cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 72 results. Next

A004190 Expansion of 1/(1 - 11*x + x^2).

Original entry on oeis.org

1, 11, 120, 1309, 14279, 155760, 1699081, 18534131, 202176360, 2205405829, 24057287759, 262424759520, 2862615066961, 31226340977051, 340627135680600, 3715672151509549, 40531766530924439, 442133759688659280, 4822939590044327641, 52610201730798944771, 573889279448744064840
Offset: 0

Views

Author

Keywords

Comments

Chebyshev or generalized Fibonacci sequence.
This is the m=13 member of the m-family of sequences S(n,m-2) = S(2*n+1,sqrt(m))/sqrt(m). The m=4..12 (nonnegative) sequences are A000027, A001906, A001353, A004254, A001109, A004187, A001090, A018913 and A004189. The m=1..3 (signed) sequences are A049347, A056594, A010892.
All positive integer solutions of Pell equation b(n)^2 - 117*a(n)^2 = +4 together with b(n+1)=A057076(n+1), n >= 0. - Wolfdieter Lang, Aug 31 2004
For positive n, a(n) equals the permanent of the tridiagonal matrix of order n with 11's along the main diagonal, and i's along the superdiagonal and the subdiagonal (i is the imaginary unit). - John M. Campbell, Jul 08 2011
a(n) equals the number of 01-avoiding words of length n-1 on alphabet {0,1,...,10}. - Milan Janjic, Jan 25 2015
17*a(n+1) + 4*(a(n) + (-1)^n) is 13 times the numerator of the continued fraction [3,3,...,3,1,3,...,3,3] with n+1 3's on either side of the central 1. For example, when n=2 the continued fraction [3,3,3,1,3,3,3] = 1749/529, and 17*a(3) + 4(a(2)+1) = 17*1309 + 4*121 = 22737 = 13*1749. - Greg Dresden and Tulipa Wray, Aug 26 2025

Examples

			G.f. = 1 + 11*x + 120*x^2 + 1309*x^3 + 14279*x^4 + 155760*x^5 + ...
		

Crossrefs

Programs

Formula

Recursion: a(n) = 11*a(n-1) - a(n-2), n >= 1; a(-1)=0, a(0)=1.
a(n) = S(2*n+1, sqrt(13))/sqrt(13) = S(n, 11); S(n, x) := U(n, x/2), Chebyshev polynomials of 2nd kind, A049310.
G.f.: 1/(1 - 11*x + x^2).
a(n) = ((11+3*sqrt(13))^(n+1) - (11-3*sqrt(13))^(n+1))/(2^(n+1)*3*sqrt(13)). - Rolf Pleisch, May 22 2011
a(n) = Sum_{k=0..n} A101950(n,k)*10^k. - Philippe Deléham, Feb 10 2012
From Peter Bala, Dec 23 2012: (Start)
Product_{n>=0} (1 + 1/a(n)) = 1/3*(3 + sqrt(13)).
Product_{n>=1} (1 - 1/a(n)) = 3/22*(3 + sqrt(13)). (End)
a(n) = sqrt((A057076(n+1)^2 - 4)/117).
a(n) = A075835(n+1)/3 = A006190(2*n+2)/3. - Vladimir Reshetnikov, Sep 16 2016
a(n) = -a(-2-n) for all n in Z. - Michael Somos, Jul 14 2018
E.g.f.: exp(11*x/2)*(39*cosh(3*sqrt(13)*x/2) + 11*sqrt(13)*sinh(3*sqrt(13)*x/2))/39. - Stefano Spezia, Aug 07 2024

Extensions

Wolfdieter Lang, Oct 31 2002

A232316 T(n,k)=Number of (n+1)X(k+1) 0..1 arrays with every element equal to some horizontal or antidiagonal neighbor, with top left element zero.

Original entry on oeis.org

2, 5, 5, 16, 24, 13, 52, 139, 115, 34, 169, 853, 1202, 551, 89, 549, 5241, 14042, 10409, 2640, 233, 1784, 32089, 164014, 231454, 90157, 12649, 610, 5797, 196698, 1905436, 5142441, 3815483, 780922, 60605, 1597, 18837, 1205422, 22161823, 113293694
Offset: 1

Views

Author

R. H. Hardin, Nov 22 2013

Keywords

Comments

Table starts
.....2.......5.........16............52..............169.................549
.....5......24........139...........853.............5241...............32089
....13.....115.......1202.........14042...........164014.............1905436
....34.....551......10409........231454..........5142441...........113293694
....89....2640......90157.......3815483........161243887..........6736602042
...233...12649.....780922......62897985.......5055954492........400571676322
...610...60605....6764246....1036869496.....158534446141......23818815015639
..1597..290376...58591124...17092731689....4971005036586....1416315842358249
..4181.1391275..507509767..281772661177..155870804492221...84217060496525106
.10946.6665999.4395993154.4645005493684.4887484036570530.5007720081104988709

Examples

			Some.solutions.for.n=3.k=4
..0..0..0..1..1....0..0..1..1..0....0..0..0..1..1....0..0..1..1..0
..0..0..1..1..1....0..1..1..0..0....0..0..0..1..1....0..1..1..0..1
..1..1..0..0..0....1..0..0..1..1....0..0..1..1..1....0..0..0..1..0
..1..1..1..1..1....1..1..1..0..0....0..0..0..0..0....1..1..1..0..0
		

Crossrefs

Column 1 is A001519(n+1)
Column 2 is A004254(n+1)

Formula

Empirical for column k:
k=1: a(n) = 3*a(n-1) -a(n-2)
k=2: a(n) = 5*a(n-1) -a(n-2)
k=3: a(n) = 10*a(n-1) -11*a(n-2) -5*a(n-3) -a(n-4)
k=4: a(n) = 19*a(n-1) -44*a(n-2) +43*a(n-3) -19*a(n-4) +4*a(n-5) -2*a(n-6) for n>7
k=5: [order 12] for n>13
k=6: [order 18] for n>20
k=7: [order 37] for n>40
Empirical for row n:
n=1: a(n) = 3*a(n-1) +a(n-2) -2*a(n-4) for n>5
n=2: [order 12] for n>14
n=3: [order 32] for n>34
n=4: [order 78] for n>82

A030240 Scaled Chebyshev U-polynomials evaluated at sqrt(7)/2.

Original entry on oeis.org

1, 7, 42, 245, 1421, 8232, 47677, 276115, 1599066, 9260657, 53631137, 310593360, 1798735561, 10416995407, 60327818922, 349375764605, 2023335619781, 11717718986232, 67860683565157, 393000752052475, 2275980479411226, 13180858091511257, 76334143284700217
Offset: 0

Views

Author

Keywords

Comments

Binomial transform of A030221. - Philippe Deléham, Nov 19 2009

Programs

Formula

a(n) = 7*a(n-1)-7*a(n-2), a(-1)=0, a(0)=1; a(n)=sqrt(7)^n*U(n, sqrt(7)/2); G.f.: 1/(1-7*x+7*x^2); a(2*k)=7^k*A030221(k); a(2*k-1)=7^k*A004254(k)
a(n) = Sum_{k=0..n} A109466(n,k)*7^k. - Philippe Deléham, Oct 28 2008

A089817 a(n) = 5*a(n-1) - a(n-2) + 1 with a(0)=1, a(1)=6.

Original entry on oeis.org

1, 6, 30, 145, 696, 3336, 15985, 76590, 366966, 1758241, 8424240, 40362960, 193390561, 926589846, 4439558670, 21271203505, 101916458856, 488311090776, 2339638995025, 11209883884350, 53709780426726, 257339018249281
Offset: 0

Views

Author

Paul Barry, Nov 14 2003

Keywords

Comments

Partial sums of Chebyshev sequence S(n,5) = U(n,5/2) = A004254(n) (Chebyshev's polynomials of the second kind, see A049310). - Wolfdieter Lang, Aug 31 2004
In this sequence 4*a(n)*a(n+2)+1 is a square. - Bruno Berselli, Jun 19 2012

Crossrefs

See. A212336 for more sequences with g.f. of the type 1/(1-k*x+k*x^2-x^3).

Programs

  • Magma
    [Round((2/3 - Sqrt(21)/7)*(5/2 - Sqrt(21)/2)^n + (2/3 + Sqrt(21)/7)*(5/2 + Sqrt(21)/2)^n - 1/3): n in [0..30]]; // G. C. Greubel, Nov 20 2017
  • Mathematica
    Join[{a=1,b=6},Table[c=5*b-a+1;a=b;b=c,{n,60}]] (* Vladimir Joseph Stephan Orlovsky, Feb 06 2011*)
    CoefficientList[Series[1/(1 - 6*x + 6*x^2 - x^3), {x, 0, 50}], x] (* G. C. Greubel, Nov 20 2017 *)
  • PARI
    a(n)=([0,1,0; 0,0,1; 1,-6,6]^n*[1;6;30])[1,1] \\ Charles R Greathouse IV, Nov 29 2016
    
  • PARI
    x='x+O('x^50); Vec(1/(1-6*x+6*x^2-x^3)) \\ G. C. Greubel, Nov 20 2017
    

Formula

For n > 0, a(n-1) = Sum_{i=1..n} Sum_{j=1..i} b(n) with b(n) as in A004253.
a(n) = (2/3 - sqrt(21)/7)*(5/2 - sqrt(21)/2)^n + (2/3 + sqrt(21)/7)*(5/2 + sqrt(21)/2)^n - 1/3.
G.f.: 1/((1-x)*(1 - 5*x + x^2)) = 1/(1 - 6*x + 6*x^2 - x^3).
a(n) = 6*a(n-1) - 6*a(n-2) + a(n-3) for n >= 2, a(-1):=0, a(0)=1, a(1)=6.
a(n) = (S(n+1, 5) - S(n, 5) - 1)/3 for n >= 0.
a(n)*a(n-2) = a(n-1)*(a(n-1)-1) for n > 1. - Bruno Berselli, Nov 29 2016

A006238 Complexity of (or spanning trees in) a 3 X n grid.

Original entry on oeis.org

1, 15, 192, 2415, 30305, 380160, 4768673, 59817135, 750331584, 9411975375, 118061508289, 1480934568960, 18576479568193, 233018797965135, 2922930580320960, 36664523428884015, 459910778352898337, 5769007865476035840, 72365017995700730081, 907729015392142395375
Offset: 1

Views

Author

Keywords

Comments

a(n) is a divisibility sequence - m divides n implies that a(m) divides a(n). - Paul Raff, Mar 06 2009
Also number of domino tilings of the 5 X (2n-1) rectangle with upper left corner removed. For n=2 the 15 domino tilings of the 5 X 3 rectangle with upper left corner removed are:
. ._. . ._. . ._. . ._. . ._. . ._. . ._. . ._.
.|__| .| | | .|___| .|__| .|__| .| | | .| | | .|__|
| |_| | ||| | | | | | |_| | |_| | ||| | ||| | | | |
||__| ||__| |||_| || | | ||___| || | | ||___| |||_|
| |_| | |_| | |_| | ||| | | | | | ||| | | | | | | | |
||__| ||__| ||__| ||__| |||_| ||__| |||_| |||_|
. ._. . ._. . ._. . ._. . ._. . ._. . ._.
.|__| .|__| .|__| .|__| .|__| .|__| ._| | |
|_| | | | | | |_| | |_| | |_| | | |_| | |||
|_|_| |||_| | | || |__|_| |_|_| ||__| ||__|
|_| | |_| | ||| | | | | | | |_| |_| | |_| |
|_|_| |_|_| |_|_| |||_| ||__| |_|_| |_|_|
- Alois P. Heinz, Apr 14 2011

References

  • F. Faase, On the number of specific spanning subgraphs of the graphs G X P_n, Ars Combin. 49 (1998), 129-154.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Row 3 of A116469. A100047.

Programs

  • Maple
    a:= n-> (<<0|1|0|0>, <0|0|1|0>, <0|0|0|1>, <-1|15|-32|15>>^n. <<1, 0, 1, 15>>)[2, 1]: seq(a(n), n=1..30);  # Alois P. Heinz, Apr 14 2011
  • Mathematica
    LinearRecurrence[{15,-32,15,-1},{1,15,192,2415},30] (* Harvey P. Dale, May 14 2013 *)

Formula

a(n) = 15a(n-1) - 32a(n-2) + 15a(n-3) - a(n-4), n>4.
G.f.: -x(x^2-1)/(x^4-15x^3+32x^2-15x+1). - Paul Raff, Mar 06 2009
a(n) = A001906(n)*A004254(n). - R. J. Mathar, Jun 03 2009
From Peter Bala, Mar 25 2014: (Start)
a(n) = ( T(n,alpha) - T(n,beta) )/(alpha - beta), where alpha = (15 + sqrt(105))/4 and beta = (15 - sqrt(105))/4 and T(n,x) denotes the Chebyshev polynomial of the first kind.
a(n) = the bottom left entry of the 2X2 matrix T(n, M), where M is the 2X2 matrix [0, -15/2; 1, 15/2].
See the remarks in A100047 for the general connection between Chebyshev polynomials of the first kind and 4th-order linear divisibility sequences. (End)
a(n) = (A003775(n+1)+A003775(n-2))/24-(A003775(n)+A003775(n-1))/3, n>1. - Sergey Perepechko, Apr 26 2016

A054493 A Pellian-related recursive sequence.

Original entry on oeis.org

1, 7, 36, 175, 841, 4032, 19321, 92575, 443556, 2125207, 10182481, 48787200, 233753521, 1119980407, 5366148516, 25710762175, 123187662361, 590227549632, 2827950085801, 13549522879375, 64919664311076, 311048798676007, 1490324329068961, 7140572846668800
Offset: 0

Views

Author

Barry E. Williams, May 06 2000

Keywords

Comments

This is the r=7 member in the r-family of sequences S_r(n+1) defined in A092184 where more information can be found.
Working with an offset of 1, this sequence is a divisibility sequence, i.e., a(n) divides a(m) whenever n divides m. Case P1 = 7, P2 = 10, Q = 1 of the 3 parameter family of 4th-order linear divisibility sequences found by Williams and Guy. - Peter Bala, Mar 25 2014

Examples

			G.f. = 1 + 7*x + 36*x^2 + 175*x^3 + 841*x^4 + 4032*x^5 + 19321*x^6 + ...
		

References

  • A. H. Beiler, Recreations in the Theory of Numbers, Dover, N.Y., 1964, pp. 122-125, 194-196.

Crossrefs

Cf. A004254, A100047, A030221 (first differences).

Programs

  • Maple
    A054493 := proc(n)
        option remember;
        if n <= 1 then
            6*n+1 ;
        else
            5*procname(n-1)-procname(n-2)+2 ;
        end if ;
    end proc:
    seq(A054493(n),n=0..10) ; # R. J. Mathar, Apr 16 2018
  • Mathematica
    LinearRecurrence[{6,-6,1},{1,7,36},30] (* Harvey P. Dale, Apr 15 2015 *)
    a[ n_] := ChebyshevU[n, Sqrt[7]/2]^2; (* Michael Somos, Jan 22 2017 *)
  • PARI
    {a(n) = simplify(polchebyshev(n, 2, quadgen(28)/2)^2)}; /* Michael Somos, Jan 22 2017 */

Formula

a(n) = 5*a(n-1) - a(n-2) + 2, a(0)=1, a(1)=7.
A004254 = sqrt{21*(A054493)^2+28*(A054493)}/7. - James Sellers, May 10 2000
a(n) = (1/3)*(-2 + ((5+sqrt(21))/2)^n + ((5-sqrt(21))/2)^n). - Ralf Stephan, Apr 14 2004
G.f.: (1+x)/((1-x)*(1 - 5*x + x^2)) = (1+x)/(1 - 6*x + 6*x^2 - x^3). From the R. Stephan link.
a(n) = 6*a(n-1) - 6*a(n-2) + a(n-3), n>=2, a(-1):=0, a(0)=1, a(1)=7.
a(n) = (2*T(n, 5/2)-2)/3, with twice the Chebyshev polynomials of the first kind, 2*T(n, x=5/2)=A003501(n).
a(n) = b(n) + b(n-1), n>=1, with b(n)=A089817(n) the partial sums of S(n, 5)= U(n, 5/2)=A004254(n+1), with S(n, x)=U(n, x/2) Chebyshev's polynomials of the second kind.
From Peter Bala, Mar 25 2014: (Start)
The following formulas assume an offset of 1.
Let {u(n)} be the Lucas sequence in the quadratic integer ring Z[sqrt(7)] defined by the recurrence u(0) = 0, u(1) = 1 and u(n) = sqrt(7)*u(n-1) - u(n-2) for n >= 2. Then a(n) = u(n)^2.
Equivalently, a(n) = U(n-1,sqrt(7)/2)^2, where U(n,x) denotes the Chebyshev polynomial of the second kind.
a(n) = 1/3*( ((sqrt(7) + sqrt(3))/2)^n - ((sqrt(7) - sqrt(3))/2)^n )^2.
a(n) = bottom left entry of the 2 X 2 matrix T(n, M), where M is the 2 X 2 matrix [0, -5/2; 1, 7/2] and T(n,x) denotes the Chebyshev polynomial of the first kind.
See the remarks in A100047 for the general connection between Chebyshev polynomials of the first kind and 4th-order linear divisibility sequences. (End)
a(2*n - 1) = 7 * A004254(n)^2, a(2*n) = A030221(n)^2 for all n in Z. - Michael Somos, Jan 22 2017
a(n) = a(-2-n) for all n in Z. - Michael Somos, Jan 22 2017
0 = 1 + a(n)*(-2 + a(n) - 5*a(n+1)) + a(n+1)*(-2 + a(n+1)) for all n in Z. - Michael Somos, Jan 22 2017

Extensions

Chebyshev comments from Wolfdieter Lang, Sep 10 2004

A078362 A Chebyshev S-sequence with Diophantine property.

Original entry on oeis.org

1, 13, 168, 2171, 28055, 362544, 4685017, 60542677, 782369784, 10110264515, 130651068911, 1688353631328, 21817946138353, 281944946167261, 3643466354036040, 47083117656301259, 608437063177880327
Offset: 0

Views

Author

Wolfdieter Lang, Nov 29 2002

Keywords

Comments

a(n) gives the general (positive integer) solution of the Pell equation b^2 - 165*a^2 = +4 with companion sequence b(n)=A078363(n+1), n >= 0.
This is the m=15 member of the m-family of sequences S(n,m-2) = S(2*n+1,sqrt(m))/sqrt(m). The m=4..14 (nonnegative) sequences are: A000027, A001906, A001353, A004254, A001109, A004187, A001090, A018913, A004189, A004190 and A004191. The m=1..3 (signed) sequences are A049347, A056594, A010892.
For positive n, a(n) equals the permanent of the tridiagonal matrix of order n with 13's along the main diagonal, and i's along the superdiagonal and the subdiagonal (i is the imaginary unit). - John M. Campbell, Jul 08 2011
For n >= 1, a(n) equals the number of 01-avoiding words of length n-1 on alphabet {0,1,...,12}. - Milan Janjic, Jan 23 2015

Crossrefs

Cf. A078363.

Programs

  • GAP
    a:=[1,13,168];; for n in [4..20] do a[n]:=13*a[n-1]-a[n-2]; od; a; # G. C. Greubel, May 25 2019
  • Magma
    I:=[1, 13, 168]; [n le 3 select I[n] else 13*Self(n-1)-Self(n-2): n in [1..20]]; // Vincenzo Librandi, Dec 24 2012
    
  • Mathematica
    CoefficientList[Series[1/(1 - 13 x + x^2), {x, 0, 20}], x] (* Vincenzo Librandi, Dec 24 2012 *)
    LinearRecurrence[{13,-1},{1,13},20] (* Harvey P. Dale, Feb 07 2019 *)
  • PARI
    my(x='x+O('x^20)); Vec(1/(1-13*x+x^2)) \\ G. C. Greubel, May 25 2019
    
  • Sage
    [lucas_number1(n,13,1) for n in range(1,20)] # Zerinvary Lajos, Jun 25 2008
    

Formula

a(n) = 13*a(n-1) - a(n-2), n >= 1; a(-1)=0, a(0)=1.
a(n) = S(2*n+1, sqrt(15))/sqrt(15) = S(n, 13), where S(n, x) = U(n, x/2), Chebyshev polynomials of the 2nd kind, A049310.
a(n) = (ap^(n+1) - am^(n+1))/(ap-am) with ap = (13+sqrt(165))/2 and am = (13-sqrt(165))/2.
G.f.: 1/(1 - 13*x + x^2).
a(n) = Sum_{k=0..n} A101950(n,k)*12^k. - Philippe Deléham, Feb 10 2012
Product {n >= 0} (1 + 1/a(n)) = (1/11)*(11 + sqrt(165)). - Peter Bala, Dec 23 2012
Product {n >= 1} (1 - 1/a(n)) = (1/26)*(11 + sqrt(165)). - Peter Bala, Dec 23 2012
For n >= 1, a(n) = U(n-1,13/2), where U(k,x) represents Chebyshev polynomial of the second order.
a(n) = sqrt((A078363(n+1)^2 - 4)/165), n>=0, (Pell equation d=165, +4).

A123967 Triangle read by rows: T(0,0)=1; for n >= 1 T(n,k) is the coefficient of x^k in the monic characteristic polynomial of the tridiagonal n X n matrix with main diagonal 5,5,5,... and sub- and superdiagonals 1,1,1,... (0 <= k <= n).

Original entry on oeis.org

1, -5, 1, 24, -10, 1, -115, 73, -15, 1, 551, -470, 147, -20, 1, -2640, 2828, -1190, 246, -25, 1, 12649, -16310, 8631, -2400, 370, -30, 1, -60605, 91371, -58275, 20385, -4225, 519, -35, 1, 290376, -501150, 374115, -157800, 41140, -6790, 693, -40, 1, -1391275, 2704755, -2313450, 1142730, -359275, 74571, -10220, 892, -45, 1
Offset: 0

Views

Author

Gary W. Adamson and Roger L. Bagula, Oct 28 2006

Keywords

Comments

Riordan array (1/(1+5*x+x^2), x/(1+5*x+x^2)). - Philippe Deléham, Feb 03 2007
Chebyshev's S(n,x-5) polynomials (exponents of x in increasing order). - Philippe Deléham, Feb 22 2012
Row sums are A125905(n). - Philippe Deléham, Feb 22 2012
Diagonal sums are (-5)^n. - Philippe Deléham, Feb 22 2012
Subtriangle of triangle given by (0, -5, 1/5, -1/5, 0, 0, 0, 0, 0, 0, 0, ...) DELTA (1, 0, 0, 0, 0, 0, 0, 0, ...) where DELTA is the operator defined in A084938. - Philippe Deléham, Feb 22 2012
Inverse of triangle in A125906. - Philippe Deléham, Feb 22 2012

Examples

			Triangle starts:
      1;
     -5,      1;
     24,    -10,     1;
   -115,     73,   -15,     1;
    551,   -470,   147,   -20,   1;
  -2640,   2828, -1190,   246, -25,   1;
  12649, -16310,  8631, -2400, 370, -30, 1;
  ...
Triangle (0, -5, 1/5, -1/5, 0, 0, 0, ...) DELTA (1, 0, 0, 0, ...) begins:
  1;
  0,     1;
  0,    -5,    1;
  0,    24,  -10,     1:
  0,  -115,   73,   -15,   1;
  0,   551, -470,   147, -20,   1;
  0, -2640, 2828, -1190, 246, -25, 1;
  ...
		

Crossrefs

Cf. Chebyshev's S(n,x+k) polynomials : A207824 (k = 5), A207823 (k = 4), A125662 (k = 3), A078812 (k=2), A101950 (k = 1), A049310 (k = 0), A104562 (k = -1), A053122 (k = -2), A207815 (k = -3), A159764 (k = -4), A123967 (k = -5).

Programs

  • Maple
    with(linalg): m:=proc(i,j) if i=j then 5 elif abs(i-j)=1 then 1 else 0 fi end: T:=(n,k)->coeff(charpoly(matrix(n,n,m),x),x,k): 1; for n from 1 to 9 do seq(T(n,k),k=0..n) od; # yields sequence in triangular form
  • Mathematica
    T[n_, k_] /; 0 <= k <= n := T[n, k] = T[n-1, k-1] - 5 T[n-1, k] - T[n-2, k]; T[0, 0] = 1; T[, ] = 0;
    Table[T[n, k], {n, 0, 9}, {k, 0, n}] // Flatten (* Jean-François Alcover, Jul 30 2018, after Philippe Deléham *)
  • Sage
    @CachedFunction
    def A123967(n,k):
        if n< 0: return 0
        if n==0: return 1 if k == 0 else 0
        return A123967(n-1,k-1)-A123967(n-2,k)-5*A123967(n-1,k)
    for n in (0..9): [A123967(n,k) for k in (0..n)] # Peter Luschny, Nov 20 2012

Formula

T(n,0) = (-1)^n*A004254(n+1).
G.f.: 1/(1+5*x+x^2 - y*x). - Philippe Deléham, Feb 22 2012
T(n,k) = T(n-1,k-1) - 5*T(n-1,k) - T(n-2,k), T(0,0) = 1, T(n,k) = 0 if k < 0 or if k > n. - Philippe Deléham, Jan 22 2014

Extensions

Edited by N. J. A. Sloane, Dec 03 2006

A207823 Triangle of coefficients of Chebyshev's S(n,x+4) polynomials (exponents of x in increasing order).

Original entry on oeis.org

1, 4, 1, 15, 8, 1, 56, 46, 12, 1, 209, 232, 93, 16, 1, 780, 1091, 592, 156, 20, 1, 2911, 4912, 3366, 1200, 235, 24, 1, 10864, 21468, 17784, 8010, 2120, 330, 28, 1, 40545, 91824, 89238, 48624, 16255, 3416, 441, 32, 1, 151316, 386373, 430992, 275724, 111524, 29589, 5152, 568, 36, 1
Offset: 0

Views

Author

Philippe Deléham, Feb 20 2012

Keywords

Comments

Riordan array (1/(1-4*x+x^2), x/(1-4*x+x^2)).
Subtriangle of the triangle given by (0, 4, -1/4, 1/4, 0, 0, 0, 0, 0, 0, 0, ...) DELTA (1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, ...) where DELTA is the operator defined in A084938.
Unsigned version of triangles in A124029 and in A159764.
For 1<=k<=n, T(n,k) equals the number of (n-1)-length words over {0,1,2,3,4} containing k-1 letters equal 4 and avoiding 01. - Milan Janjic, Dec 20 2016

Examples

			Triangle begins:
  1
  4, 1
  15, 8, 1
  56, 46, 12, 1
  209, 232, 93, 16, 1
  780, 1091, 592, 156, 20, 1
  2911, 4912, 3366, 1200, 235, 24, 1
  10864, 21468, 17784, 8010, 2120, 330, 28, 1
  40545, 91824, 89238, 48624, 16255, 3416, 441, 32, 1
  151316, 386373, 430992, 275724, 111524, 29589, 5152, 568, 36, 1
  ...
Triangle (0, 4, -1/4, 1/4, 0, 0, ...) DELTA (1, 0, 0, 0, ...) begins:
  1
  0, 1
  0, 4, 1
  0, 15, 8, 1
  0, 56, 46, 12, 1
  0, 209, 232, 93, 16, 1
  ...
		

Crossrefs

Cf. Triangle of coefficients of Chebyshev's S(n,x+k) polynomials: A207824 (k = 5), A207823 (k = 4), A125662 (k = 3), A078812 (k = 2), A101950 (k = 1), A049310 (k = 0), A104562 (k = -1), A053122 (k = -2), A207815 (k = -3), A159764 (k = -4), A123967 (k = -5).

Programs

  • Mathematica
    With[{n = 9}, DeleteCases[#, 0] & /@ CoefficientList[Series[1/(1 - 4 x + x^2 - y x), {x, 0, n}, {y, 0, n}], {x, y}]] // Flatten (* Michael De Vlieger, Apr 25 2018 *)

Formula

Recurrence: T(n,k) = 4*T(n-1,k) + T(n-1,k-1) - T(n-2,k).
Diagonal sums are 4^n = A000302(n).
Row sums are A004254(n+1).
G.f.: 1/(1-4*x+x^2-y*x)
T(n,n) = 1, T(n+1,n) = 4*n+4 = A008586(n+1), T(n+2,n) = (n+1)*(8n+15) = A139278(n+1).
T(n,0) = A001353(n+1).

Extensions

Offset changed to 0 by Georg Fischer, Feb 18 2020

A316269 Array T(n,k) = n*T(n,k-1) - T(n,k-2) read by upward antidiagonals, with T(n,0) = 0, T(n,1) = 1, n >= 2.

Original entry on oeis.org

0, 0, 1, 0, 1, 2, 0, 1, 3, 3, 0, 1, 4, 8, 4, 0, 1, 5, 15, 21, 5, 0, 1, 6, 24, 56, 55, 6, 0, 1, 7, 35, 115, 209, 144, 7, 0, 1, 8, 48, 204, 551, 780, 377, 8, 0, 1, 9, 63, 329, 1189, 2640, 2911, 987, 9, 0, 1, 10, 80, 496, 2255, 6930, 12649, 10864, 2584, 10
Offset: 2

Views

Author

Jianing Song, Jun 28 2018

Keywords

Comments

Define {x(k)} to be an integer sequence satisfying all the following conditions:
(i) {x(k)} satisfies second-order linear recursion, that is, there exists two integers P, Q such that x(k+2) = P*x(k+1) + Q*x(k) holds for all k >= 0.
(ii) {x(k)} is (not necessarily strictly) increasing. ({A000035(k)} satisfies condition (i), but it doesn't satisfy this.)
(iii) All terms in {x(k)} do not share a common factor. ({A024023(k)} satisfies both conditions (i) and (ii), but all terms share a common factor 2.)
(iv) {x(k)} satisfies strong divisibility, that is, gcd(x(m),x(n)) = x(gcd(m,n)) holds for all m, n >= 0. ({A093131(k)} satisfies all conditions (i) to (iii), but 5 = gcd(A093131(2),A093131(3)) != A093131(gcd(2,3)) = 1.)
(v) For all positive integers n, there eventually exists some m > 0 such that n divides x(m). ({A002275(k)} satisfies all conditions (i) to (iv), but 2, 5 and 10 never divide any term.)
Then it's easy to show that the only solutions to {x(k)} are x(k) = A172236(n,k) or x(k) = T(n,k), i.e., x(0) = 0, x(1) = 1, P >= 1, Q = 1 or P >= 2, Q = -1.
The case n = 0 is not included since it gives the period-4 signed sequence 0, 1, 0, -1, 0, 1, 0, -1, ..., the g.f. of which is the inverse of the 4th cyclotomic polynomial.
The case n = 1 is not included since it gives the period-6 signed sequence 0, 1, 1, 0, -1, -1, ..., the g.f. of which is the inverse of the 6th cyclotomic polynomial.
The congruence property: let p be an odd prime which is not divisible by n^2 - 4, then T(n,(p-1)/2) == 1/2(((n-2)/p) - ((n+2)/p)) (mod p), T(n,(p+1)/2) == 1/2(((n-2)/p) + ((n+2)/p)) (mod p). Here ((n-2)/p) is the Legendre symbol. Or equivalently:
((n-2)/p)...((n+2)/p)...T(n,(p-1)/2) mod p...T(n,(p+1)/2) mod p
.....1...........1...............0....................1
....-1..........-1...............0...................-1
.....1..........-1...............1....................0
....-1...........1..............-1....................0
To prove this, rewrite (n +- sqrt(n^2-4))/2 as ((sqrt(n+2) +- sqrt(n-2))/2)^2.
Let E(n,m) be the smallest number l such that m divides T(n,l), we have: E(n,p) divides (p - ((n^2-4)/p))/2 for odd primes p that are not divisible by n^2 - 4. E(n,p) = p for odd primes p that are divisible by n^2 - 4. E(n,2) = 2 for even n and 3 for odd n.
E(n,p^e) <= p^(e-1)*E(n,p) for all primes p. If p^2 does not divide T(n,E(n,p)), then E(n,p^e) = p^(e-1)*E(n,p) for all exponent e. Specially, for primes p >= 5 that are divisible by n^2 - 4, p^2 is never divisible by T(n,p), so E(n,p^e) = p^e as described above. E(n,m_1*m_2) = lcm(E(n,m_1),E(n,m_2)) if gcd(m_1,m_2) = 1.
Given n, the largest possible value of E(n,m)/m is 1 for even n and 3/2 for odd n. It can be obtained by the value of E(n,2) described above.
Let pi(n,m) be the Pisano period of T(n,k) modulo m, i.e, the smallest number l such that T(n,k+1) == T(n,k) (mod m) holds for all k >= 0, we have: for odd primes p that are not divisible by n^2 - 4, pi(n,p) divides p + ((n-2)/p) if ((n+2)/p) = -1 and (p - ((n-2)/p))/2 if ((n+2)/p) = 1. pi(n,p) = p for odd primes p that are divisible by n - 2 and 2p for odd primes p that are divisible by n + 2. pi(n,2) = 2 even n and 3 for odd n.
pi(n,p^e) <= p^(e-1)*pi(n,p) for all primes p. If p^2 does not divide T(n,E(n,p)), then pi(n,p^e) = p^(e-1)*pi(n,p) for all exponent e. Specially, for primes p >= 5 that are divisible by n^2 - 4, p^2 is never divisible by T(n,p), so pi(n,p^e) = p^e or 2p^e as described above. pi(n,m_1*m_2) = lcm(pi(n,m_1),pi(n,m_2)) if gcd(m_1,m_2) = 1.
Given n, the largest possible value of pi(n,m)/m is:
Parity of n...n + 2 is a power of 2 or 3...max{pi(n,m)/m}.....obtained by
....even..........yes (even exponent)............1...........pi(n,2^e) = 2^e
....even...........yes (odd exponent)...........4/3............pi(n,3) = 4
....even...................no....................2.............pi(n,p) = 2p (p >= 3 is any prime factor of n + 2)
.....odd..................yes....................2..........pi(n,3^e) = 2*3^e
.....odd...................no....................3..........pi(n,2p^e) = 6p^e (p >= 5 is any prime factor of n + 2)
The largest possible value of pi(n,m)/m is obtained by infinitely many m except for the case n = 10, in which we have pi(10,3) = 6, pi(10,7) = 8, pi(10,21) = 24 and pi(10,m)/m <= 14/13 for all other m. [Corrected by Jianing Song, Nov 04 2018]
Let z(n,m) be the number of zeros in a period of T(n,k) modulo m, i.e., z(n,m) = pi(n,m)/E(n,m), then we have: for odd primes p that are not divisible by n^2 - 4, z(n,p) = 2 if ((n+2)/p) = -1; 1 or 2 if ((n+2)/p) = 1. z(n,p) = 1 for odd primes p that are divisible by n - 2 and 2 for odd primes p that are divisible by n + 2. z(n,2) = 1.
For all odd primes p, z(n,p) = 2 if and only if pi(n,p) is even, z(n,p) = 1 if and only if pi(n,p) is odd. For all odd primes p, if E(n,p) is even then z(n,p) = 2 (the converse is not necessarily true). [Comment revised by Jianing Song, Jul 06 2019]
z(n,p^e) = z(n,p) for all odd primes p. z(n,4) = 1 if n == 2, 3 (mod 4) and 2 if n == 0, 1 (mod 4). z(n,2^e) = 1 for even n and 2 for odd n, e >= 3.
By induction it is easy to show that T(n,k) = T(n,m+1)*T(n,k-m) - T(n,m)*T(k-m-1). Let k = 2m we have T(n,2m) = T(n,m)*(T(n,m+1)-T(m-1)); let k = 2m+1 we have T(n,2m+1) = T(n,m+1)^2 - T(n,m)^2 = (T(n,m+1)+T(n,m))*(T(n,m+1)-T(n,m)). So T(n,k) is composite if n >= 3, k >= 3. - Jianing Song, Jul 06 2019

Examples

			The array starts in row n = 2 with columns k >= 0 as follows:
  0      1      2      3      4      5      6
  0      1      3      8     21     55    144
  0      1      4     15     56    209    780
  0      1      5     24    115    551   2640
  0      1      6     35    204   1189   6930
  0      1      7     48    329   2255  15456
  0      1      8     63    496   3905  30744
  0      1      9     80    711   6319  56160
  0      1     10     99    980   9701  96030
  0      1     11    120   1309  14279 155760
		

Crossrefs

Cf. A172236.
Sequences with g.f. 1/(1-k*x+x^2): A001477 (k=2), A001906 (k=3), A001353 (k=4), A004254 (k=5), A001109 (k=6), A004187 (k=7), A001090 (k=8), A018913 (k=9), A004189 (k=10).
Cf. A005563 (4th column), A242135 (5th column), A057722 (6th column).

Programs

  • Mathematica
    Table[If[# == 2, k, Simplify[(((# + Sqrt[#^2 - 4])/2)^k - ((# - Sqrt[#^2 - 4])/2)^k)/Sqrt[#^2 - 4]]] &[n - k + 2], {n, 0, 10}, {k, n, 0, -1}] // Flatten (* Michael De Vlieger, Jul 19 2018 *)
  • PARI
    T(n, k) = if (k==0, 0, if (k==1, 1, n*T(n,k-1) - T(n,k-2)));
    tabl(nn) = for(n=2, nn, for (k=0, nn, print1(T(n,k), ", ")); print); \\ Michel Marcus, Jul 03 2018
    
  • PARI
    T(n, k) = ([n, -1; 1, 0]^k)[2, 1] \\ Jianing Song, Nov 10 2018

Formula

T(2,k) = k; T(n,k) = (((n+sqrt(n^2 - 4))/2)^k - ((n - sqrt(n^2 - 4))/2)^k)/sqrt(n^2 - 4), n >= 3, k >= 0.
T(n^2+2,k) = A172236(n,2k); T(n^4+4n^2+2,k) = A172236(n,4k)/A172236(n,4).
For n >= 2, Sum_{i=1..k} 1/T(n,2^i) = 2/n - ((u^(2^k-1) + v^(2^k-1))/(u + v)) * (1/T(n,2^k)), where u = (n + sqrt(n^2 - 4))/2, v = (n - sqrt(n^2 - 4))/2 are the two roots of the polynomial x^2 - n*x + 1. As a result, Sum_{i=>1} 1/T(n,2^i) = (n - sqrt(n^2 - 4))/2. - Jianing Song, Apr 21 2019
Previous Showing 21-30 of 72 results. Next