cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 96 results. Next

A324639 Numbers k such that bitand(2k,sigma(k)) = 2*bitand(k,sigma(k)-k), where bitand is bitwise-AND, A004198.

Original entry on oeis.org

1, 2, 4, 5, 6, 8, 9, 10, 16, 17, 20, 26, 28, 32, 36, 37, 38, 41, 44, 50, 64, 73, 74, 88, 98, 100, 104, 128, 130, 134, 136, 137, 149, 152, 153, 164, 172, 184, 256, 257, 261, 262, 264, 272, 277, 284, 293, 294, 304, 328, 337, 368, 392, 405, 410, 424, 442, 464, 496, 512, 520, 521, 522, 528, 529, 538, 548, 549, 550, 556, 560, 577
Offset: 1

Views

Author

Antti Karttunen, Mar 14 2019

Keywords

Comments

Numbers k for which 2*A318458(k) = A318468(k).

Crossrefs

Subsequences: A324643, A324718 (odd terms).

Programs

  • Mathematica
    Select[Range[1000], Block[{s = DivisorSigma[1, #]}, BitAnd[2*#, s] == 2* BitAnd[#, s-#]] &] (* Paolo Xausa, Mar 11 2024 *)
  • PARI
    for(n=1,oo,if( (2*(bitand(n, sigma(n)-n))==bitand(n+n, sigma(n))),print1(n,", ")));

A325318 a(n) = A048250(n) AND A162296(n), where AND is the bitwise-AND, A004198.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 8, 0, 16, 0, 0, 0, 0, 0, 0, 4, 0, 0, 0, 0, 0, 0, 0, 0, 12, 0, 0, 0, 0, 0, 0, 0, 32, 16, 0, 0, 0, 0, 2, 0, 40, 0, 12, 0, 0, 0, 0, 0, 64, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, 0, 0, 0, 16, 0, 0, 0, 0, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 64, 0, 0, 0, 0, 0, 16, 32, 2, 0, 0, 0, 40, 0
Offset: 1

Views

Author

Antti Karttunen, Apr 21 2019

Keywords

Crossrefs

Programs

  • Mathematica
    Array[BitAnd @@ Map[Total, {#3, Complement[#2, #3]}] & @@ {#1, #2, Select[#2, SquareFreeQ]} & @@ {#, Divisors[#]} &, 105] (* Michael De Vlieger, Apr 21 2019 *)
  • PARI
    A048250(n) = factorback(apply(p -> p+1,factor(n)[,1]));
    A162296(n) = sumdiv(n, d, d*(1-issquarefree(d)));
    A325318(n) = bitand(A048250(n),A162296(n));

Formula

a(n) = A004198(A048250(n), A162296(n)).
a(n) = A000203(n) - A325316(n) = (A000203(n) - A325317(n))/2.
a(n) = A325316(n) - A325317(n).

A019565 The squarefree numbers ordered lexicographically by their prime factorization (with factors written in decreasing order). a(n) = Product_{k in I} prime(k+1), where I is the set of indices of nonzero binary digits in n = Sum_{k in I} 2^k.

Original entry on oeis.org

1, 2, 3, 6, 5, 10, 15, 30, 7, 14, 21, 42, 35, 70, 105, 210, 11, 22, 33, 66, 55, 110, 165, 330, 77, 154, 231, 462, 385, 770, 1155, 2310, 13, 26, 39, 78, 65, 130, 195, 390, 91, 182, 273, 546, 455, 910, 1365, 2730, 143, 286, 429, 858, 715, 1430, 2145, 4290
Offset: 0

Views

Author

Keywords

Comments

A permutation of the squarefree numbers A005117. The missing positive numbers are in A013929. - Alois P. Heinz, Sep 06 2014
From Antti Karttunen, Apr 18 & 19 2017: (Start)
Because a(n) toggles the parity of n there are neither fixed points nor any cycles of odd length.
Conjecture: there are no finite cycles of any length. My grounds for this conjecture: any finite cycle in this sequence, if such cycles exist at all, must have at least one member that occurs somewhere in A285319, the terms that seem already to be quite rare. Moreover, any such a number n should satisfy in addition to A019565(n) < n also that A048675^{k}(n) is squarefree, not just for k=0, 1 but for all k >= 0. As there is on average a probability of only 6/(Pi^2) = 0.6079... that any further term encountered on the trajectory of A048675 is squarefree, the total chance that all of them would be squarefree (which is required from the elements of A019565-cycles) is soon minuscule, especially as A048675 is not very tightly bounded (many trajectories seem to skyrocket, at least initially). I am also assuming that usually there is no significant correlation between the binary expansions of n and A048675(n) (apart from their least significant bits), or, for that matter, between their prime factorizations.
See also the slightly stronger conjecture in A285320, which implies that there would neither be any two-way infinite cycles.
If either of the conjectures is false (there are cycles), then certainly neither sequence A285332 nor its inverse A285331 can be a permutation of natural numbers. (End)
The conjecture made in A087207 (see also A288569) implies the two conjectures mentioned above. A further constraint for cycles is that in any A019565-trajectory which starts from a squarefree number (A005117), every other term is of the form 4k+2, while every other term is of the form 6k+3. - Antti Karttunen, Jun 18 2017
The sequence satisfies the exponential function identity, a(x + y) = a(x) * a(y), whenever x and y do not have a 1-bit in the same position, i.e., when A004198(x,y) = 0. See also A283475. - Antti Karttunen, Oct 31 2019
The above identity becomes unconditional if binary exclusive OR, A003987(.,.), is substituted for addition, and A059897(.,.), a multiplicative equivalent of A003987, is substituted for multiplication. This gives us a(A003987(x,y)) = A059897(a(x), a(y)). - Peter Munn, Nov 18 2019
Also the Heinz number of the binary indices of n, where the Heinz number of a sequence (y_1,...,y_k) is prime(y_1)*...*prime(y_k), and a number's binary indices (A048793) are the positions of 1's in its reversed binary expansion. - Gus Wiseman, Dec 28 2022

Examples

			5 = 2^2+2^0, e_1 = 2, e_2 = 0, prime(2+1) = prime(3) = 5, prime(0+1) = prime(1) = 2, so a(5) = 5*2 = 10.
From _Philippe Deléham_, Jun 03 2015: (Start)
This sequence regarded as a triangle withs rows of lengths 1, 1, 2, 4, 8, 16, ...:
   1;
   2;
   3,  6;
   5, 10, 15, 30;
   7, 14, 21, 42, 35,  70, 105, 210;
  11, 22, 33, 66, 55, 110, 165, 330, 77, 154, 231, 462, 385, 770, 1155, 2310;
  ...
(End)
From _Peter Munn_, Jun 14 2020: (Start)
The initial terms are shown below, equated with the product of their prime factors to exhibit the lexicographic order. We start with 1, since 1 is factored as the empty product and the empty list is first in lexicographic order.
   n     a(n)
   0     1 = .
   1     2 = 2.
   2     3 = 3.
   3     6 = 3*2.
   4     5 = 5.
   5    10 = 5*2.
   6    15 = 5*3.
   7    30 = 5*3*2.
   8     7 = 7.
   9    14 = 7*2.
  10    21 = 7*3.
  11    42 = 7*3*2.
  12    35 = 7*5.
(End)
		

Crossrefs

Row 1 of A285321.
Equivalent sequences for k-th-power-free numbers: A101278 (k=3), A101942 (k=4), A101943 (k=5), A054842 (k=10).
Cf. A109162 (iterates).
Cf. also A048675 (a left inverse), A087207, A097248, A260443, A054841.
Cf. A285315 (numbers for which a(n) < n), A285316 (for which a(n) > n).
Cf. A276076, A276086 (analogous sequences for factorial and primorial bases), A334110 (terms squared).
For partial sums see A288570.
A003961, A003987, A004198, A059897, A089913, A331590, A334747 are used to express relationships between sequence terms.
Column 1 of A329332.
Even bisection (which contains the odd terms): A332382.
A160102 composed with A052330, and subsequence of the latter.
Related to A000079 via A225546, to A057335 via A122111, to A008578 via A336322.
Least prime index of a(n) is A001511.
Greatest prime index of a(n) is A029837 or A070939.
Taking prime indices gives A048793, reverse A272020, row sums A029931.
A112798 lists prime indices, length A001222, sum A056239.

Programs

  • Haskell
    a019565 n = product $ zipWith (^) a000040_list (a030308_row n)
    -- Reinhard Zumkeller, Apr 27 2013
    
  • Maple
    a:= proc(n) local i, m, r; m:=n; r:=1;
          for i while m>0 do if irem(m,2,'m')=1
            then r:=r*ithprime(i) fi od; r
        end:
    seq(a(n), n=0..60);  # Alois P. Heinz, Sep 06 2014
  • Mathematica
    Do[m=1;o=1;k1=k;While[ k1>0, k2=Mod[k1, 2];If[k2\[Equal]1, m=m*Prime[o]];k1=(k1-k2)/ 2;o=o+1];Print[m], {k, 0, 55}] (* Lei Zhou, Feb 15 2005 *)
    Table[Times @@ Prime@ Flatten@ Position[#, 1] &@ Reverse@ IntegerDigits[n, 2], {n, 0, 55}]  (* Michael De Vlieger, Aug 27 2016 *)
    b[0] := {1}; b[n_] := Flatten[{ b[n - 1], b[n - 1] * Prime[n] }];
      a = b[6] (* Fred Daniel Kline, Jun 26 2017 *)
  • PARI
    a(n)=factorback(vecextract(primes(logint(n+!n,2)+1),n))  \\ M. F. Hasler, Mar 26 2011, updated Aug 22 2014, updated Mar 01 2018
    
  • Python
    from operator import mul
    from functools import reduce
    from sympy import prime
    def A019565(n):
        return reduce(mul,(prime(i+1) for i,v in enumerate(bin(n)[:1:-1]) if v == '1')) if n > 0 else 1
    # Chai Wah Wu, Dec 25 2014
    
  • Scheme
    (define (A019565 n) (let loop ((n n) (i 1) (p 1)) (cond ((zero? n) p) ((odd? n) (loop (/ (- n 1) 2) (+ 1 i) (* p (A000040 i)))) (else (loop (/ n 2) (+ 1 i) p))))) ;; (Requires only the implementation of A000040 for prime numbers.) - Antti Karttunen, Apr 20 2017

Formula

G.f.: Product_{k>=0} (1 + prime(k+1)*x^2^k), where prime(k)=A000040(k). - Ralf Stephan, Jun 20 2003
a(n) = f(n, 1, 1) with f(x, y, z) = if x > 0 then f(floor(x/2), y*prime(z)^(x mod 2), z+1) else y. - Reinhard Zumkeller, Mar 13 2010
For all n >= 0: A048675(a(n)) = n; A013928(a(n)) = A064273(n). - Antti Karttunen, Jul 29 2015
a(n) = a(2^x)*a(2^y)*a(2^z)*... = prime(x+1)*prime(y+1)*prime(z+1)*..., where n = 2^x + 2^y + 2^z + ... - Benedict W. J. Irwin, Jul 24 2016
From Antti Karttunen, Apr 18 2017 and Jun 18 2017: (Start)
a(n) = A097248(A260443(n)), a(A005187(n)) = A283475(n), A108951(a(n)) = A283477(n).
A055396(a(n)) = A001511(n), a(A087207(n)) = A007947(n). (End)
a(2^n - 1) = A002110(n). - Michael De Vlieger, Jul 05 2017
a(n) = A225546(A000079(n)). - Peter Munn, Oct 31 2019
From Peter Munn, Mar 04 2022: (Start)
a(2n) = A003961(a(n)); a(2n+1) = 2*a(2n).
a(x XOR y) = A059897(a(x), a(y)) = A089913(a(x), a(y)), where XOR denotes bitwise exclusive OR (A003987).
a(n+1) = A334747(a(n)).
a(x+y) = A331590(a(x), a(y)).
a(n) = A336322(A008578(n+1)).
(End)

Extensions

Definition corrected by Klaus-R. Löffler, Aug 20 2014
New name from Peter Munn, Jun 14 2020

A006519 Highest power of 2 dividing n.

Original entry on oeis.org

1, 2, 1, 4, 1, 2, 1, 8, 1, 2, 1, 4, 1, 2, 1, 16, 1, 2, 1, 4, 1, 2, 1, 8, 1, 2, 1, 4, 1, 2, 1, 32, 1, 2, 1, 4, 1, 2, 1, 8, 1, 2, 1, 4, 1, 2, 1, 16, 1, 2, 1, 4, 1, 2, 1, 8, 1, 2, 1, 4, 1, 2, 1, 64, 1, 2, 1, 4, 1, 2, 1, 8, 1, 2, 1, 4, 1, 2, 1, 16, 1, 2, 1, 4, 1, 2, 1, 8, 1, 2, 1, 4, 1, 2, 1, 32, 1, 2, 1, 4, 1, 2
Offset: 1

Views

Author

Keywords

Comments

Least positive k such that m^k + 1 divides m^n + 1 (with fixed base m). - Vladimir Baltic, Mar 25 2002
To construct the sequence: start with 1, concatenate 1, 1 and double last term gives 1, 2. Concatenate those 2 terms, 1, 2, 1, 2 and double last term 1, 2, 1, 2 -> 1, 2, 1, 4. Concatenate those 4 terms: 1, 2, 1, 4, 1, 2, 1, 4 and double last term -> 1, 2, 1, 4, 1, 2, 1, 8, etc. - Benoit Cloitre, Dec 17 2002
a(n) = gcd(seq(binomial(2*n, 2*m+1)/2, m = 0 .. n - 1)) (odd numbered entries of even numbered rows of Pascal's triangle A007318 divided by 2), where gcd() denotes the greatest common divisor of a set of numbers. Due to the symmetry of the rows it suffices to consider m = 0 .. floor((n-1)/2). - Wolfdieter Lang, Jan 23 2004
Equals the continued fraction expansion of a constant x (cf. A100338) such that the continued fraction expansion of 2*x interleaves this sequence with 2's: contfrac(2*x) = [2; 1, 2, 2, 2, 1, 2, 4, 2, 1, 2, 2, 2, 1, 2, 8, 2, ...].
Simon Plouffe observes that this sequence and A003484 (Radon function) are very similar, the difference being all zeros except for every 16th term (see A101119 for nonzero differences). Dec 02 2004
This sequence arises when calculating the next odd number in a Collatz sequence: Next(x) = (3*x + 1) / A006519, or simply (3*x + 1) / BitAnd(3*x + 1, -3*x - 1). - Jim Caprioli, Feb 04 2005
a(n) = n if and only if n = 2^k. This sequence can be obtained by taking a(2^n) = 2^n in place of a(2^n) = n and using the same sequence building approach as in A001511. - Amarnath Murthy, Jul 08 2005
Also smallest m such that m + n - 1 = m XOR (n - 1); A086799(n) = a(n) + n - 1. - Reinhard Zumkeller, Feb 02 2007
Number of 1's between successive 0's in A159689. - Philippe Deléham, Apr 22 2009
Least number k such that all coefficients of k*E(n, x), the n-th Euler polynomial, are integers (cf. A144845). - Peter Luschny, Nov 13 2009
In the binary expansion of n, delete everything left of the rightmost 1 bit. - Ralf Stephan, Aug 22 2013
The equivalent sequence for partitions is A194446. - Omar E. Pol, Aug 22 2013
Also the 2-adic value of 1/n, n >= 1. See the Mahler reference, definition on p. 7. This is a non-archimedean valuation. See Mahler, p. 10. Sometimes called 2-adic absolute value of 1/n. - Wolfdieter Lang, Jun 28 2014
First 2^(k-1) - 1 terms are also the heights of the successive rectangles and squares of width 2 that are adjacent to any of the four sides of the toothpick structure of A139250 after 2^k stages, with k >= 2. For example: if k = 5 the heights after 32 stages are [1, 2, 1, 4, 1, 2, 1, 8, 1, 2, 1, 4, 1, 2, 1] respectively, the same as the first 15 terms of this sequence. - Omar E. Pol, Dec 29 2020

Examples

			2^3 divides 24, but 2^4 does not divide 24, so a(24) = 8.
2^0 divides 25, but 2^1 does not divide 25, so a(25) = 1.
2^1 divides 26, but 2^2 does not divide 26, so a(26) = 2.
Per _Marc LeBrun_'s 2000 comment, a(n) can also be determined with bitwise operations in two's complement. For example, given n = 48, we see that n in binary in an 8-bit byte is 00110000 while -n is 11010000. Then 00110000 AND 11010000 = 00010000, which is 16 in decimal, and therefore a(48) = 16.
G.f. = x + 2*x^2 + x^3 + 4*x^4 + x^5 + 2*x^6 + x^7 + 8*x^8 + x^9 + ...
		

References

  • Kurt Mahler, p-adic numbers and their functions, second ed., Cambridge University Press, 1981.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Partial sums are in A006520, second partial sums in A022560.
Sequences used in definitions of this sequence: A000079, A001511, A004198, A007814.
Sequences with related definitions: A038712, A171977, A135481 (GS(1, 6)).
This is Guy Steele's sequence GS(5, 2) (see A135416).
Related to A007913 via A225546.
A059897 is used to express relationship between sequence terms.
Cf. A091476 (Dgf at s=2).

Programs

  • Haskell
    import Data.Bits ((.&.))
    a006519 n = n .&. (-n) :: Integer
    -- Reinhard Zumkeller, Mar 11 2012, Dec 29 2011
    
  • Julia
    using IntegerSequences
    [EvenPart(n) for n in 1:102] |> println  # Peter Luschny, Sep 25 2021
    
  • Magma
    [2^Valuation(n, 2): n in [1..100]]; // Vincenzo Librandi, Mar 27 2015
    
  • Maple
    with(numtheory): for n from 1 to 200 do if n mod 2 = 1 then printf(`%d,`,1) else printf(`%d,`,2^ifactors(n)[2][1][2]) fi; od:
    A006519 := proc(n) if type(n,'odd') then 1 ; else for f in ifactors(n)[2] do if op(1,f) = 2 then return 2^op(2,f) ; end if; end do: end if; end proc: # R. J. Mathar, Oct 25 2010
    A006519 := n -> 2^padic[ordp](n,2): # Peter Luschny, Nov 26 2010
  • Mathematica
    lowestOneBit[n_] := Block[{k = 0}, While[Mod[n, 2^k] == 0, k++]; 2^(k - 1)]; Table[lowestOneBit[n], {n, 102}] (* Robert G. Wilson v Nov 17 2004 *)
    Table[2^IntegerExponent[n, 2], {n, 128}] (* Jean-François Alcover, Feb 10 2012 *)
    Table[BitAnd[BitNot[i - 1], i], {i, 1, 102}] (* Peter Luschny, Oct 10 2019 *)
  • PARI
    {a(n) = 2^valuation(n, 2)};
    
  • PARI
    a(n)=1<Joerg Arndt, Jun 10 2011
    
  • PARI
    a(n)=bitand(n,-n); \\ Joerg Arndt, Jun 10 2011
    
  • PARI
    a(n)=direuler(p=2,n,if(p==2,1/(1-2*X),1/(1-X)))[n] \\ Ralf Stephan, Mar 27 2015
    
  • Python
    def A006519(n): return n&-n # Chai Wah Wu, Jul 06 2022
  • Scala
    (1 to 128).map(Integer.lowestOneBit()) // _Alonso del Arte, Mar 04 2020
    

Formula

a(n) = n AND -n (where "AND" is bitwise, and negative numbers are represented in two's complement in a suitable bit width). - Marc LeBrun, Sep 25 2000, clarified by Alonso del Arte, Mar 16 2020
Also: a(n) = gcd(2^n, n). - Labos Elemer, Apr 22 2003
Multiplicative with a(p^e) = p^e if p = 2; 1 if p > 2. - David W. Wilson, Aug 01 2001
G.f.: Sum_{k>=0} 2^k*x^2^k/(1 - x^2^(k+1)). - Ralf Stephan, May 06 2003
Dirichlet g.f.: zeta(s)*(2^s - 1)/(2^s - 2) = zeta(s)*(1 - 2^(-s))/(1 - 2*2^(-s)). - Ralf Stephan, Jun 17 2007
a(n) = 2^floor(A002487(n - 1) / A002487(n)). - Reikku Kulon, Oct 05 2008
a(n) = 2^A007814(n). - R. J. Mathar, Oct 25 2010
a((2*k - 1)*2^e) = 2^e, k >= 1, e >= 0. - Johannes W. Meijer, Jun 07 2011
a(n) = denominator of Euler(n-1, 1). - Arkadiusz Wesolowski, Jul 12 2012
a(n) = A011782(A001511(n)). - Omar E. Pol, Sep 13 2013
a(n) = (n XOR floor(n/2)) XOR (n-1 XOR floor((n-1)/2)) = n - (n AND n-1) (where "AND" is bitwise). - Gary Detlefs, Jun 12 2014
a(n) = ((n XOR n-1)+1)/2. - Gary Detlefs, Jul 02 2014
a(n) = A171977(n)/2. - Peter Kern, Jan 04 2017
a(n) = 2^(A001511(n)-1). - Doug Bell, Jun 02 2017
a(n) = abs(A003188(n-1) - A003188(n)). - Doug Bell, Jun 02 2017
Conjecture: a(n) = (1/(A000203(2*n)/A000203(n)-2)+1)/2. - Velin Yanev, Jun 30 2017
a(n) = (n-1) o n where 'o' is the bitwise converse nonimplication. 'o' is not commutative. n o (n+1) = A135481(n). - Peter Luschny, Oct 10 2019
From Peter Munn, Dec 13 2019: (Start)
a(A225546(n)) = A225546(A007913(n)).
a(A059897(n,k)) = A059897(a(n), a(k)). (End)
Sum_{k=1..n} a(k) ~ (1/(2*log(2)))*n*log(n) + (3/4 + (gamma-1)/(2*log(2)))*n, where gamma is Euler's constant (A001620). - Amiram Eldar, Nov 15 2022
a(n) = n / A000265(n). - Amiram Eldar, May 22 2025

Extensions

More terms from James Sellers, Jun 20 2000

A003987 Table of n XOR m (or Nim-sum of n and m) read by antidiagonals with m>=0, n>=0.

Original entry on oeis.org

0, 1, 1, 2, 0, 2, 3, 3, 3, 3, 4, 2, 0, 2, 4, 5, 5, 1, 1, 5, 5, 6, 4, 6, 0, 6, 4, 6, 7, 7, 7, 7, 7, 7, 7, 7, 8, 6, 4, 6, 0, 6, 4, 6, 8, 9, 9, 5, 5, 1, 1, 5, 5, 9, 9, 10, 8, 10, 4, 2, 0, 2, 4, 10, 8, 10, 11, 11, 11, 11, 3, 3, 3, 3, 11, 11, 11, 11, 12, 10, 8, 10, 12, 2, 0, 2, 12, 10, 8, 10, 12, 13, 13, 9, 9, 13, 13, 1, 1, 13, 13, 9, 9, 13, 13
Offset: 0

Views

Author

Keywords

Comments

Another way to construct the array: construct an infinite square matrix starting in the top left corner using the rule that each entry is the smallest nonnegative number that is not in the row to your left or in the column above you.
After a few moves the [symmetric] matrix looks like this:
0 1 2 3 4 5 ...
1 0 3 2 5 ...
2 3 0 1 ?
3 2 1
4 5 ?
5
The ? is then replaced with a 6.

Examples

			Table begins
   0,  1,  2,  3,  4,  5,  6,  7,  8,  9, 10, 11, 12, ...
   1,  0,  3,  2,  5,  4,  7,  6,  9,  8, 11, 10, ...
   2,  3,  0,  1,  6,  7,  4,  5, 10, 11,  8, ...
   3,  2,  1,  0,  7,  6,  5,  4, 11, 10, ...
   4,  5,  6,  7,  0,  1,  2,  3, 12, ...
   5,  4,  7,  6,  1,  0,  3,  2, ...
   6,  7,  4,  5,  2,  3,  0, ...
   7,  6,  5,  4,  3,  2, ...
   8,  9, 10, 11, 12, ...
   9,  8, 11, 10, ...
  10, 11,  8, ...
  11, 10, ...
  12, ...
  ...
The first few antidiagonals are
   0;
   1,  1;
   2,  0,  2;
   3,  3,  3,  3;
   4,  2,  0,  2,  4;
   5,  5,  1,  1,  5,  5;
   6,  4,  6,  0,  6,  4,  6;
   7,  7,  7,  7,  7,  7,  7,  7;
   8,  6,  4,  6,  0,  6,  4,  6,  8;
   9,  9,  5,  5,  1,  1,  5,  5,  9,  9;
  10,  8, 10,  4,  2,  0,  2,  4, 10,  8, 10;
  11, 11, 11, 11,  3,  3,  3,  3, 11, 11, 11, 11;
  12, 10,  8, 10, 12,  2,  0,  2, 12, 10,  8, 10, 12;
  ...
[Symmetric] matrix in base 2:
     0    1   10   11  100  101,  110  111 1000 1001 1010 1011 ...
     1    0   11   10  101  100,  111  110 1001 1000 1011  ...
    10   11    0    1  110  111,  100  101 1010 1011  ...
    11   10    1    0  111  110,  101  100 1011  ...
   100  101  110  111    0    1    10   11  ...
   101  100  111  110    1    0    11  ...
   110  111  100  101   10   11   ...
   111  110  101  100   11  ...
  1000 1001 1010 1011  ...
  1001 1000 1011  ...
  1010 1011  ...
  1011  ...
   ...
		

References

  • E. R. Berlekamp, J. H. Conway and R. K. Guy, Winning Ways, Academic Press, NY, 2 vols., 1982, see p. 60.
  • J. H. Conway, On Numbers and Games. Academic Press, NY, 1976, pp. 51-53.
  • Eric Friedman, Scott M. Garrabrant, Ilona K. Phipps-Morgan, A. S. Landsberg and Urban Larsson, Geometric analysis of a generalized Wythoff game, in Games of no Chance 5, MSRI publ. Cambridge University Press, date?
  • D. Gale, Tracking the Automatic Ant and Other Mathematical Explorations, A Collection of Mathematical Entertainments Columns from The Mathematical Intelligencer, Springer, 1998; see p. 190. [From N. J. A. Sloane, Jul 14 2009]
  • R. K. Guy, Impartial games, pp. 35-55 of Combinatorial Games, ed. R. K. Guy, Proc. Sympos. Appl. Math., 43, Amer. Math. Soc., 1991.

Crossrefs

Initial rows are A001477, A004442, A004443, A004444, etc. Cf. A051775, A051776.
Cf. A003986 (OR), A004198 (AND), A221146 (carries).
Antidiagonal sums are in A006582.

Programs

  • Maple
    nimsum := proc(a,b) local t1,t2,t3,t4,l; t1 := convert(a+2^20,base,2); t2 := convert(b+2^20,base,2); t3 := evalm(t1+t2); map(x->x mod 2, t3); t4 := convert(evalm(%),list); l := convert(t4,base,2,10); sum(l[k]*10^(k-1), k=1..nops(l)); end; # memo: adjust 2^20 to be much bigger than a and b
    AT := array(0..N,0..N); for a from 0 to N do for b from a to N do AT[a,b] := nimsum(a,b); AT[b,a] := AT[a,b]; od: od:
    # alternative:
    read("transforms") :
    A003987 := proc(n,m)
        XORnos(n,m) ;
    end proc: # R. J. Mathar, Apr 17 2013
    seq(seq(Bits:-Xor(k,m-k),k=0..m),m=0..20); # Robert Israel, Dec 31 2015
  • Mathematica
    Flatten[Table[BitXor[b, a - b], {a, 0, 10}, {b, 0, a}]] (* BitXor and Nim Sum are equivalent *)
  • PARI
    tabl(nn) = {for(n=0, nn, for(k=0, n, print1(bitxor(k, n - k),", ");); print(););};
    tabl(13) \\ Indranil Ghosh, Mar 31 2017
    
  • Python
    for n in range(14):
        print([k^(n - k) for k in range(n + 1)]) # Indranil Ghosh, Mar 31 2017

Formula

T(2i,2j) = 2T(i,j), T(2i+1,2j) = 2T(i,j) + 1.

A003986 Table T(n,k) = n OR k read by antidiagonals.

Original entry on oeis.org

0, 1, 1, 2, 1, 2, 3, 3, 3, 3, 4, 3, 2, 3, 4, 5, 5, 3, 3, 5, 5, 6, 5, 6, 3, 6, 5, 6, 7, 7, 7, 7, 7, 7, 7, 7, 8, 7, 6, 7, 4, 7, 6, 7, 8, 9, 9, 7, 7, 5, 5, 7, 7, 9, 9, 10, 9, 10, 7, 6, 5, 6, 7, 10, 9, 10, 11, 11, 11, 11, 7, 7, 7, 7, 11, 11, 11, 11, 12, 11, 10, 11, 12, 7, 6, 7, 12, 11, 10, 11, 12, 13, 13, 11
Offset: 0

Views

Author

Keywords

Examples

			The upper left corner of the array starts in row x=0 with columns y>=0 as:
   0,  1,  2,  3,  4,  5,  6,  7,  8,  9, 10, 11, 12, ...
   1,  1,  3,  3,  5,  5,  7,  7,  9,  9, 11, 11, 13, ...
   2,  3,  2,  3,  6,  7,  6,  7, 10, 11, 10, 11, 14, ...
   3,  3,  3,  3,  7,  7,  7,  7, 11, 11, 11, 11, 15, ...
   4,  5,  6,  7,  4,  5,  6,  7, 12, 13, 14, 15, 12, ...
   5,  5,  7,  7,  5,  5,  7,  7, 13, 13, 15, 15, 13, ...
   6,  7,  6,  7,  6,  7,  6,  7, 14, 15, 14, 15, 14, ...
   7,  7,  7,  7,  7,  7,  7,  7, 15, 15, 15, 15, 15, ...
   8,  9, 10, 11, 12, 13, 14, 15,  8,  9, 10, 11, 12, ...
   9,  9, 11, 11, 13, 13, 15, 15,  9,  9, 11, 11, 13, ...
  10, 11, 10, 11, 14, 15, 14, 15, 10, 11, 10, 11, 14, ...
		

Crossrefs

Cf. A003987 (XOR) and A004198 (AND). Cf. also A075173, A075175.
Antidiagonal sums are in A006583.

Programs

  • C
    #include 
    int main()
    {
    int n, k;
    for (n=0; n<=20; n++){
        for(k=0; k<=n; k++){
            printf("%d, ", (k|(n - k)));
        }
        printf("\n");
    }
    return 0;
    } /* Indranil Ghosh, Apr 01 2017 */
  • Haskell
    import Data.Bits ((.|.))
    a003986 n k = (n - k) .|. k :: Int
    a003986_row n = map (a003986 n) [0..n]
    a003986_tabl = map a003986_row [0..]
    -- Reinhard Zumkeller, Aug 05 2014
    
  • Maple
    read("transforms") ;
    A003986 := proc(x,y) ORnos(x,y) ;end proc:
    for d from 0 to 12 do for x from 0 to d do printf("%d,", A003986(x,d-x)) ; end do: end do: # R. J. Mathar, May 28 2011
  • Mathematica
    Table[BitOr[k, n - k], {n, 0, 20}, {k, 0, n}] //Flatten (* Indranil Ghosh, Apr 01 2017 *)
  • PARI
    tabl(nn) = {for(n=0, nn, for(k=0, n, print1(bitor(k, n - k), ", "); ); print(); ); };
    tabl(20) \\ Indranil Ghosh, Apr 01 2017
    
  • Python
    for n in range(21):
        print([k|(n - k) for k in range(n + 1)])
    # Indranil Ghosh, Apr 01 2017
    

Formula

T(x,y) = T(y,x) = A080098(x,y). - R. J. Mathar, May 28 2011

Extensions

Name edited by Michel Marcus, Jan 17 2023

A003989 Triangle T from the array A(x, y) = gcd(x,y), for x >= 1, y >= 1, read by antidiagonals.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 2, 3, 2, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 4, 1, 2, 1, 1, 1, 3, 1, 1, 3, 1, 1, 1, 2, 1, 2, 5, 2, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 3, 4, 1, 6, 1, 4, 3, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 2, 1, 2, 7, 2, 1, 2, 1, 2, 1, 1, 1, 3, 1, 5, 3, 1, 1, 3, 5, 1, 3, 1, 1, 1, 2, 1
Offset: 1

Views

Author

Keywords

Comments

For m < n, the maximal number of nonattacking queens that can be placed on the n by m rectangular toroidal chessboard is gcd(m,n), except in the case m=3, n=6.
The determinant of the matrix of the first n rows and columns is A001088(n). [Smith, Mansion] - Michael Somos, Jun 25 2012
Imagine a torus having regular polygonal cross-section of m sides. Now, break the torus and twist the free ends, preserving rotational symmetry, then reattach the ends. Let n be the number of faces passed in twisting the torus before reattaching it. For example, if n = m, then the torus has exactly one full twist. Do this for arbitrary m and n (m > 1, n > 0). Now, count the independent, closed paths on the surface of the resulting torus, where a path is "closed" if and only if it returns to its starting point after a finite number of times around the surface of the torus. Conjecture: this number is always gcd(m,n). NOTE: This figure constitutes a group with m and n the binary arguments and gcd(m,n) the resulting value. Twisting in the reverse direction is the inverse operation, and breaking & reattaching in place is the identity operation. - Jason Richardson-White, May 06 2013
Regarded as a triangle, table of gcd(n - k +1, k) for 1 <= k <= n. - Franklin T. Adams-Watters, Oct 09 2014
The n-th row of the triangle is 1,...,1, if and only if, n + 1 is prime. - Alexandra Hercilia Pereira Silva, Oct 03 2020

Examples

			The array A begins:
  [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]
  [1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2]
  [1, 1, 3, 1, 1, 3, 1, 1, 3, 1, 1, 3, 1, 1, 3, 1]
  [1, 2, 1, 4, 1, 2, 1, 4, 1, 2, 1, 4, 1, 2, 1, 4]
  [1, 1, 1, 1, 5, 1, 1, 1, 1, 5, 1, 1, 1, 1, 5, 1]
  [1, 2, 3, 2, 1, 6, 1, 2, 3, 2, 1, 6, 1, 2, 3, 2]
  [1, 1, 1, 1, 1, 1, 7, 1, 1, 1, 1, 1, 1, 7, 1, 1]
  [1, 2, 1, 4, 1, 2, 1, 8, 1, 2, 1, 4, 1, 2, 1, 8]
  [1, 1, 3, 1, 1, 3, 1, 1, 9, 1, 1, 3, 1, 1, 3, 1]
  [1, 2, 1, 2, 5, 2, 1, 2, 1, 10, 1, 2, 1, 2, 5, 2]
  [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 11, 1, 1, 1, 1, 1]
  [1, 2, 3, 4, 1, 6, 1, 4, 3, 2, 1, 12, 1, 2, 3, 4]
  ...
The triangle T begins:
  n\k 1  2  3  4  5  6  7  8  9 10 11 12 13 14 15 ...
  1:  1
  2:  1  1
  3:  1  2  1
  4:  1  1  1  1
  5:  1  2  3  2  1
  6:  1  1  1  1  1  1
  7:  1  2  1  4  1  2  1
  8:  1  1  3  1  1  3  1  1
  9:  1  2  1  2  5  2  1  2  1
 10:  1  1  1  1  1  1  1  1  1  1
 11:  1  2  3  4  1  6  1  4  3  2  1
 12:  1  1  1  1  1  1  1  1  1  1  1  1
 13:  1  2  1  2  1  2  7  2  1  2  1  2  1
 14:  1  1  3  1  5  3  1  1  3  5  1  3  1  1
 15:  1  2  1  4  1  2  1  8  1  2  1  4  1  2  1
 ...  - _Wolfdieter Lang_, May 12 2018
		

References

  • R. L. Graham, D. E. Knuth and O. Patashnik, Concrete Mathematics, Addison-Wesley, 2nd ed., 1994, ch. 4.
  • D. E. Knuth, The Art of Computer Programming, Addison-Wesley, section 4.5.2.

Crossrefs

Rows, columns and diagonals: A089128, A109007, A109008, A109009, A109010, A109011, A109012, A109013, A109014, A109015.
A109004 is (0, 0) based.
Cf. also A091255 for GF(2)[X] polynomial analog.
A(x, y) = A075174(A004198(A075173(x), A075173(y))) = A075176(A004198(A075175(x), A075175(y))).
Antidiagonal sums are in A006579.

Programs

  • GAP
    Flat(List([1..15],n->List([1..n],k->Gcd(n-k+1,k)))); # Muniru A Asiru, Aug 26 2018
  • Maple
    a:=(n,k)->gcd(n-k+1,k): seq(seq(a(n,k),k=1..n),n=1..15); # Muniru A Asiru, Aug 26 2018
  • Mathematica
    Table[ GCD[x - y + 1, y], {x, 1, 15}, {y, 1, x}] // Flatten (* Jean-François Alcover, Dec 12 2012 *)
  • PARI
    {A(n, m) = gcd(n, m)}; /* Michael Somos, Jun 25 2012 */
    

Formula

Multiplicative in both parameters with a(p^e, m) = gcd(p^e, m). - David W. Wilson, Jun 12 2005
T(n, k) = A(n - k + 1, k) = gcd(n - k + 1, k), n >= 1, k = 1..n. See a comment above and the Mathematica program. - Wolfdieter Lang, May 12 2018
Dirichlet generating function: Sum_{n>=1} Sum_{k>=1} gcd(n, k)/n^s/k^c = zeta(s)*zeta(c)*zeta(s + c - 1)/zeta(s + c). - Mats Granvik, Feb 13 2021
The LU decomposition of this square array = A051731 * transpose(A054522) (see Johnson (2003) or Chamberland (2013), p. 1673). - Peter Bala, Oct 15 2023

A046644 From square root of Riemann zeta function: form Dirichlet series Sum b_n/n^s whose square is zeta function; sequence gives denominator of b_n.

Original entry on oeis.org

1, 2, 2, 8, 2, 4, 2, 16, 8, 4, 2, 16, 2, 4, 4, 128, 2, 16, 2, 16, 4, 4, 2, 32, 8, 4, 16, 16, 2, 8, 2, 256, 4, 4, 4, 64, 2, 4, 4, 32, 2, 8, 2, 16, 16, 4, 2, 256, 8, 16, 4, 16, 2, 32, 4, 32, 4, 4, 2, 32, 2, 4, 16, 1024, 4, 8, 2, 16, 4, 8, 2, 128, 2, 4, 16, 16, 4, 8
Offset: 1

Views

Author

Keywords

Comments

From Antti Karttunen, Aug 21 2018: (Start)
a(n) is the denominator of any rational-valued sequence f(n) which has been defined as f(n) = (1/2) * (b(n) - Sum_{d|n, d>1, d
Proof:
Proof is by induction. We assume as our induction hypothesis that the given multiplicative formula for A046644 (resp. additive formula for A046645) holds for all proper divisors d|n, dA046645(p) = 1. [Remark: for squares of primes, f(p^2) = (4*b(p^2) - 1)/8, thus a(p^2) = 8.]
First we note that A005187(x+y) <= A005187(x) + A005187(y), with equivalence attained only when A004198(x,y) = 0, that is, when x and y do not have any 1-bits in the shared positions. Let m = Sum_{e} A005187(e), with e ranging over the exponents in prime factorization of n.
For [case A] any n in A268388 it happens that only when d (and thus also n/d) are infinitary divisors of n will Sum_{e} A005187(e) [where e now ranges over the union of multisets of exponents in the prime factorizations of d and n/d] attain value m, which is the maximum possible for such sums computed for all divisor pairs d and n/d. For any n in A268388, A037445(n) = 2^k, k >= 2, thus A037445(n) - 2 = 2 mod 4 (excluding 1 and n from the count, thus -2). Thus, in the recursive formula above, the maximal denominator that occurs in the sum is 2^m which occurs k times, with k being an even number, but not a multiple of 4, thus the factor (1/2) in the front of the whole sum will ensure that the denominator of the whole expression is 2^m [which thus is equal to 2^A046645(n) = a(n)].
On the other hand [case B], for squares in A050376 (A082522, numbers of the form p^(2^k) with p prime and k>0), all the sums A005187(x)+A005187(y), where x+y = 2^k, 0 < x <= y < 2^k are less than A005187(2^k), thus it is the lonely "middle pair" f(p^(2^(k-1))) * f(p^(2^(k-1))) among all the pairs f(d)*f(n/d), 1 < d < n = p^(2^k) which yields the maximal denominator. Furthermore, as it occurs an odd number of times (only once), the common factor (1/2) for the whole sum will increase the exponent of 2 in denominator by one, which will be (2*A005187(2^(k-1))) + 1 = A005187(2^k) = A046645(p^(2^k)).
(End)
From Antti Karttunen, Aug 21 2018: (Start)
The following list gives a few such pairs num(n), b(n) for which b(n) is Dirichlet convolution of num(n)/a(n). Here ε stands for sequence A063524 (1, 0, 0, ...).
Numerators Dirichlet convolution of numerator(n)/a(n) yields
------- -----------
(End)
This sequence gives an upper bound for the denominators of any rational-valued sequence obtained as the "Dirichlet Square Root" of any integer-valued sequence. - Andrew Howroyd, Aug 23 2018

Crossrefs

See A046643 for more details. See also A046645, A317940.
Cf. A299150, A299152, A317832, A317926, A317932, A317934 (for denominator sequences of other similar constructions).

Programs

Formula

From Antti Karttunen, Jul 08 2017: (Start)
Multiplicative with a(p^n) = 2^A005187(n).
a(1) = 1; for n > 1, a(n) = A000079(A005187(A067029(n))) * a(A028234(n)).
a(n) = A000079(A046645(n)).
(End)
Sum_{j=1..n} A046643(j)/A046644(j) ~ n / sqrt(Pi*log(n)) * (1 + (1 - gamma/2)/(2*log(n))), where gamma is the Euler-Mascheroni constant A001620. - Vaclav Kotesovec, May 04 2025

A057300 Binary counter with odd/even bit positions swapped; base-4 counter with 1's replaced by 2's and vice versa.

Original entry on oeis.org

0, 2, 1, 3, 8, 10, 9, 11, 4, 6, 5, 7, 12, 14, 13, 15, 32, 34, 33, 35, 40, 42, 41, 43, 36, 38, 37, 39, 44, 46, 45, 47, 16, 18, 17, 19, 24, 26, 25, 27, 20, 22, 21, 23, 28, 30, 29, 31, 48, 50, 49, 51, 56, 58, 57, 59, 52, 54, 53, 55, 60, 62, 61, 63, 128, 130, 129, 131, 136, 138
Offset: 0

Author

Marc LeBrun, Aug 24 2000

Keywords

Comments

A self-inverse permutation of the integers.
a(n) = n if and only if n can be written as 3*Sum_{k>=0} d_i*4^k, where d_i is either 0 or 1. - Jon Perry, Oct 06 2012
From Veselin Jungic, Mar 03 2015: (Start)
In 1988 A. F. Sidorenko, see the Sidorenko reference, used this sequence as an example of a permutation of the set of positive integers with the property that if positive integers i, j, and k form a 3-term arithmetic progression then the corresponding terms a(i), a(j), and a(k) do not form an arithmetic progression.
In the terminology introduced in the Brown, Jungic, and Poelstra reference, the sequence does not contain "double 3-term arithmetic progressions".
It is not difficult to check that this sequence is with unbounded gaps, i.e., for any positive number m there is a natural number n such that a(n+1) - a(n) > m.
It is an open question if every sequence of integers with bounded gaps must contain a double 3-term arithmetic progression. This problem is equivalent to the well known additive square problem in infinite words: Is it true that any infinite word with a finite set of integers as its alphabet contains two consecutive blocks of the same length and the same sum? For more details about the additive square problem in infinite words see the following references: Ardal, et al.; Brown and Freedman; Freedman; Grytczuk; Halbeisen and Hungerbuhler, and Pirillo and Varricchio.
The sequence was attributed to Sidorenko in P. Hegarty's paper "Permutations avoiding arithmetic patterns". In his paper Hegarty characterized the countably infinite abelian groups for which there exists a bijection mapping arithmetic progressions to non-arithmetic progressions. This was further generalized by Jungic and Sahasrabudhe. (End)

Examples

			a(31) = a(4*7+3) = 4*a(7) + a(3) = 4*11 + 3 = 47.
		

Crossrefs

Sequences used in definitions of this sequence: A000695, A059905, A059906.
Sequences with similar definitions: A057301, A126006, A126007, A126008, A163241, A163327.
A003986, A003987, A004198, A053985, A054240 are used to express relationships between sequence terms.

Programs

  • C
    #include 
    uint32_t a(uint32_t n) { return ((n & 0x55555555) << 1) | ((n & 0xaaaaaaaa) >> 1); } /* Falk Hüffner, Jan 23 2022 */
  • Maple
    a:= proc(n) option remember; `if`(n=0, 0,
          a(iquo(n, 4, 'r'))*4+[0, 2, 1, 3][r+1])
        end:
    seq(a(n), n=0..69);  # Alois P. Heinz, Jan 25 2022
  • Mathematica
    Table[FromDigits[IntegerDigits[n,4]/.{1->2,2->1},4],{n,0,70}] (* Harvey P. Dale, Aug 24 2017 *)
  • PARI
    A057300(n) = { my(t=1,s=0); while(n>0, if(1==(n%4),n++,if(2==(n%4),n--)); s += (n%4)*t; n >>= 2; t <<= 2); (s); }; \\ Antti Karttunen, Apr 14 2018
    

Formula

Conjecture: a(2*n) = -2*a(n) + 5*n, a(2*n+1) = -2*a(n) + 5*n + 2. - Ralf Stephan, Oct 11 2003
a(4n+k) = 4a(n) + a(k), 0 <= k <= 3. - Jon Perry, Oct 06 2012
a(n) = A000695(A059906(n)) + 2*A000695(A059905(n)). - Antti Karttunen, Apr 14 2018
From Peter Munn, Dec 10 2019: (Start)
a(a(n)) = n.
a(A000695(m) + 2*A000695(n)) = 2*A000695(m) + A000695(n).
a(n OR k) = a(n) OR a(k), where OR is bitwise-or (A003986).
a(n XOR k) = a(n) XOR a(k), where XOR is bitwise exclusive-or (A003987).
a(n AND k) = a(n) AND a(k), where AND is bitwise-and (A004198).
a(A054240(n,k)) = A054240(a(n), a(k)). (End)
a(n) = 5*n/4 - 3*A053985(2*n)/8. - Alan Michael Gómez Calderón, May 20 2025

A331590 Square array A(n,k) = A225546(A225546(n) * A225546(k)), n >= 1, k >= 1, read by descending antidiagonals.

Original entry on oeis.org

1, 2, 2, 3, 3, 3, 4, 6, 6, 4, 5, 8, 5, 8, 5, 6, 10, 12, 12, 10, 6, 7, 5, 15, 9, 15, 5, 7, 8, 14, 10, 20, 20, 10, 14, 8, 9, 12, 21, 24, 7, 24, 21, 12, 9, 10, 18, 24, 28, 30, 30, 28, 24, 18, 10, 11, 15, 27, 18, 35, 15, 35, 18, 27, 15, 11, 12, 22, 30, 36, 40, 42, 42, 40, 36, 30, 22, 12, 13, 24, 33, 40, 45, 20, 11, 20, 45, 40, 33, 24, 13
Offset: 1

Author

Peter Munn, Jan 21 2020

Keywords

Comments

As a binary operation, this sequence defines a commutative monoid over the positive integers that is isomorphic to multiplication. The self-inverse permutation A225546(.) provides an isomorphism. This monoid therefore has unique factorization. Its primes are the even terms of A050376: 2, 4, 16, 256, ..., which in standard integer multiplication are the powers of 2 with powers of 2 as exponents.
In this monoid, in contrast, the powers of 2 run through the squarefree numbers, the k-th power of 2 being A019565(k). 4 is irreducible and its powers are the squares of the squarefree numbers, the k-th power of 4 being A019565(k)^2 (where "^2" denotes standard integer squaring); and so on with powers of 16, 256, ...
In many cases the product of two numbers is the same here as in standard integer multiplication. See the formula section for details.

Examples

			From _Antti Karttunen_, Feb 02 2020: (Start)
The top left 16 X 16 corner of the array:
   1,  2,  3,  4,  5,  6,   7,   8,   9,  10,  11,  12,  13,  14,  15,  16, ...
   2,  3,  6,  8, 10,  5,  14,  12,  18,  15,  22,  24,  26,  21,  30,  32, ...
   3,  6,  5, 12, 15, 10,  21,  24,  27,  30,  33,  20,  39,  42,   7,  48, ...
   4,  8, 12,  9, 20, 24,  28,  18,  36,  40,  44,  27,  52,  56,  60,  64, ...
   5, 10, 15, 20,  7, 30,  35,  40,  45,  14,  55,  60,  65,  70,  21,  80, ...
   6,  5, 10, 24, 30, 15,  42,  20,  54,   7,  66,  40,  78,  35,  14,  96, ...
   7, 14, 21, 28, 35, 42,  11,  56,  63,  70,  77,  84,  91,  22, 105, 112, ...
   8, 12, 24, 18, 40, 20,  56,  27,  72,  60,  88,  54, 104,  84, 120, 128, ...
   9, 18, 27, 36, 45, 54,  63,  72,  25,  90,  99, 108, 117, 126, 135, 144, ...
  10, 15, 30, 40, 14,  7,  70,  60,  90,  21, 110, 120, 130, 105,  42, 160, ...
  11, 22, 33, 44, 55, 66,  77,  88,  99, 110,  13, 132, 143, 154, 165, 176, ...
  12, 24, 20, 27, 60, 40,  84,  54, 108, 120, 132,  45, 156, 168,  28, 192, ...
  13, 26, 39, 52, 65, 78,  91, 104, 117, 130, 143, 156,  17, 182, 195, 208, ...
  14, 21, 42, 56, 70, 35,  22,  84, 126, 105, 154, 168, 182,  33, 210, 224, ...
  15, 30,  7, 60, 21, 14, 105, 120, 135,  42, 165,  28, 195, 210,  35, 240, ...
  16, 32, 48, 64, 80, 96, 112, 128, 144, 160, 176, 192, 208, 224, 240,  81, ...
(End)
		

Crossrefs

Isomorphic to A003991 with A225546 as isomorphism.
Cf. A003961(main diagonal), A048675, A059895, A059896, A059897.
Rows/columns, sorted in ascending order: 2: A000037, 3: A028983, 4: A252849.
A019565 lists powers of 2 in order of increasing exponent.
Powers of k, sorted in ascending order: k=2: A005117, k=3: A056911, k=4: A062503, k=5: A276378, k=6: intersection of A325698 and A005117, k=7: intersection of A007775 and A005117, k=8: A062838.
Irreducibles are A001146 (even terms of A050376).

Programs

  • PARI
    up_to = 1275;
    A019565(n) = factorback(vecextract(primes(logint(n+!n, 2)+1), n));
    A048675(n) = { my(f = factor(n)); sum(k=1, #f~, f[k, 2]*2^primepi(f[k, 1]))/2; };
    A331590sq(x,y) = if(1==x,y,if(1==y,x, my(fx=factor(x),fy=factor(y),u=max(#binary(vecmax(fx[, 2])),#binary(vecmax(fy[, 2]))),prodsx=vector(u,x,1),m=1); for(i=1,u,for(k=1,#fx~, if(bitand(fx[k,2],m),prodsx[i] *= fx[k,1])); for(k=1,#fy~, if(bitand(fy[k,2],m),prodsx[i] *= fy[k,1])); m<<=1); prod(i=1,u,A019565(A048675(prodsx[i]))^(1<<(i-1)))));
    A331590list(up_to) = { my(v = vector(up_to), i=0); for(a=1,oo, for(col=1,a, i++; if(i > up_to, return(v)); v[i] = A331590sq(col,(a-(col-1))))); (v); };
    v331590 = A331590list(up_to);
    A331590(n) = v331590[n]; \\ Antti Karttunen, Feb 02 2020

Formula

Alternative definition: A(n,1) = n; A(n,k) = A(A059897(n,k), A003961(A059895(n,k))).
Main derived identities: (Start)
A(n,k) = A(k,n).
A(1,n) = n.
A(n, A(m,k)) = A(A(n,m), k).
A(m,m) = A003961(m).
A(n^2, k^2) = A(n,k)^2.
A(A003961(n), A003961(k)) = A003961(A(n,k)).
A(A019565(n), A019565(k)) = A019565(n+k).
(End)
Characterization of conditions for A(n,k) = n * k: (Start)
The following 4 conditions are equivalent:
(1) A(n,k) = n * k;
(2) A(n,k) = A059897(n,k);
(3) A(n,k) = A059896(n,k);
(4) A059895(n,k) = 1.
If gcd(n,k) = 1, A(n,k) = n * k.
If gcd(n,k) = 1, A(A225546(n), A225546(k)) = A225546(n) * A225546(k).
The previous formula implies A(n,k) = n * k in the following cases:
(1) for n = A005117(m), k = j^2;
(2) more generally for n = A005117(m_1)^(2^i_1), k = A005117(m_2)^(2^i_2), with A004198(i_1, i_2) = 0.
(End)
Previous Showing 21-30 of 96 results. Next