cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-40 of 238 results. Next

A235266 Primes whose base-2 representation is also the base-3 representation of a prime.

Original entry on oeis.org

2, 7, 11, 13, 41, 47, 67, 73, 79, 109, 127, 151, 173, 181, 191, 193, 211, 223, 227, 229, 233, 251, 283, 331, 367, 421, 443, 487, 541, 557, 563, 587, 601, 607, 631, 641, 661, 677, 719, 733, 877, 941, 947, 967, 971, 1033, 1187, 1193, 1201, 1301, 1321, 1373, 1447, 1451, 1471, 1531, 1567, 1571, 1657, 1667, 1669, 1697, 1709, 1759
Offset: 1

Views

Author

M. F. Hasler, Jan 05 2014

Keywords

Crossrefs

Cf. A090707 - A091924, A235461 - A235482. See the LINK for further cross-references.

Programs

  • Maple
    f:= proc(n) local L,i;
      L:= convert(n,base,2);
      isprime(add(L[i]*3^(i-1),i=1..nops(L)))
    end proc:
    select(f, [seq(ithprime(i),i=1..1000)]); # Robert Israel, Jun 03 2019
  • Mathematica
    Select[Prime@ Range@ 250, PrimeQ@ FromDigits[IntegerDigits[#, 2], 3] &] (* Michael De Vlieger, Jun 03 2019 *)
  • PARI
    is(p,b=3,c=2)=isprime(vector(#d=digits(p,c),i,b^(#d-i))*d~)&&isprime(p) \\ This code can be used for other bases b,c when b>c. See A235265 for code valid for b
    				
  • PARI
    forprime(p=2, 1e3, if(isprime(fromdigits(binary(p), 3)), print1(p", "))) \\ Charles R Greathouse IV, Mar 28 2022
    
  • Python
    from sympy import isprime, nextprime
    def agen(): # generator of terms
        p = 2
        while True:
            p3 = sum(3**i for i, bi in enumerate(bin(p)[2:][::-1]) if bi=='1')
            if isprime(p3):
                yield p
            p = nextprime(p)
    g = agen()
    print([next(g) for n in range(1, 65)]) # Michael S. Branicky, Jan 16 2022

Formula

a(n) is the number whose base-3 representation is the base-2 representation of A235265(n).

A005823 Numbers whose ternary expansion contains no 1's.

Original entry on oeis.org

0, 2, 6, 8, 18, 20, 24, 26, 54, 56, 60, 62, 72, 74, 78, 80, 162, 164, 168, 170, 180, 182, 186, 188, 216, 218, 222, 224, 234, 236, 240, 242, 486, 488, 492, 494, 504, 506, 510, 512, 540, 542, 546, 548, 558, 560, 564, 566, 648, 650, 654, 656, 666, 668, 672, 674
Offset: 1

Views

Author

Keywords

Comments

The set of real numbers between 0 and 1 that contain no 1's in their ternary expansion is the well-known Cantor set with Hausdorff dimension log 2 / log 3.
Complement of A081606. - Reinhard Zumkeller, Mar 23 2003
Numbers k such that the k-th Apery number is congruent to 1 (mod 3) (cf. A005258). - Benoit Cloitre, Nov 30 2003
Numbers k such that the k-th central Delannoy number is congruent to 1 (mod 3) (cf. A001850). - Benoit Cloitre, Nov 30 2003
Numbers k such that there exists a permutation p_1, ..., p_k of 1, ..., k such that i + p_i is a power of 3 for every i. - Ray Chandler, Aug 03 2004
Subsequence of A125292. - Reinhard Zumkeller, Nov 26 2006
The first 2^n terms of the sequence could be obtained using the Cantor process for the segment [0,3^n-1]. E.g., for n=2 we have [0,{1},2,{3,4,5},6,{7},8]. The numbers outside of braces are the first 4 terms of the sequence. Therefore the terms of the sequence could be called "Cantor's numbers". - Vladimir Shevelev, Jun 13 2008
Mahler proved that positive a(n) is never a square. - Michel Marcus, Nov 12 2012
Define t: Z -> P(R) so that t(k) is the translated Cantor ternary set spanning [k, k+1], and let T be the union of t(a(n)) for all n. T = T * 3 = T / 3 is the closure of the Cantor ternary set under multiplication by 3. - Peter Munn, Oct 30 2019

References

  • K. J. Falconer, The Geometry of Fractal Sets, Cambridge, 1985; p. 14.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Twice A005836.
Cf. A088917 (characteristic function), A306556.

Programs

  • Maple
    a:= proc(n) option remember;
          `if`(n=1, 0, `if`(irem (n, 2, 'q')=0, 3*a(q)+2, 3*a(q+1)))
        end:
    seq(a(n), n=1..100); # Alois P. Heinz, Apr 19 2012
  • Mathematica
    Select[ Range[ 0, 729 ], (Count[ IntegerDigits[ #, 3 ], 1 ]==0)& ]
    Select[Range[0,700],DigitCount[#,3,1]==0&] (* Harvey P. Dale, Mar 12 2016 *)
  • PARI
    is(n)=while(n,if(n%3==1,return(0),n\=3));1 \\ Charles R Greathouse IV, Apr 20 2012
    
  • PARI
    a(n)=n=binary(n-1);sum(i=1,#n,2*n[i]*3^(#n-i)) \\ Charles R Greathouse IV, Apr 20 2012
    
  • PARI
    a(n)=2*fromdigits(binary(n-1),3) \\ Charles R Greathouse IV, Aug 24 2016
    
  • Python
    def A005823(n):
        return 2*int(format(n-1,'b'),3) # Chai Wah Wu, Jan 04 2015

Formula

a(n) = 2 * A005836(n).
a(2n) = 3*a(n)+2, a(2n+1) = 3*a(n+1), a(1) = 0.
a(n) = Sum_{k = 1..n} 1 + 3^A007814(k). - Philippe Deléham, Jul 09 2005
A125291(a(n)) = 1 for n>0. - Reinhard Zumkeller, Nov 26 2006
From Reinhard Zumkeller, Mar 02 2008: (Start)
A062756(a(n)) = 0.
If the offset were changed to zero, then: a(0) = 0, a(n+1) = f(a(n)+1, a(n)+1) where f(x, y) = if x < 3 and x <> 1 then y else if x mod 3 = 1 then f(y+1, y+1) else f(floor(x/3), y). (End)
G.f. g(x) satisfies g(x) = 3*g(x^2)*(1+1/x) + 2*x^2/(1-x^2). - Robert Israel, Jan 04 2015
Sum_{n>=2} 1/a(n) = 1.341426555483087715426958452292349687410838545707857407585878304836140592352... (calculated using Baillie and Schmelzer's kempnerSums.nb, see Links). - Amiram Eldar, Feb 12 2022

Extensions

More terms from Sascha Kurz, Mar 24 2002
Offset corrected by N. J. A. Sloane, Mar 02 2008. This may require some of the formulas to be adjusted.

A011539 "9ish numbers": decimal representation contains at least one nine.

Original entry on oeis.org

9, 19, 29, 39, 49, 59, 69, 79, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 109, 119, 129, 139, 149, 159, 169, 179, 189, 190, 191, 192, 193, 194, 195, 196, 197, 198, 199, 209, 219, 229, 239, 249, 259, 269, 279, 289, 290, 291, 292, 293, 294, 295, 296, 297, 298
Offset: 1

Views

Author

Keywords

Comments

The 9ish numbers are closed under lunar multiplication. The lunar primes (A087097) are a subset.
Almost all numbers are 9ish, in the sense that the asymptotic density of this set is 1: Among the 9*10^(n-1) n-digit numbers, only a fraction of 0.8*0.9^(n-1) doesn't have a digit 9, and this fraction tends to zero (< 1/10^k for n > 22k-3). This explains the formula a(n) ~ n. - M. F. Hasler, Nov 19 2018
A 9ish number is a number whose largest decimal digit is 9. - Stefano Spezia, Nov 16 2023

Examples

			E.g. 9, 19, 69, 90, 96, 99 and 1234567890 are all 9ish.
		

Crossrefs

Cf. A088924 (number of n-digit terms).
Cf. A087062 (lunar product), A087097 (lunar primes).
A102683 (number of digits 9 in n); fixed points > 8 of A068505.
Cf. Numbers with at least one digit b-1 in base b : A074940 (b=3), A337250 (b=4), A337572 (b=5), A333656 (b=6), A337141 (b=7), A337239 (b=8), A338090 (b=9), this sequence (b=10), A095778 (b=11).
Cf. Numbers with no digit b-1 in base b: A005836 (b=3), A023717 (b=4), A020654 (b=5), A037465 (b=6), A020657 (b=7), A037474 (b=8), A037477 (b=9), A007095 (b=10), A171397 (b=11).
Supersequence of A043525.

Programs

  • GAP
    Filtered([1..300],n->9 in ListOfDigits(n)); # Muniru A Asiru, Feb 25 2019
    
  • Haskell
    a011539 n = a011539_list !! (n-1)
    a011539_list = filter ((> 0) . a102683) [1..]  -- Reinhard Zumkeller, Dec 29 2011
    
  • Maple
    seq(`if`(numboccur(9, convert(n, base, 10))>0, n, NULL), n=0..100); # François Marques, Oct 12 2020
  • Mathematica
    Select[ Range[ 0, 100 ], (Count[ IntegerDigits[ #, 10 ], 9 ]>0)& ] (* François Marques, Oct 12 2020 *)
    Select[Range[300],DigitCount[#,10,9]>0&] (* Harvey P. Dale, Mar 04 2023 *)
  • PARI
    is(n)=n=vecsort(digits(n));n[#n]==9 \\ Charles R Greathouse IV, May 15 2013
    
  • PARI
    select( is_A011539(n)=vecmax(digits(n))==9, [1..300]) \\ M. F. Hasler, Nov 16 2018
    
  • Python
    def ok(n): return '9' in str(n)
    print(list(filter(ok, range(299)))) # Michael S. Branicky, Sep 19 2021
    
  • Python
    def A011539(n):
        def f(x):
            l = (s:=str(x)).find('9')
            if l >= 0: s = s[:l]+'8'*(len(s)-l)
            return n+int(s,9)
        m, k = n, f(n)
        while m != k: m, k = k, f(k)
        return m # Chai Wah Wu, Dec 04 2024

Formula

Complement of A007095. A102683(a(n)) > 0 (defines this sequence). A068505(a(n)) = a(n): fixed points of A068505 are the terms of this sequence and the numbers < 9. - Reinhard Zumkeller, Dec 29 2011, edited by M. F. Hasler, Nov 16 2018
a(n) ~ n. - Charles R Greathouse IV, May 15 2013

A048883 a(n) = 3^wt(n), where wt(n) = A000120(n).

Original entry on oeis.org

1, 3, 3, 9, 3, 9, 9, 27, 3, 9, 9, 27, 9, 27, 27, 81, 3, 9, 9, 27, 9, 27, 27, 81, 9, 27, 27, 81, 27, 81, 81, 243, 3, 9, 9, 27, 9, 27, 27, 81, 9, 27, 27, 81, 27, 81, 81, 243, 9, 27, 27, 81, 27, 81, 81, 243, 27, 81, 81, 243, 81, 243, 243, 729, 3, 9, 9, 27, 9, 27, 27, 81, 9, 27, 27, 81, 27, 81
Offset: 0

Views

Author

Keywords

Comments

Or, a(n)=number of 1's ("live" cells) at stage n of a 2-dimensional cellular automata evolving by the rule: 1 if NE+NW+S=1, else 0.
This is the odd-rule cellular automaton defined by OddRule 013 (see Ekhad-Sloane-Zeilberger "Odd-Rule Cellular Automata on the Square Grid" link). - N. J. A. Sloane, Feb 25 2015
Or, start with S=[1]; replace S by [S, 3*S]; repeat ad infinitum.
Fixed point of the morphism 1 -> 13, 3 -> 39, 9 -> 9(27), ... = 3^k -> 3^k 3^(k+1), ... starting from a(0) = 1; 1 -> 13 -> 1339 -> = 1339399(27) -> 1339399(27)399(27)9(27)(27)(81) -> ..., . - Robert G. Wilson v, Jan 24 2006
Equals row sums of triangle A166453 (the square of Sierpiński's gasket, A047999). - Gary W. Adamson, Oct 13 2009
First bisection of A169697=1,5,3,19,3,. a(2n+2)+a(2n+3)=12,12,36,=12*A147610 ? Distribution of terms (in A000244): A011782=1,A000079 for first array, A000079 for second. - Paul Curtz, Apr 20 2010
a(A000225(n)) = A000244(n) and a(m) != A000244(n) for m < A000225(n). - Reinhard Zumkeller, Nov 14 2011
This sequence pertains to phenotype Punnett square mathematics. Start with X=1. Each hybrid cross involves the equation X:3X. Therefore, the ratio in the first (mono) hybrid cross is X=1:3X=3(1) or 3; or 3:1. When you move up to the next hybridization level, replace the previous cross ratio with X. X now represents 2 numbers-1:3. Therefore, the ratio in the second (di) hybrid cross is X=(1:3):3X=[3(1):3(3)] or (3:9). Put it together and you get 1:3:3:9. Each time you move up a hybridization level, replace the previous ratio with X, and use the same equation-X:3X to get its ratio. - John Michael Feuk, Dec 10 2011
Number of odd values in the n-th layer of Pascal's tetrahedron (see A268240). - Caden Le, Mar 03 2025
a(x*y) <= a(x)^A000120(y). - Joe Amos, Mar 28 2025

Examples

			From _Omar E. Pol_, Jun 07 2009: (Start)
Triangle begins:
  1;
  3;
  3,9;
  3,9,9,27;
  3,9,9,27,9,27,27,81;
  3,9,9,27,9,27,27,81,9,27,27,81,27,81,81,243;
  3,9,9,27,9,27,27,81,9,27,27,81,27,81,81,243,9,27,27,81,27,81,81,243,27,...
Or
  1;
  3,3;
  9,3,9,9;
  27,3,9,9,27,9,27,27;
  81,3,9,9,27,9,27,27,81,9,27,27,81,27,81,81;
  243,3,9,9,27,9,27,27,81,9,27,27,81,27,81,81,243,9,27,27,81,27,81,81,243,27...
(End)
		

Crossrefs

For generating functions Product_{k>=0} (1+a*x^(b^k)) for the following values of (a,b) see: (1,2) A000012 and A000027, (1,3) A039966 and A005836, (1,4) A151666 and A000695, (1,5) A151667 and A033042, (2,2) A001316, (2,3) A151668, (2,4) A151669, (2,5) A151670, (3,2) A048883, (3,3) A117940, (3,4) A151665, (3,5) A151671, (4,2) A102376, (4,3) A151672, (4,4) A151673, (4,5) A151674.
A generalization of A001316. Cf. A102376.
Partial sums give A130665. - David Applegate, Jun 11 2009

Programs

  • Haskell
    a048883 = a000244 . a000120  -- Reinhard Zumkeller, Nov 14 2011
  • Mathematica
    Nest[ Join[#, 3#] &, {1}, 6] (* Robert G. Wilson v, Jan 24 2006 and modified Jul 27 2014*)
    a[n_] := 3^DigitCount[n, 2, 1]; Array[a, 80, 0] (* Jean-François Alcover, Nov 15 2017 *)
  • PARI
    a(n)=n=binary(n);3^sum(i=1,#n,n[i])
    

Formula

a(n) = Product_{k=0..log_2(n)} 3^b(n,k), where b(n,k) = coefficient of 2^k in binary expansion of n (offset 0). - Paul D. Hanna
a(n) = 3*a(n/2) if n is even, otherwise a(n) = a((n+1)/2).
G.f.: Product_{k>=0} (1+3*x^(2^k)). The generalization k^A000120 has generating function (1 + kx)*(1 + kx^2)*(1 + kx^4)*...
a(n+1) = Sum_{i=0..n} (binomial(n, i) mod 2) * Sum_{j=0..i} (binomial(i, j) mod 2). - Benoit Cloitre, Nov 16 2003
a(0)=1, a(n) = 3*a(n-A053644(n)) for n > 0. - Joe Slater, Jan 31 2016
G.f. A(x) satisfies: A(x) = (1 + 3*x) * A(x^2). - Ilya Gutkovskiy, Jul 09 2019

Extensions

Corrected by Ralf Stephan, Jun 19 2003
Entry revised by N. J. A. Sloane, May 30 2009
Offset changed to 0, Jun 11 2009

A081603 Number of 2's in ternary representation of n.

Original entry on oeis.org

0, 0, 1, 0, 0, 1, 1, 1, 2, 0, 0, 1, 0, 0, 1, 1, 1, 2, 1, 1, 2, 1, 1, 2, 2, 2, 3, 0, 0, 1, 0, 0, 1, 1, 1, 2, 0, 0, 1, 0, 0, 1, 1, 1, 2, 1, 1, 2, 1, 1, 2, 2, 2, 3, 1, 1, 2, 1, 1, 2, 2, 2, 3, 1, 1, 2, 1, 1, 2, 2, 2, 3, 2, 2, 3, 2, 2, 3, 3, 3, 4, 0, 0, 1, 0, 0, 1, 1, 1, 2, 0, 0, 1, 0, 0, 1, 1, 1, 2, 1, 1, 2, 1, 1, 2
Offset: 0

Views

Author

Reinhard Zumkeller, Mar 23 2003

Keywords

Comments

Fixed point of the morphism: 0 ->001; 1 ->112; 2 ->223; 3 ->334, etc., starting from a(0)=0. - Philippe Deléham, Oct 26 2011

Crossrefs

Programs

  • Haskell
    a081603 0 = 0
    a081603 n = a081603 n' + m `div` 2 where (n',m) = divMod n 3
    -- Reinhard Zumkeller, Feb 21 2013
    
  • Maple
    A081603 := proc(n)
        local a,d ;
        a := 0 ;
        for d in convert(n,base,3) do
            if d= 2 then
                a := a+1 ;
            end if;
        end do:
        a;
    end proc: # R. J. Mathar, Jul 12 2016
  • Mathematica
    Table[Count[IntegerDigits[n,3],2],{n,0,6!}] (* Vladimir Joseph Stephan Orlovsky, Jul 25 2009 *)
    Nest[ Flatten[# /. a_Integer -> {a, a, a + 1}] &, {0}, 5] (* Robert G. Wilson v, May 20 2014 *)
    DigitCount[Range[0,120],3,2] (* Harvey P. Dale, Jul 10 2019 *)
  • PARI
    a(n)=hammingweight(digits(n,3)\2); \\ Ruud H.G. van Tol, Dec 10 2023
    
  • Python
    from gmpy2 import digits
    def A081603(n): return digits(n,3).count('2') # Chai Wah Wu, Dec 05 2024

Formula

a(n) = floor(n/2) if n < 3, otherwise a(floor(n/3)) + floor((n mod 3)/2).
A077267(n) + A062756(n) + a(n) = A081604(n);
a(n) = (A053735(n) - A062756(n))/2.

A020654 Lexicographically earliest infinite increasing sequence of nonnegative numbers containing no 5-term arithmetic progression.

Original entry on oeis.org

0, 1, 2, 3, 5, 6, 7, 8, 10, 11, 12, 13, 15, 16, 17, 18, 25, 26, 27, 28, 30, 31, 32, 33, 35, 36, 37, 38, 40, 41, 42, 43, 50, 51, 52, 53, 55, 56, 57, 58, 60, 61, 62, 63, 65, 66, 67, 68, 75, 76, 77, 78, 80, 81, 82, 83, 85, 86, 87, 88, 90, 91, 92, 93, 125, 126, 127
Offset: 1

Views

Author

Keywords

Comments

This is also the set of numbers with no "4" in their base-5 representation. In fact, for any prime p, the sequence consisting of numbers with no (p-1) in their base-p expansion is the same as the earliest sequence containing no p-term arithmetic progression. - Nathaniel Johnston, Jun 26-27 2011

Crossrefs

Cf. A023717.
Summary of increasing sequences avoiding arithmetic progressions of specified lengths (the second of each pair is obtained by adding 1 to the first):
3-term AP: A005836 (>=0), A003278 (>0);
4-term AP: A005839 (>=0), A005837 (>0);
5-term AP: A020654 (>=0), A020655 (>0);
6-term AP: A020656 (>=0), A005838 (>0);
7-term AP: A020657 (>=0), A020658 (>0);
8-term AP: A020659 (>=0), A020660 (>0);
9-term AP: A020661 (>=0), A020662 (>0);
10-term AP: A020663 (>=0), A020664 (>0).

Programs

  • Julia
    function a(n)
        m, r, b = n, 0, 1
        while m > 0
            m, q = divrem(m, 4)
            r += b * q
            b *= 5
        end
    r end; [a(n) for n in 0:66] |> println # Peter Luschny, Jan 03 2021
  • Maple
    seq(`if`(numboccur(4,convert(n,base,5))=0,n,NULL),n=0..127); # Nathaniel Johnston, Jun 27 2011
  • Mathematica
    Select[ Range[ 0, 100 ], (Count[ IntegerDigits[ #, 5 ], 4 ]==0)& ]
    Select[Range[0, 120], DigitCount[#, 5, 4] == 0 &] (* Amiram Eldar, Apr 14 2025 *)
  • PARI
    is(n)=while(n>4, if(n%5==4, return(0)); n\=5); 1 \\ Charles R Greathouse IV, Feb 12 2017
    
  • Python
    from sympy.ntheory.factor_ import digits
    print([n for n in range(201) if digits(n, 5)[1:].count(4)==0]) # Indranil Ghosh, May 23 2017
    
  • Python
    from gmpy2 import digits
    def A020654(n): return int(digits(n-1,4),5) # Chai Wah Wu, May 06 2025
    

Formula

Sum_{n>=2} 1/a(n) = 7.7794910022243020875287956248411192066951785182667316905881486574421016471305408306837031955619272391023... (calculated using Baillie and Schmelzer's kempnerSums.nb, see Links). - Amiram Eldar, Apr 14 2025

Extensions

Added "infinite" to definition. - N. J. A. Sloane, Sep 28 2019

A117966 Balanced ternary enumeration (based on balanced ternary representation) of integers; write n in ternary and then replace 2's with (-1)'s.

Original entry on oeis.org

0, 1, -1, 3, 4, 2, -3, -2, -4, 9, 10, 8, 12, 13, 11, 6, 7, 5, -9, -8, -10, -6, -5, -7, -12, -11, -13, 27, 28, 26, 30, 31, 29, 24, 25, 23, 36, 37, 35, 39, 40, 38, 33, 34, 32, 18, 19, 17, 21, 22, 20, 15, 16, 14, -27, -26, -28, -24, -23, -25, -30, -29, -31, -18, -17, -19, -15, -14, -16, -21, -20, -22, -36
Offset: 0

Views

Author

Keywords

Comments

As the graph demonstrates, there are large discontinuities in the sequence between terms 3^i-1 and 3^i, and between terms 2*3^i-1 and 2*3^i. - N. J. A. Sloane, Jul 03 2016

Examples

			7 in base 3 is 21; changing the 2 to a (-1) gives (-1)*3+1 = -2, so a(7) = -2. I.e., the number of -2 according to the balanced ternary enumeration is 7, which can be obtained by replacing every -1 by 2 in the balanced ternary representation (or expansion) of -2, which is -1,1.
		

References

  • D. E. Knuth, The Art of Computer Programming. Addison-Wesley, Reading, MA, Vol. 2, pp. 173-175; 2nd. ed. pp. 190-193.

Crossrefs

Programs

  • Maple
    f:= proc(n) local L,i;
       L:= subs(2=-1,convert(n,base,3));
       add(L[i]*3^(i-1),i=1..nops(L))
    end proc:
    map(f, [$0..100]);
    # alternate:
    N:= 100: # to get a(0) to a(N)
    g:= 0:
    for n from 1 to ceil(log[3](N+1)) do
    g:= convert(series(3*subs(x=x^3,g)*(1+x+x^2)+x/(1+x+x^2),x,3^n+1),polynom);
    od:
    seq(coeff(g,x,j),j=0..N); # Robert Israel, Nov 17 2015
    # third Maple program:
    a:= proc(n) option remember; `if`(n=0, 0,
          3*a(iquo(n, 3, 'r'))+`if`(r=2, -1, r))
        end:
    seq(a(n), n=0..3^4-1);  # Alois P. Heinz, Aug 14 2019
  • Mathematica
    Map[FromDigits[#, 3] &, IntegerDigits[#, 3] /. 2 -> -1 & /@ Range@ 80] (* Michael De Vlieger, Nov 17 2015 *)
  • PARI
    a(n) = subst(Pol(apply(x->if(x == 2, -1, x), digits(n,3)), 'x), 'x, 3)
    vector(73, i, a(i-1))  \\ Gheorghe Coserea, Nov 17 2015
    
  • Python
    def a(n):
        if n==0: return 0
        if n%3==0: return 3*a(n//3)
        elif n%3==1: return 3*a((n - 1)//3) + 1
        else: return 3*a((n - 2)//3) - 1
    print([a(n) for n in range(101)]) # Indranil Ghosh, Jun 06 2017

Formula

a(0) = 0, a(3n) = 3a(n), a(3n+1) = 3a(n)+1, a(3n+2) = 3a(n)-1.
G.f. satisfies A(x) = 3*A(x^3)*(1+x+x^2) + x/(1+x+x^2). - corrected by Robert Israel, Nov 17 2015
A004488(n) = a(n)^{-1}(-a(n)). I.e., if a(n) <= 0, A004488(n) = A117967(-a(n)) and if a(n) > 0, A004488(n) = A117968(a(n)).
a(n) = n - 3 * A005836(A289814(n) + 1). - Andrey Zabolotskiy, Nov 11 2019

Extensions

Name corrected by Andrey Zabolotskiy, Nov 10 2019

A289813 A binary encoding of the ones in ternary representation of n (see Comments for precise definition).

Original entry on oeis.org

0, 1, 0, 2, 3, 2, 0, 1, 0, 4, 5, 4, 6, 7, 6, 4, 5, 4, 0, 1, 0, 2, 3, 2, 0, 1, 0, 8, 9, 8, 10, 11, 10, 8, 9, 8, 12, 13, 12, 14, 15, 14, 12, 13, 12, 8, 9, 8, 10, 11, 10, 8, 9, 8, 0, 1, 0, 2, 3, 2, 0, 1, 0, 4, 5, 4, 6, 7, 6, 4, 5, 4, 0, 1, 0, 2, 3, 2, 0, 1, 0, 16
Offset: 0

Views

Author

Rémy Sigrist, Jul 12 2017

Keywords

Comments

The ones in the binary representation of a(n) correspond to the ones in the ternary representation of n; for example: ternary(42) = 1120 and binary(a(42)) = 1100 (a(42) = 12).
See A289814 for the sequence encoding the twos in ternary representation of n.
By design, a(n) AND A289814(n) = 0 (where AND stands for the bitwise AND operator).
See A289831 for the sum of this sequence and A289814.
For each pair of numbers without common bits in base 2 representation, say x and y, there is a unique index, say n, such that a(n) = x and A289814(n) = y; in fact, n = A289869(x,y).
The scatterplot of this sequence vs A289814 looks like a Sierpinski triangle pivoted to the side.
For any t > 0: we can adapt the algorithm used here and in A289814 in order to uniquely enumerate every tuple of t numbers mutually without common bits in base 2 representation.

Examples

			The first values, alongside the ternary representation of n, and the binary representation of a(n), are:
n       a(n)    ternary(n)  binary(a(n))
--      ----    ----------  ------------
0       0       0           0
1       1       1           1
2       0       2           0
3       2       10          10
4       3       11          11
5       2       12          10
6       0       20          0
7       1       21          1
8       0       22          0
9       4       100         100
10      5       101         101
11      4       102         100
12      6       110         110
13      7       111         111
14      6       112         110
15      4       120         100
16      5       121         101
17      4       122         100
18      0       200         0
19      1       201         1
20      0       202         0
21      2       210         10
22      3       211         11
23      2       212         10
24      0       220         0
25      1       221         1
26      0       222         0
		

Crossrefs

Programs

  • Mathematica
    Table[FromDigits[#, 2] &[IntegerDigits[n, 3] /. 2 -> 0], {n, 0, 81}] (* Michael De Vlieger, Jul 20 2017 *)
  • PARI
    a(n) = my (d=digits(n,3)); fromdigits(vector(#d, i, if (d[i]==1, 1, 0)), 2)
    
  • PARI
    a(n) = fromdigits(digits(n, 3)%2, 2); \\ Ruud H.G. van Tol, May 08 2024
    
  • Python
    from sympy.ntheory.factor_ import digits
    def a(n):
        d = digits(n, 3)[1:]
        return int("".join('1' if i==1 else '0' for i in d), 2)
    print([a(n) for n in range(51)]) # Indranil Ghosh, Jul 20 2017

Formula

a(0) = 0.
a(3*n) = 2 * a(n).
a(3*n+1) = 2 * a(n) + 1.
a(3*n+2) = 2 * a(n).
Also, a(n) = A289814(A004488(n)).
A053735(n) = A000120(a(n)) + 2*A000120(A289814(n)). - Antti Karttunen, Jul 20 2017

A102376 a(n) = 4^A000120(n).

Original entry on oeis.org

1, 4, 4, 16, 4, 16, 16, 64, 4, 16, 16, 64, 16, 64, 64, 256, 4, 16, 16, 64, 16, 64, 64, 256, 16, 64, 64, 256, 64, 256, 256, 1024, 4, 16, 16, 64, 16, 64, 64, 256, 16, 64, 64, 256, 64, 256, 256, 1024, 16, 64, 64, 256, 64, 256, 256, 1024, 64, 256, 256, 1024, 256, 1024, 1024
Offset: 0

Views

Author

Paul Barry, Jan 05 2005

Keywords

Comments

Consider a simple cellular automaton, a grid of binary cells c(i,j), where the next state of the grid is calculated by applying the following rule to each cell: c(i,j) = ( c(i+1,j-1) + c(i+1,j+1) + c(i-1,j-1) + c(i-1,j+1) ) mod 2 If we start with a single cell having the value 1 and all the others 0, then the aggregate values of the subsequent states of the grid will be the terms in this sequence. - Andras Erszegi (erszegi.andras(AT)chello.hu), Mar 31 2006. See link for initial states. - N. J. A. Sloane, Feb 12 2015
This is the odd-rule cellular automaton defined by OddRule 033 (see Ekhad-Sloane-Zeilberger "Odd-Rule Cellular Automata on the Square Grid" link). - N. J. A. Sloane, Feb 25 2015
First differences of A116520. - Omar E. Pol, May 05 2010

Examples

			1 + 4*x + 4*x^2 + 16*x^3 + 4*x^4 + 16*x^5 + 16*x^6 + 64*x^7 + 4*x^8 + ...
From _Omar E. Pol_, Jun 07 2009: (Start)
Triangle begins:
  1;
  4;
  4,16;
  4,16,16,64;
  4,16,16,64,16,64,64,256;
  4,16,16,64,16,64,64,256,16,64,64,256,64,256,256,1024;
  4,16,16,64,16,64,64,256,16,64,64,256,64,256,256,1024,16,64,64,256,64,256,...
(End)
		

Crossrefs

For generating functions Prod_{k>=0} (1+a*x^(b^k)) for the following values of (a,b) see: (1,2) A000012 and A000027, (1,3) A039966 and A005836, (1,4) A151666 and A000695, (1,5) A151667 and A033042, (2,2) A001316, (2,3) A151668, (2,4) A151669, (2,5) A151670, (3,2) A048883, (3,3) A117940, (3,4) A151665, (3,5) A151671, (4,2) A102376, (4,3) A151672, (4,4) A151673, (4,5) A151674.
A151783 is a very similar sequence.
See A160239 for the analogous CA defined by Rule 204 on an 8-celled neighborhood.

Programs

  • Haskell
    a102376 = (4 ^) . a000120  -- Reinhard Zumkeller, Feb 13 2015
    
  • Maple
    seq(4^convert(convert(n,base,2),`+`),n=0..100); # Robert Israel, Apr 30 2017
  • Mathematica
    Table[4^DigitCount[n, 2, 1], {n, 0, 100}] (* Indranil Ghosh, Apr 30 2017 *)
  • PARI
    {a(n) = if( n<0, 0, 4^subst( Pol( binary(n)), x, 1))} /* Michael Somos, May 29 2008 */
    a(n) = 4^hammingweight(n); \\ Michel Marcus, Apr 30 2017
    
  • Python
    def a(n): return 4**bin(n)[2:].count("1") # Indranil Ghosh, Apr 30 2017
    
  • Python
    def A102376(n): return 1<<(n.bit_count()<<1) # Chai Wah Wu, Nov 15 2022

Formula

Formulas due to Paul D. Hanna: (Start)
G.f.: Product_{k>=0} 1 + 4x^(2^k).
a(n) = Product_{k=0..log_2(n)} 4^b(n, k), b(n, k)=coefficient of 2^k in binary expansion of n.
a(n) = Sum_{k=0..n} (C(n, k) mod 2)*3^A000120(n-k). (End)
a(n) = Sum_{k=0..n} (C(n, k) mod 2) * Sum_{j=0..k} (C(k, j) mod 2) * Sum_{i=0..j} (C(j, i) mod 2). - Paul Barry, Apr 01 2005
G.f. A(x) satisfies 0 = f(A(x), A(x^2), A(x^4)) where f(u, v, w) = w * (u^2 - 2*u*v + 5*v^2) - 4*v^3. - Michael Somos, May 29 2008
Run length transform of A000302. - N. J. A. Sloane, Feb 23 2015

A020657 Lexicographically earliest increasing sequence of nonnegative numbers that contains no arithmetic progression of length 7.

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 7, 8, 9, 10, 11, 12, 14, 15, 16, 17, 18, 19, 21, 22, 23, 24, 25, 26, 28, 29, 30, 31, 32, 33, 35, 36, 37, 38, 39, 40, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 63, 64, 65, 66, 67, 68, 70, 71, 72, 73, 74, 75, 77, 78, 79, 80, 81, 82, 84, 85
Offset: 1

Views

Author

Keywords

Comments

Also the set of numbers with no "6" in their base-7 representation; see Gerver-Ramsey, also comments in A020654. - Nathaniel Johnston, Jun 27 2011
Up to the offset, identical to A037470. There are lexicographically earlier, but non-monotonic sequences which do not contain a 7-term AP, e.g., starting with 0,0,0,0,0,0,1,0,... - M. F. Hasler, Oct 05 2014

Crossrefs

Summary of increasing sequences avoiding arithmetic progressions of specified lengths (the second of each pair is obtained by adding 1 to the first):
3-term AP: A005836 (>=0), A003278 (>0);
4-term AP: A005839 (>=0), A005837 (>0);
5-term AP: A020654 (>=0), A020655 (>0);
6-term AP: A020656 (>=0), A005838 (>0);
7-term AP: A020657 (>=0), A020658 (>0);
8-term AP: A020659 (>=0), A020660 (>0);
9-term AP: A020661 (>=0), A020662 (>0);
10-term AP: A020663 (>=0), A020664 (>0).

Programs

  • Maple
    seq(`if`(numboccur(6,convert(n,base,7))=0,n,NULL),n=0..85); # Nathaniel Johnston, Jun 27 2011
  • Mathematica
    Select[Range[0, 100], FreeQ[IntegerDigits[#, 7], 6]&] (* Jean-François Alcover, Jan 27 2023 *)
  • PARI
    a(n)=vector(#n=digits(n-1, 6), i, 7^(#n-i))*n~ \\ M. F. Hasler, Oct 05 2014
    
  • Python
    from gmpy2 import digits
    def A020657(n): return int(digits(n-1,6),7) # Chai Wah Wu, May 06 2025

Extensions

Name edited by M. F. Hasler, Oct 10 2014. Further edited by N. J. A. Sloane, Jan 04 2016
Previous Showing 31-40 of 238 results. Next