A004190
Expansion of 1/(1 - 11*x + x^2).
Original entry on oeis.org
1, 11, 120, 1309, 14279, 155760, 1699081, 18534131, 202176360, 2205405829, 24057287759, 262424759520, 2862615066961, 31226340977051, 340627135680600, 3715672151509549, 40531766530924439, 442133759688659280, 4822939590044327641, 52610201730798944771, 573889279448744064840
Offset: 0
G.f. = 1 + 11*x + 120*x^2 + 1309*x^3 + 14279*x^4 + 155760*x^5 + ...
- Vincenzo Librandi, Table of n, a(n) for n = 0..900
- K. Andersen, L. Carbone, and D. Penta, Kac-Moody Fibonacci sequences, hyperbolic golden ratios, and real quadratic fields, Journal of Number Theory and Combinatorics, Vol 2, No. 3 pp 245-278, 2011. See Section 9.
- Hacène Belbachir, Soumeya Merwa Tebtoub, and László Németh, Ellipse Chains and Associated Sequences, J. Int. Seq., Vol. 23 (2020), Article 20.8.5.
- D. Birmajer, J. B. Gil, and M. D. Weiner, On the Enumeration of Restricted Words over a Finite Alphabet, J. Int. Seq. 19 (2016) # 16.1.3, example 12
- Sergio Falcon, Generalized Fibonacci Sequences Generated from a k-Fibonacci Sequence, Journal of Mathematics Research Vol. 4, No. 2; April 2012. - From _N. J. A. Sloane_, Sep 22 2012
- R. Flórez, R. A. Higuita, and A. Mukherjee, Alternating Sums in the Hosoya Polynomial Triangle, Article 14.9.5 Journal of Integer Sequences, Vol. 17 (2014).
- A. F. Horadam, Special properties of the sequence W_n(a,b; p,q), Fib. Quart., 5.5 (1967), 424-434. Case a=0,b=1; p=11, q=-1.
- Milan Janjic, On Linear Recurrence Equations Arising from Compositions of Positive Integers, Journal of Integer Sequences, Vol. 18 (2015), Article 15.4.7.
- Tanya Khovanova, Recursive Sequences
- Wolfdieter Lang, On polynomials related to powers of the generating function of Catalan's numbers, Fib. Quart. 38 (2000) 408-419. Eq.(44), lhs, m=13.
- Index entries for sequences related to Chebyshev polynomials..
- Index entries for linear recurrences with constant coefficients, signature (11,-1).
Cf.
A000027,
A001090,
A001109,
A001353,
A001906,
A004187,
A004189,
A004254,
A006190,
A010892,
A018913,
A049310,
A049347,
A056594,
A057076,
A075835,
A101950.
-
with(combinat):seq(fibonacci(2*n+2, 3)/3, n=0..20); # Zerinvary Lajos, Apr 20 2008
-
Join[{a=1,b=11},Table[c=11*b-a; a=b; b=c, {n,60}]] (* Vladimir Joseph Stephan Orlovsky, Jan 20 2011 *)
CoefficientList[Series[1/(1-11*x+x^2),{x,0,30}],x] (* Vincenzo Librandi, Jun 13 2012 *)
Table[Fibonacci[2n + 2, 3]/3, {n, 0, 20}] (* Vladimir Reshetnikov, Sep 16 2016 *)
a[ n_] := ChebyshevU[n, 11/2]; (* Michael Somos, Jul 14 2018 *)
-
Vec(1/(1-11*x+x^2)+O(x^99)) \\ Charles R Greathouse IV, Sep 23 2012
-
{a(n) = polchebyshev(n, 2, 11/2)}; /* Michael Somos, Jul 14 2018 */
-
[lucas_number1(n,11,1) for n in range(1, 20)] # Zerinvary Lajos, Jun 25 2008
A232316
T(n,k)=Number of (n+1)X(k+1) 0..1 arrays with every element equal to some horizontal or antidiagonal neighbor, with top left element zero.
Original entry on oeis.org
2, 5, 5, 16, 24, 13, 52, 139, 115, 34, 169, 853, 1202, 551, 89, 549, 5241, 14042, 10409, 2640, 233, 1784, 32089, 164014, 231454, 90157, 12649, 610, 5797, 196698, 1905436, 5142441, 3815483, 780922, 60605, 1597, 18837, 1205422, 22161823, 113293694
Offset: 1
Some.solutions.for.n=3.k=4
..0..0..0..1..1....0..0..1..1..0....0..0..0..1..1....0..0..1..1..0
..0..0..1..1..1....0..1..1..0..0....0..0..0..1..1....0..1..1..0..1
..1..1..0..0..0....1..0..0..1..1....0..0..1..1..1....0..0..0..1..0
..1..1..1..1..1....1..1..1..0..0....0..0..0..0..0....1..1..1..0..0
A030240
Scaled Chebyshev U-polynomials evaluated at sqrt(7)/2.
Original entry on oeis.org
1, 7, 42, 245, 1421, 8232, 47677, 276115, 1599066, 9260657, 53631137, 310593360, 1798735561, 10416995407, 60327818922, 349375764605, 2023335619781, 11717718986232, 67860683565157, 393000752052475, 2275980479411226, 13180858091511257, 76334143284700217
Offset: 0
- Colin Barker, Table of n, a(n) for n = 0..1000
- A. F. Horadam, Special properties of the sequence W_n(a,b; p,q), Fib. Quart., 5.5 (1967), 424-434. Case n->n+1, a=0,b=1; p=7, q=-7.
- W. Lang, On polynomials related to powers of the generating function of Catalan's numbers, Fib. Quart. 38 (2000) 408-419. Eqs. (38) and (45), lhs, m=7.
- Index entries for sequences related to Chebyshev polynomials.
- Index entries for linear recurrences with constant coefficients, signature (7,-7).
-
Join[{a=1,b=7},Table[c=7*b-7*a;a=b;b=c,{n,60}]] (* Vladimir Joseph Stephan Orlovsky, Jan 18 2011 *)
-
Vec(1/(1-7*x+7*x^2) + O(x^30)) \\ Colin Barker, Jun 14 2015
-
[lucas_number1(n,7,7) for n in range(1, 21)] # Zerinvary Lajos, Apr 23 2009
A089817
a(n) = 5*a(n-1) - a(n-2) + 1 with a(0)=1, a(1)=6.
Original entry on oeis.org
1, 6, 30, 145, 696, 3336, 15985, 76590, 366966, 1758241, 8424240, 40362960, 193390561, 926589846, 4439558670, 21271203505, 101916458856, 488311090776, 2339638995025, 11209883884350, 53709780426726, 257339018249281
Offset: 0
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- R. C. Alperin, A nonlinear recurrence and its relations to Chebyshev polynomials, Fib. Q., Vol. 58, No. 2 (2020), 140-142.
- Ioana-Claudia Lazăr, Lucas sequences in t-uniform simplicial complexes, arXiv:1904.06555 [math.GR], 2019.
- F. M. van Lamoen, Square wreaths around hexagons, Forum Geometricorum, 6 (2006) 311-325.
- Index entries for sequences related to Chebyshev polynomials.
- Index entries for linear recurrences with constant coefficients, signature (6,-6,1).
See.
A212336 for more sequences with g.f. of the type 1/(1-k*x+k*x^2-x^3).
-
[Round((2/3 - Sqrt(21)/7)*(5/2 - Sqrt(21)/2)^n + (2/3 + Sqrt(21)/7)*(5/2 + Sqrt(21)/2)^n - 1/3): n in [0..30]]; // G. C. Greubel, Nov 20 2017
-
Join[{a=1,b=6},Table[c=5*b-a+1;a=b;b=c,{n,60}]] (* Vladimir Joseph Stephan Orlovsky, Feb 06 2011*)
CoefficientList[Series[1/(1 - 6*x + 6*x^2 - x^3), {x, 0, 50}], x] (* G. C. Greubel, Nov 20 2017 *)
-
a(n)=([0,1,0; 0,0,1; 1,-6,6]^n*[1;6;30])[1,1] \\ Charles R Greathouse IV, Nov 29 2016
-
x='x+O('x^50); Vec(1/(1-6*x+6*x^2-x^3)) \\ G. C. Greubel, Nov 20 2017
A006238
Complexity of (or spanning trees in) a 3 X n grid.
Original entry on oeis.org
1, 15, 192, 2415, 30305, 380160, 4768673, 59817135, 750331584, 9411975375, 118061508289, 1480934568960, 18576479568193, 233018797965135, 2922930580320960, 36664523428884015, 459910778352898337, 5769007865476035840, 72365017995700730081, 907729015392142395375
Offset: 1
- F. Faase, On the number of specific spanning subgraphs of the graphs G X P_n, Ars Combin. 49 (1998), 129-154.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- T. D. Noe, Table of n, a(n) for n = 1..200
- Peter Bala, Linear divisibility sequences and Chebyshev polynomials
- F. Faase, On the number of specific spanning subgraphs of the graphs G X P_n, Preliminary version of paper that appeared in Ars Combin. 49 (1998), 129-154.
- F. Faase, Counting Hamiltonian cycles in product graphs
- F. Faase, Results from the counting program
- Germain Kreweras, Complexité et circuits Eulériens dans les sommes tensorielles de graphes, J. Combin. Theory, B 24 (1978), 202-212.
- P. Raff, Spanning Trees in Grid Graphs, arXiv:0809.2551 [math.CO], 2008.
- P. Raff, Analysis of the Number of Spanning Trees of P_3 x P_n. Contains sequence, recurrence, generating function, and more.
- Hugh Williams, R. K. Guy, Some fourth-order linear divisibility sequences, Intl. J. Number Theory vol. 7 (5) (2011) 1255-1277
- Index to divisibility sequences
- Index entries for sequences related to trees
- Index entries for linear recurrences with constant coefficients, signature (15,-32,15,-1).
-
a:= n-> (<<0|1|0|0>, <0|0|1|0>, <0|0|0|1>, <-1|15|-32|15>>^n. <<1, 0, 1, 15>>)[2, 1]: seq(a(n), n=1..30); # Alois P. Heinz, Apr 14 2011
-
LinearRecurrence[{15,-32,15,-1},{1,15,192,2415},30] (* Harvey P. Dale, May 14 2013 *)
A054493
A Pellian-related recursive sequence.
Original entry on oeis.org
1, 7, 36, 175, 841, 4032, 19321, 92575, 443556, 2125207, 10182481, 48787200, 233753521, 1119980407, 5366148516, 25710762175, 123187662361, 590227549632, 2827950085801, 13549522879375, 64919664311076, 311048798676007, 1490324329068961, 7140572846668800
Offset: 0
G.f. = 1 + 7*x + 36*x^2 + 175*x^3 + 841*x^4 + 4032*x^5 + 19321*x^6 + ...
- A. H. Beiler, Recreations in the Theory of Numbers, Dover, N.Y., 1964, pp. 122-125, 194-196.
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Marco Abrate, Stefano Barbero, Umberto Cerruti, and Nadir Murru, Polynomial sequences on quadratic curves, Integers, Vol. 15, 2015, #A38.
- I. Adler, Three Diophantine equations - Part II, Fib. Quart., 7 (1969), 181-193.
- Peter Bala, Linear divisibility sequences and Chebyshev polynomials
- S. Barbero, U. Cerruti, and N. Murru, On polynomial solutions of the Diophantine equation (x + y - 1)^2 = wxy, Rendiconti Sem. Mat. Univ. Pol. Torino (2020) Vol. 78, No. 1, 5-12.
- E. I. Emerson, Recurrent Sequences in the Equation DQ^2=R^2+N, Fib. Quart., 7 (1969), pp. 231-242.
- Ioana-Claudia Lazăr, Lucas sequences in t-uniform simplicial complexes, arXiv:1904.06555 [math.GR], 2019.
- R. Stephan, Boring proof of a nonlinearity
- H. C. Williams and R. K. Guy, Some fourth-order linear divisibility sequences, Intl. J. Number Theory 7 (5) (2011) 1255-1277.
- H. C. Williams and R. K. Guy, Some Monoapparitic Fourth Order Linear Divisibility Sequences Integers, Volume 12A (2012) The John Selfridge Memorial Volume
- Index entries for sequences related to Chebyshev polynomials.
- Index entries for linear recurrences with constant coefficients, signature (6,-6,1)
-
A054493 := proc(n)
option remember;
if n <= 1 then
6*n+1 ;
else
5*procname(n-1)-procname(n-2)+2 ;
end if ;
end proc:
seq(A054493(n),n=0..10) ; # R. J. Mathar, Apr 16 2018
-
LinearRecurrence[{6,-6,1},{1,7,36},30] (* Harvey P. Dale, Apr 15 2015 *)
a[ n_] := ChebyshevU[n, Sqrt[7]/2]^2; (* Michael Somos, Jan 22 2017 *)
-
{a(n) = simplify(polchebyshev(n, 2, quadgen(28)/2)^2)}; /* Michael Somos, Jan 22 2017 */
A078362
A Chebyshev S-sequence with Diophantine property.
Original entry on oeis.org
1, 13, 168, 2171, 28055, 362544, 4685017, 60542677, 782369784, 10110264515, 130651068911, 1688353631328, 21817946138353, 281944946167261, 3643466354036040, 47083117656301259, 608437063177880327
Offset: 0
- Vincenzo Librandi, Table of n, a(n) for n = 0..900
- A. F. Horadam, Special properties of the sequence W_n(a,b; p,q), Fib. Quart., 5.5 (1967), 424-434. Case a=0,b=1; p=13, q=-1.
- M. Janjic, On Linear Recurrence Equations Arising from Compositions of Positive Integers, Journal of Integer Sequences, Vol. 18 (2015), Article 15.4.7.
- Tanya Khovanova, Recursive Sequences
- W. Lang, On polynomials related to powers of the generating function of Catalan's numbers, Fib. Quart. 38 (2000) 408-419. Eq.(44), lhs, m=15.
- Index entries for sequences related to Chebyshev polynomials.
- Index entries for linear recurrences with constant coefficients, signature (13,-1).
-
a:=[1,13,168];; for n in [4..20] do a[n]:=13*a[n-1]-a[n-2]; od; a; # G. C. Greubel, May 25 2019
-
I:=[1, 13, 168]; [n le 3 select I[n] else 13*Self(n-1)-Self(n-2): n in [1..20]]; // Vincenzo Librandi, Dec 24 2012
-
CoefficientList[Series[1/(1 - 13 x + x^2), {x, 0, 20}], x] (* Vincenzo Librandi, Dec 24 2012 *)
LinearRecurrence[{13,-1},{1,13},20] (* Harvey P. Dale, Feb 07 2019 *)
-
my(x='x+O('x^20)); Vec(1/(1-13*x+x^2)) \\ G. C. Greubel, May 25 2019
-
[lucas_number1(n,13,1) for n in range(1,20)] # Zerinvary Lajos, Jun 25 2008
A123967
Triangle read by rows: T(0,0)=1; for n >= 1 T(n,k) is the coefficient of x^k in the monic characteristic polynomial of the tridiagonal n X n matrix with main diagonal 5,5,5,... and sub- and superdiagonals 1,1,1,... (0 <= k <= n).
Original entry on oeis.org
1, -5, 1, 24, -10, 1, -115, 73, -15, 1, 551, -470, 147, -20, 1, -2640, 2828, -1190, 246, -25, 1, 12649, -16310, 8631, -2400, 370, -30, 1, -60605, 91371, -58275, 20385, -4225, 519, -35, 1, 290376, -501150, 374115, -157800, 41140, -6790, 693, -40, 1, -1391275, 2704755, -2313450, 1142730, -359275, 74571, -10220, 892, -45, 1
Offset: 0
Triangle starts:
1;
-5, 1;
24, -10, 1;
-115, 73, -15, 1;
551, -470, 147, -20, 1;
-2640, 2828, -1190, 246, -25, 1;
12649, -16310, 8631, -2400, 370, -30, 1;
...
Triangle (0, -5, 1/5, -1/5, 0, 0, 0, ...) DELTA (1, 0, 0, 0, ...) begins:
1;
0, 1;
0, -5, 1;
0, 24, -10, 1:
0, -115, 73, -15, 1;
0, 551, -470, 147, -20, 1;
0, -2640, 2828, -1190, 246, -25, 1;
...
Cf. Chebyshev's S(n,x+k) polynomials :
A207824 (k = 5),
A207823 (k = 4),
A125662 (k = 3),
A078812 (k=2),
A101950 (k = 1),
A049310 (k = 0),
A104562 (k = -1),
A053122 (k = -2),
A207815 (k = -3),
A159764 (k = -4),
A123967 (k = -5).
-
with(linalg): m:=proc(i,j) if i=j then 5 elif abs(i-j)=1 then 1 else 0 fi end: T:=(n,k)->coeff(charpoly(matrix(n,n,m),x),x,k): 1; for n from 1 to 9 do seq(T(n,k),k=0..n) od; # yields sequence in triangular form
-
T[n_, k_] /; 0 <= k <= n := T[n, k] = T[n-1, k-1] - 5 T[n-1, k] - T[n-2, k]; T[0, 0] = 1; T[, ] = 0;
Table[T[n, k], {n, 0, 9}, {k, 0, n}] // Flatten (* Jean-François Alcover, Jul 30 2018, after Philippe Deléham *)
-
@CachedFunction
def A123967(n,k):
if n< 0: return 0
if n==0: return 1 if k == 0 else 0
return A123967(n-1,k-1)-A123967(n-2,k)-5*A123967(n-1,k)
for n in (0..9): [A123967(n,k) for k in (0..n)] # Peter Luschny, Nov 20 2012
A207823
Triangle of coefficients of Chebyshev's S(n,x+4) polynomials (exponents of x in increasing order).
Original entry on oeis.org
1, 4, 1, 15, 8, 1, 56, 46, 12, 1, 209, 232, 93, 16, 1, 780, 1091, 592, 156, 20, 1, 2911, 4912, 3366, 1200, 235, 24, 1, 10864, 21468, 17784, 8010, 2120, 330, 28, 1, 40545, 91824, 89238, 48624, 16255, 3416, 441, 32, 1, 151316, 386373, 430992, 275724, 111524, 29589, 5152, 568, 36, 1
Offset: 0
Triangle begins:
1
4, 1
15, 8, 1
56, 46, 12, 1
209, 232, 93, 16, 1
780, 1091, 592, 156, 20, 1
2911, 4912, 3366, 1200, 235, 24, 1
10864, 21468, 17784, 8010, 2120, 330, 28, 1
40545, 91824, 89238, 48624, 16255, 3416, 441, 32, 1
151316, 386373, 430992, 275724, 111524, 29589, 5152, 568, 36, 1
...
Triangle (0, 4, -1/4, 1/4, 0, 0, ...) DELTA (1, 0, 0, 0, ...) begins:
1
0, 1
0, 4, 1
0, 15, 8, 1
0, 56, 46, 12, 1
0, 209, 232, 93, 16, 1
...
Cf. Triangle of coefficients of Chebyshev's S(n,x+k) polynomials:
A207824 (k = 5),
A207823 (k = 4),
A125662 (k = 3),
A078812 (k = 2),
A101950 (k = 1),
A049310 (k = 0),
A104562 (k = -1),
A053122 (k = -2),
A207815 (k = -3),
A159764 (k = -4),
A123967 (k = -5).
-
With[{n = 9}, DeleteCases[#, 0] & /@ CoefficientList[Series[1/(1 - 4 x + x^2 - y x), {x, 0, n}, {y, 0, n}], {x, y}]] // Flatten (* Michael De Vlieger, Apr 25 2018 *)
A316269
Array T(n,k) = n*T(n,k-1) - T(n,k-2) read by upward antidiagonals, with T(n,0) = 0, T(n,1) = 1, n >= 2.
Original entry on oeis.org
0, 0, 1, 0, 1, 2, 0, 1, 3, 3, 0, 1, 4, 8, 4, 0, 1, 5, 15, 21, 5, 0, 1, 6, 24, 56, 55, 6, 0, 1, 7, 35, 115, 209, 144, 7, 0, 1, 8, 48, 204, 551, 780, 377, 8, 0, 1, 9, 63, 329, 1189, 2640, 2911, 987, 9, 0, 1, 10, 80, 496, 2255, 6930, 12649, 10864, 2584, 10
Offset: 2
The array starts in row n = 2 with columns k >= 0 as follows:
0 1 2 3 4 5 6
0 1 3 8 21 55 144
0 1 4 15 56 209 780
0 1 5 24 115 551 2640
0 1 6 35 204 1189 6930
0 1 7 48 329 2255 15456
0 1 8 63 496 3905 30744
0 1 9 80 711 6319 56160
0 1 10 99 980 9701 96030
0 1 11 120 1309 14279 155760
-
Table[If[# == 2, k, Simplify[(((# + Sqrt[#^2 - 4])/2)^k - ((# - Sqrt[#^2 - 4])/2)^k)/Sqrt[#^2 - 4]]] &[n - k + 2], {n, 0, 10}, {k, n, 0, -1}] // Flatten (* Michael De Vlieger, Jul 19 2018 *)
-
T(n, k) = if (k==0, 0, if (k==1, 1, n*T(n,k-1) - T(n,k-2)));
tabl(nn) = for(n=2, nn, for (k=0, nn, print1(T(n,k), ", ")); print); \\ Michel Marcus, Jul 03 2018
-
T(n, k) = ([n, -1; 1, 0]^k)[2, 1] \\ Jianing Song, Nov 10 2018
Comments