T[[n-1,k]]+T[[n-1,k-1]]],{n,3,Nm},{k,1,n}];
    {Row[#,"\t"]}&/@T//Grid
  • PARI
    T(n,k) = if (k==1, if (n==1, 1, if (n==2, 1, T(n-1,1) + T(n,2))), if (kMichel Marcus, Sep 14 2016

Formula

Conjectures:
Relations with other sequences:
T(n+1,1) = A002878(n-1), n>=1.
T(n,n) = A001519(n) = A122367(n-1), n>=1.
T(n+1,2) = A005248(n-1), n>=1.
T(n+1,n) = A001906(n) = A088305(n), n>=1.
T(2n-1,n) = 3*A054441(n-1), n>=2. [the central column].
Sum_{k=1..n} T(n,k) = 3*A105693(n-1), n>=2. [row sums].
Sum_{k=1..n} T(n,k)-T(n,1)-T(n,n) = 3*A258109(n), n>=2.
T(2n,n+1) - T(2n,n) = A026671(n), n>=1.
T(2n,n-1) - T(2n,n) = 2*A026726(n-1), n>=2.
T(n,ceiling(n/2)) - T(n-1,floor(n/2)) = 2*A026732(n-3), n>=3.
T(2n+1,2n) = 3*A004187(n), n>=1.
T(2n+1,2) = 3*A049685(n-1), n>=1.
T(2n+1,2n) + T(2n+1,2) = 3*A033891(n-1), n>=1.
T(2n+1,3) = 5*A206351(n), n>=1.
T(2n+1,2n)/3 - T(2n+1,3)/5 = 4*A092521(n-1), n>=2.
T(2n,1) = 1 + 5*A081018(n-1), n>=1.
T(2n,2) = 2 + 5*A049684(n-1), n>=1.
T(2n+1,2) = 3 + 5*A058038(n-1), n>=1.
T(2n,3) = 3 + 5*A081016(n-2), n>=2.
T(2n+1,1) = 4 + 5*A003482(n-1), n>=1.
T(3n,1) = 4*A049629(n-1), n>=1.
T(3n,1) = 4 + 8*A119032(n), n>=1.
T(3n+1,3) = 8*A133273(n), n>=1.
T(3n+2,3n+2) = 2 + 32*A049664(n), n>=1.
T(3n,3n-2) = 4 + 32*A049664(n-1), n>=1.
T(3n+2,2) = 2 + 16*A049683(n), n>=1.
T(3n+2,2) = 2*A023039(n), n>=1.
T(2n-1,2n-1) = A033889(n-1), n>=1.
T(3n-1,3n-1) = 2*A007805(n-1), n>=1.
T(5n-1,1) = 11*A097842(n-1), n>=1.
T(4n+5,3) - T(4n+1,3) = 15*A000045(8n+1), n>=1.
T(5n+4,3) - T(5n-1,3) = 11*A000204(10n-2), n>=1.
Relations between left and right sides:
T(n,1) = T(n,n) - T(n-2,n-2), n>=3.
T(n,2) = T(n,n-1) - T(n-2,n-3), n>=4.
T(n,1) + T(n,n) = 3*T(n,n-1), n>=2.

A062788 Squares of the form 5n*(n-1)+1.

Original entry on oeis.org

1, 361, 116281, 37442161, 12056259601, 3882078149401, 1250017107847561, 402501626648765281, 129604273763794572961, 41732173650315203728201, 13437630311127731805907801, 4326875228009479326298583761, 1393240385788741215336338063281
Offset: 1

Views

Author

Jason Earls, Jul 19 2001

Keywords

Crossrefs

Bisection of A049683.
Cf. A062786.

Programs

  • PARI
    for(n=1,10^8,x=(5*n*(n-1)+1); if(issquare(x),print(x)))

Formula

a(n) = A049683(2*n-1) = (1/16) * (Lucas(12*n-6) - 2). - Joerg Arndt, Apr 09 2023
From Chai Wah Wu, Apr 17 2024: (Start)
a(n) = 323*a(n-1) - 323*a(n-2) + a(n-3) for n > 3.
G.f.: x*(-x^2 - 38*x - 1)/((x - 1)*(x^2 - 322*x + 1)). (End)

Extensions

More terms from Sean A. Irvine, Apr 08 2023
Showing 1-6 of 6 results.