A000574
Coefficient of x^5 in expansion of (1 + x + x^2)^n.
Original entry on oeis.org
3, 16, 51, 126, 266, 504, 882, 1452, 2277, 3432, 5005, 7098, 9828, 13328, 17748, 23256, 30039, 38304, 48279, 60214, 74382, 91080, 110630, 133380, 159705, 190008, 224721, 264306, 309256, 360096, 417384, 481712, 553707, 634032, 723387, 822510
Offset: 3
- L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 78.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- Vincenzo Librandi, Table of n, a(n) for n = 3..1000
- L. Carlitz et al., Permutations and sequences with repetitions by number of increases, J. Combin. Theory, 1 (1966), 350-374.
- Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.
- Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992
- Eric Weisstein's World of Mathematics, Trinomial Coefficient
- Index entries for linear recurrences with constant coefficients, signature (6,-15,20,-15,6,-1).
Column m=5 of (1, 3) Pascal triangle
A095660.
-
[3*Binomial(n+2,5)-2*Binomial(n+1,5): n in [3..50]]; // Vincenzo Librandi, Jun 10 2012
-
A000574:=-(-3+2*z)/(z-1)**6; # conjectured by Simon Plouffe in his 1992 dissertation
seq(3*binomial(n+2,5)-2*binomial(n+1,5),n=3..100); # Robert Israel, Aug 04 2015
A000574 := n -> GegenbauerC(`if`(5A000574(n)), n=3..20); # Peter Luschny, May 10 2016
-
CoefficientList[Series[(3-2*x)/(1-x)^6,{x,0,40}],x] (* Vincenzo Librandi, Jun 10 2012 *)
-
x='x+O('x^50); Vec(x^3*(3-2*x)/(1-x)^6) \\ G. C. Greubel, Nov 22 2017
A005582
a(n) = n*(n+1)*(n+2)*(n+7)/24.
Original entry on oeis.org
0, 2, 9, 25, 55, 105, 182, 294, 450, 660, 935, 1287, 1729, 2275, 2940, 3740, 4692, 5814, 7125, 8645, 10395, 12397, 14674, 17250, 20150, 23400, 27027, 31059, 35525, 40455, 45880, 51832, 58344, 65450, 73185, 81585, 90687, 100529, 111150, 122590, 134890
Offset: 0
- M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), Table 22.7, p. 797.
- Vladimir S. Shevelyov (Shevelev), Extension of the Moser class of four-line Latin rectangles, DAN Ukrainy, 3(1992),15-19. [From Vladimir Shevelev, Apr 12 2010]
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- A. M. Yaglom and I. M. Yaglom: Challenging Mathematical Problems with Elementary Solutions. Vol. I. Combinatorial Analysis and Probability Theory. New York: Dover Publications, Inc., 1987, p. 13, #51 (the case k=4) (First published: San Francisco: Holden-Day, Inc., 1964)
- Vincenzo Librandi, Table of n, a(n) for n = 0..10000
- M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972 [alternative scanned copy].
- Richard K. Guy, Letter to N. J. A. Sloane, Feb 1988
- F. T. Howard and Curtis Cooper, Some identities for r-Fibonacci numbers, Fibonacci Quart. 49 (2011), no. 3, 231-243.
- Milan Janjic, Two Enumerative Functions
- P. A. MacMahon, Properties of prime numbers deduced from the calculus of symmetric functions, Proc. London Math. Soc., 23 (1923), 290-316. = Coll. Papers, II, pp. 354-380. [See p. 301]
- Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.
- Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992
- C. Rossiter, Depictions, Explorations and Formulas of the Euler/Pascal Cube.
- Index entries for sequences related to Chebyshev polynomials.
- Index entries for linear recurrences with constant coefficients, signature (5,-10,10,-5,1).
-
[seq(binomial(n,4)+2*binomial(n,3), n=2..43)]; # Zerinvary Lajos, Jul 26 2006
seq((n+4)*binomial(n,4)/n, n=3..43); # Zerinvary Lajos, Feb 28 2007
A005582:=(-2+z)/(z-1)**5; # conjectured by Simon Plouffe in his 1992 dissertation
-
Table[n(n+1)(n+2)(n+7)/24,{n,0,40}] (* Harvey P. Dale, Jun 01 2012 *)
-
concat(0, Vec(x*(2-x)/(1-x)^5 + O(x^100))) \\ Altug Alkan, Dec 10 2015
More terms from Larry Reeves (larryr(AT)acm.org), Jun 01 2000
A005716
Coefficient of x^8 in expansion of (1+x+x^2)^n.
Original entry on oeis.org
1, 15, 90, 357, 1107, 2907, 6765, 14355, 28314, 52624, 93093, 157950, 258570, 410346, 633726, 955434, 1409895, 2040885, 2903428, 4065963, 5612805, 7646925, 10293075, 13701285, 18050760, 23554206, 30462615, 39070540, 49721892, 62816292, 78816012, 98253540
Offset: 4
- L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 78.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- Vincenzo Librandi, Table of n, a(n) for n = 4..1000
- R. K. Guy, Letter to N. J. A. Sloane, 1987
- Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.
- Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992
- Eric Weisstein's World of Mathematics, Trinomial Coefficient
- Index entries for linear recurrences with constant coefficients, signature (9,-36,84,-126,126,-84,36,-9,1).
-
I:=[1, 15, 90, 357, 1107, 2907, 6765, 14355, 28314]; [n le 9 select I[n] else 9*Self(n-1)-36*Self(n-2)+84*Self(n-3)-126*Self(n-4)+126*Self(n-5)-84*Self(n-6)+36*Self(n-7)-9*Self(n-8)+Self(n-9): n in [1..40]]; // Vincenzo Librandi, Jun 16 2012
-
/* By definition: */ P:=PolynomialRing(Integers()); [ Coefficients((1+x+x^2)^n)[9]: n in [4..32] ]; // Bruno Berselli, Jun 17 2012
-
A005716:=-(6*z-9*z**2+3*z**3+1)/(z-1)**9; # Conjectured by Simon Plouffe in his 1992 dissertation.
A005716 := n -> GegenbauerC(`if`(8A005716(n)), n=4..20); # Peter Luschny, May 10 2016
-
CoefficientList[Series[(1+6*x-9*x^2+3*x^3)/(1-x)^9,{x,0,40}],x] (* Vincenzo Librandi, Jun 16 2012 *)
A101986
Maximum sum of products of successive pairs in a permutation of order n+1.
Original entry on oeis.org
0, 2, 9, 23, 46, 80, 127, 189, 268, 366, 485, 627, 794, 988, 1211, 1465, 1752, 2074, 2433, 2831, 3270, 3752, 4279, 4853, 5476, 6150, 6877, 7659, 8498, 9396, 10355, 11377, 12464, 13618, 14841, 16135, 17502, 18944, 20463, 22061, 23740, 25502
Offset: 0
Eugene McDonnell (eemcd(AT)mac.com), Jan 29 2005
The permutations of order 5 with maximum sum of products is 1 3 5 4 2 and its reverse, since (1*3)+(3*5)+(5*4)+(4*2) is 46. All others are empirically less than 46. So a(4) = 46.
-
a101986 n = sum $ zipWith (*) [1,3..] (reverse [2..n+1])
-- Reinhard Zumkeller, Mar 30 2012
-
0 1 9 2 & p. % 6 & p. (A) NB. the polynomial P such that P(n) is a(n).
NB. where 0 1 9 2 are the coefficients in ascending order of the numerator of a rational polynomial and 6 is the (constant) coefficient of its denominator. J's primitive function p. produces a polynomial with these coefficients. Division is indicated by % . Thus the J expression (A) is equivalent to the formula above.
-
a:=n->add((n+j^2),j=1..n): seq(a(n),n=0..41); # Zerinvary Lajos, Jul 27 2006
-
Table[(n + 9 n^2 + 2 n^3)/6, {n, 0, 41}] (* Robert G. Wilson v, Feb 04 2005 *)
-
a(n)=n*(2*n^2+9*n+1)/6 \\ Charles R Greathouse IV, Jan 17 2012
A005286
a(n) = (n + 3)*(n^2 + 6*n + 2)/6.
Original entry on oeis.org
1, 6, 15, 29, 49, 76, 111, 155, 209, 274, 351, 441, 545, 664, 799, 951, 1121, 1310, 1519, 1749, 2001, 2276, 2575, 2899, 3249, 3626, 4031, 4465, 4929, 5424, 5951, 6511, 7105, 7734, 8399, 9101, 9841, 10620, 11439, 12299, 13201, 14146, 15135, 16169, 17249
Offset: 0
- L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 255, #2, b(n,3).
- R. K. Guy, personal communication.
- E. Netto, Lehrbuch der Combinatorik. 2nd ed., Teubner, Leipzig, 1927, p. 96.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- R. P. Stanley, Enumerative Combinatorics, Cambridge, Vol. 1, 1999; see Exercise 1.30, p. 49.
- T. D. Noe, Table of n, a(n) for n = 0..1000
- R. K. Guy, Letter to N. J. A. Sloane with attachment, Mar 1988
- R. H. Moritz and R. C. Williams, A coin-tossing problem and some related combinatorics, Math. Mag., 61 (1988), 24-29.
- Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.
- Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992
- Index entries for linear recurrences with constant coefficients, signature (4, -6, 4, -1).
-
Table[(n + 3) (n^2 + 6*n + 2)/6, {n, 0, 100}] (* Vladimir Joseph Stephan Orlovsky, Jul 16 2011 *)
LinearRecurrence[{4,-6,4,-1},{1,6,15,29},50] (* Harvey P. Dale, Mar 07 2012 *)
Table[Binomial[n, 3] + Binomial[n, 2] - n, {n, 3, 47}] (* or *)
CoefficientList[Series[(1 + 2 x - 3 x^2 + x^3)/(1 - x)^4, {x, 0, 44}], x] (* Michael De Vlieger, Jul 09 2016 *)
-
a(n)=n+=3; (n^3-7*n)/6 /* Michael Somos, May 12 2005 */
A005587
a(n) = n*(n+5)*(n+6)*(n+7)/24.
Original entry on oeis.org
0, 14, 42, 90, 165, 275, 429, 637, 910, 1260, 1700, 2244, 2907, 3705, 4655, 5775, 7084, 8602, 10350, 12350, 14625, 17199, 20097, 23345, 26970, 31000, 35464, 40392, 45815, 51765, 58275, 65379, 73112, 81510, 90610, 100450, 111069, 122507, 134805, 148005
Offset: 0
- M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 796.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972 [alternative scanned copy].
- Richard K. Guy, Letter to N. J. A. Sloane, Feb 1988.
- Richard K. Guy, Catwalks, sandsteps and Pascal pyramids, J. Integer Sequences, Vol. 3 (2000), Article #00.1.6.
- Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.
- Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992.
- N. A. Rosenberg, Counting coalescent histories, J. Comput. Biol. 14 (2007), 360-377.
- Index entries for linear recurrences with constant coefficients, signature (5,-10,10,-5,1).
Fifth diagonal of Catalan triangle
A033184. Fifth column of Catalan triangle
A009766.
Numerator polynomial 14 - 28x + 20x^2 - 5x^3 from fourth row of triangle
A062991.
-
[n*(n+5)*(n+6)*(n+7)/24: n in [0..40]]; // Vincenzo Librandi, Mar 20 2013
-
A005587:=z*(-14+28*z-20*z**2+5*z**3)/(z-1)**5; # Simon Plouffe in his 1992 dissertation
seq(numbperm(n,4)/24-numbperm(n,3)/6, n=7..46); # Zerinvary Lajos, May 20 2008
a:=n->(sum(numbcomp(n,4), j=9..n)):seq(a(n)/4, n=8..47); # Zerinvary Lajos, Aug 26 2008
-
Table[n (n + 5) (n + 6) (n + 7)/24, {n, 0, 60}] (* Vladimir Joseph Stephan Orlovsky, Jun 22 2011 *)
LinearRecurrence[{5,-10,10,-5,1},{0,14,42,90,165},40] (* Harvey P. Dale, Aug 17 2017 *)
-
x='x+O('x^50); concat([0], Vec((14 - 28*x + 20*x^2 - 5*x^3) / (1 - x)^5)) \\ G. C. Greubel, Jul 01 2017
M4929 (this sequence) and M4930 were the same.
A051936
Truncated triangular numbers: a(n) = n*(n+1)/2 - 9.
Original entry on oeis.org
1, 6, 12, 19, 27, 36, 46, 57, 69, 82, 96, 111, 127, 144, 162, 181, 201, 222, 244, 267, 291, 316, 342, 369, 397, 426, 456, 487, 519, 552, 586, 621, 657, 694, 732, 771, 811, 852, 894, 937, 981, 1026, 1072, 1119, 1167, 1216, 1266, 1317, 1369, 1422, 1476
Offset: 4
Klaus Strassburger (strass(AT)ddfi.uni-duesseldorf.de), Dec 21 1999
Illustration of the initial terms:
.
. . .
. . . o o o
. . o o o o o o o
. o . . o o . . o o o .
. . . . . . o . . . . o o . .
----------------------------------------------------------------------
1 6 12
----------------------------------------------------------------------
- _Bruno Berselli_, Oct 13 2016
- Reinhard Zumkeller, Table of n, a(n) for n = 4..10000
- Margaret Bayer, Mark Denker, Marija Jelić Milutinović, Rowan Rowlands, Sheila Sundaram, and Lei Xue, Topology of Cut Complexes of Graphs, arXiv:2304.13675 [math.CO], 2023.
- Pratiksha Chauhan, Samir Shukla, and Kumar Vinayak, 3-Cut Complexes of Squared Cycle Graphs, arXiv:2406.01979 [math.CO], 2024. See p. 2.
- Cecilia Rossiter, Depictions, Explorations and Formulas of the Euler/Pascal Cube. [Wayback Machine copy]
- Cecilia Rossiter, Depictions, Explorations and Formulas of the Euler/Pascal Cube [Cached copy, May 15 2013]
- Index entries for linear recurrences with constant coefficients, signature (3,-3,1).
-
a051936 = (subtract 9) . a000217
a051936_list = scanl (+) 1 [5..]
-- Reinhard Zumkeller, Oct 25 2012
-
Table[n*(n + 1)/2 - 9, {n, 4, 60}] (* Stefan Steinerberger, Mar 25 2006 *)
k = 4; NestList[(k++; # + k) &, 1, 45] (* Robert G. Wilson v, Feb 02 2011 *)
Drop[Accumulate[Range[60]]-9,3] (* Harvey P. Dale, Jan 16 2012 *)
-
a(n)=n*(n+1)/2-9 \\ Charles R Greathouse IV, Oct 07 2015
A342981
Triangle read by rows: T(n,k) is the number of rooted planar maps with n edges, k faces and no isthmuses, n >= 0, k = 1..n+1.
Original entry on oeis.org
1, 0, 1, 0, 1, 2, 0, 1, 7, 5, 0, 1, 16, 37, 14, 0, 1, 30, 150, 176, 42, 0, 1, 50, 449, 1104, 794, 132, 0, 1, 77, 1113, 4795, 7077, 3473, 429, 0, 1, 112, 2422, 16456, 41850, 41504, 14893, 1430, 0, 1, 156, 4788, 47832, 189183, 319320, 228810, 63004, 4862
Offset: 0
Triangle begins:
1;
0, 1;
0, 1, 2;
0, 1, 7, 5;
0, 1, 16, 37, 14;
0, 1, 30, 150, 176, 42;
0, 1, 50, 449, 1104, 794, 132;
0, 1, 77, 1113, 4795, 7077, 3473, 429;
0, 1, 112, 2422, 16456, 41850, 41504, 14893, 1430;
...
-
G[m_, y_] := Sum[x^n*Sum[(n + k - 1)!*(2*n - k)!*y^k/(k!*(n + 1 - k)!*(2*k - 1)!*(2*n - 2*k + 1)!), {k, 1, n}], {n, 1, m}] + O[x]^m;
H[n_] := With[{g = 1 + x*y + x*G[n - 1, y]}, Sqrt[InverseSeries[x/g^2 + O[x]^(n + 1), x]/x]];
CoefficientList[#, y]& /@ CoefficientList[H[10], x] // Flatten (* Jean-François Alcover, Apr 15 2021, after Andrew Howroyd *)
-
\\ here G(n, y) gives A082680 as g.f.
G(n,y)={sum(n=1, n, x^n*sum(k=1, n, (n+k-1)!*(2*n-k)!*y^k/(k!*(n+1-k)!*(2*k-1)!*(2*n-2*k+1)!))) + O(x*x^n)}
H(n)={my(g=1+x*y+x*G(n-1, y), v=Vec(sqrt(serreverse(x/g^2)/x))); vector(#v, n, Vecrev(v[n], n))}
{ my(T=H(8)); for(n=1, #T, print(T[n])) }
A005583
Coefficients of Chebyshev polynomials.
Original entry on oeis.org
2, 11, 36, 91, 196, 378, 672, 1122, 1782, 2717, 4004, 5733, 8008, 10948, 14688, 19380, 25194, 32319, 40964, 51359, 63756, 78430, 95680, 115830, 139230, 166257, 197316, 232841, 273296, 319176, 371008, 429352, 494802, 567987, 649572, 740259, 840788
Offset: 1
- M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), Table 22.7, p. 797.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- Vincenzo Librandi, Table of n, a(n) for n = 1..172
- Milan Janjic, Two Enumerative Functions.
- M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972. [alternative scanned copy].
- Richard K. Guy, Letter to N. J. A. Sloane, Feb 1988.
- Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.
- Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992.
- Cecilia Rossiter, Depictions, Explorations and Formulas of the Euler/Pascal Cube. [broken link]
- Cecilia Rossiter, Depictions, Explorations and Formulas of the Euler/Pascal Cube. [Cached copy, May 15 2013]
- Index entries for sequences related to Chebyshev polynomials.
-
A005583:=-(-2+z)/(z-1)**6; # Simon Plouffe in his 1992 dissertation (this g.f. assumes offset 0)
-
conv(u,v)=local(w); w=vector(length(u),i,sum(j=1,i,u[j]*v[i+1-j])); w;
t(n)=n*(n+1)/2;
u=vector(10,i,t(i));
v=vector(10,i,t(i)-1);
conv(u,v)
-
a(n) = (1/120)*n*(n+9)*(n+3)*(n+2)*(n+1); \\ Joerg Arndt, Mar 05 2018
More terms from Klaus Strassburger (strass(AT)ddfi.uni-duesseldorf.de), Dec 07 1999
A005714
Coefficient of x^6 in expansion of (1+x+x^2)^n.
Original entry on oeis.org
1, 10, 45, 141, 357, 784, 1554, 2850, 4917, 8074, 12727, 19383, 28665, 41328, 58276, 80580, 109497, 146490, 193249, 251713, 324093, 412896, 520950, 651430, 807885, 994266, 1214955, 1474795, 1779121, 2133792, 2545224, 3020424, 3567025, 4193322, 4908309, 5721717
Offset: 3
- L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 78.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- Vincenzo Librandi, Table of n, a(n) for n = 3..1000
- R. K. Guy, Letter to N. J. A. Sloane, 1987
- Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.
- Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992
- Eric Weisstein's World of Mathematics, Trinomial Coefficient
- Index entries for linear recurrences with constant coefficients, signature (7,-21,35,-35,21,-7,1).
-
I:=[1, 10, 45, 141, 357, 784, 1554]; [n le 7 select I[n] else 7*Self(n-1)-21*Self(n-2)+35*Self(n-3)-35*Self(n-4)+21*Self(n-5)-7*Self(n-6)+Self(n-7): n in [1..40]]; // Vincenzo Librandi, Jun 16 2012
-
/* By definition: */ P:=PolynomialRing(Integers()); [ Coefficients((1+x+x^2)^n)[7]: n in [3..35] ]; // Bruno Berselli, Jun 17 2012
-
A005714:=-(1+3*z-4*z**2+z**3)/(z-1)**7; # Conjectured by Simon Plouffe in his 1992 dissertation.
A005714 := n -> GegenbauerC(`if`(6A005714(n)), n=3..20); # Peter Luschny, May 10 2016
-
a[n_] := Coefficient[(1 + x + x^2)^n, x, 6]; Table[a[n], {n, 3, 35}]
CoefficientList[Series[(1+3*x-4*x^2+x^3)/(1-x)^7,{x,0,40}],x] (* Vincenzo Librandi, Jun 16 2012 *)
Comments