A063493
a(n) = (2*n-1)*(13*n^2-13*n+6)/6.
Original entry on oeis.org
1, 16, 70, 189, 399, 726, 1196, 1835, 2669, 3724, 5026, 6601, 8475, 10674, 13224, 16151, 19481, 23240, 27454, 32149, 37351, 43086, 49380, 56259, 63749, 71876, 80666, 90145, 100339, 111274, 122976, 135471, 148785, 162944, 177974, 193901, 210751, 228550, 247324, 267099
Offset: 1
- Harry J. Smith, Table of n, a(n) for n = 1..1000
- T. P. Martin, Shells of atoms, Phys. Reports, 273 (1996), 199-241, eq. (10).
- Index entries for linear recurrences with constant coefficients, signature (4,-6,4,-1).
1/12*t*(2*n^3-3*n^2+n)+2*n-1 for t = 2, 4, 6, ... gives
A049480,
A005894,
A063488,
A001845,
A063489,
A005898,
A063490,
A057813,
A063491,
A005902,
A063492,
A005917,
A063493,
A063494,
A063495,
A063496.
-
[(2*n-1)*(13*n^2-13*n+6)/6: n in [1..40]]; // Vincenzo Librandi, Dec 16 2015
-
Table[(2 n - 1) (13 n^2 - 13 n + 6)/6, {n, 1, 40}] (* Bruno Berselli, Dec 16 2015 *)
LinearRecurrence[{4,-6,4,-1}, {1,16,70,189}, 30] (* G. C. Greubel, Dec 01 2017 *)
-
a(n) = { (2*n - 1)*(13*n^2 - 13*n + 6)/6 } \\ Harry J. Smith, Aug 23 2009
-
my(x='x+O('x^30)); Vec(serlaplace((-6+12*x+39*x^2+26*x^3)*exp(x)/6 + 1)) \\ G. C. Greubel, Dec 01 2017
-
A063493_list, m = [], [26, -13, 2, 1]
for _ in range(10**2):
A063493_list.append(m[-1])
for i in range(3):
m[i+1] += m[i] # Chai Wah Wu, Dec 15 2015
A063495
a(n) = (2*n-1)*(5*n^2-5*n+2)/2.
Original entry on oeis.org
1, 18, 80, 217, 459, 836, 1378, 2115, 3077, 4294, 5796, 7613, 9775, 12312, 15254, 18631, 22473, 26810, 31672, 37089, 43091, 49708, 56970, 64907, 73549, 82926, 93068, 104005, 115767, 128384, 141886, 156303, 171665, 188002, 205344, 223721, 243163, 263700, 285362
Offset: 1
- Harry J. Smith, Table of n, a(n) for n = 1..1000
- T. P. Martin, Shells of atoms, Phys. Rep., 273 (1996), 199-241, eq. (10).
- Index entries for linear recurrences with constant coefficients, signature (4,-6,4,-1).
1/12*t*(2*n^3-3*n^2+n)+2*n-1 for t = 2, 4, 6, ... gives
A049480,
A005894,
A063488,
A001845,
A063489,
A005898,
A063490,
A057813,
A063491,
A005902,
A063492,
A005917,
A063493,
A063494,
A063495,
A063496.
-
[(2*n-1)*(5*n^2-5*n+2)/2: n in [1..30]]; // G. C. Greubel, Dec 01 2017
-
Table[(2n-1)(5n^2-5n+2)/2,{n,40}] (* or *) LinearRecurrence[{4,-6,4,-1},{1,18,80,217},40] (* Harvey P. Dale, Dec 18 2011 *)
-
a(n) = (2*n - 1)*(5*n^2 - 5*n + 2)/2 \\ Harry J. Smith, Aug 23 2009
-
my(x='x+O('x^30)); Vec(serlaplace((-2+4*x+15*x^2+10*x^3)*exp(x)/2 + 1)) \\ G. C. Greubel, Dec 01 2017
A049480
a(n) = (2*n-1)*(n^2 -n +6)/6.
Original entry on oeis.org
1, 4, 10, 21, 39, 66, 104, 155, 221, 304, 406, 529, 675, 846, 1044, 1271, 1529, 1820, 2146, 2509, 2911, 3354, 3840, 4371, 4949, 5576, 6254, 6985, 7771, 8614, 9516, 10479, 11505, 12596, 13754, 14981, 16279, 17650, 19096, 20619, 22221
Offset: 1
- Harvey P. Dale, Table of n, a(n) for n = 1..1000
- T. P. Martin, Shells of atoms, Phys. Rep., 273 (1996), 199-241, eq. (10).
- Index entries for linear recurrences with constant coefficients, signature (4,-6,4,-1).
1/12*t*(2*n^3-3*n^2+n)+2*n-1 for t = 2, 4, 6, ... gives
A049480,
A005894,
A063488,
A001845,
A063489,
A005898,
A063490,
A057813,
A063491,
A005902,
A063492,
A005917,
A063493,
A063494,
A063495,
A063496.
-
[(2*n-1)*(n^2-n+6)/6: n in [1..30]]; // G. C. Greubel, Dec 01 2017
-
Table[(2n-1)(n^2-n+6)/6,{n,50}] (* or *) LinearRecurrence[{4,-6,4,-1},{1,4,10,21},50] (* Harvey P. Dale, Jan 01 2012 *)
-
a(n)=(2*n-1)*(n^2-n+6)/6 \\ Charles R Greathouse IV, Sep 24 2015
-
x='x+O('x^30); Vec(serlaplace((-6 + 12*x + 3*x^2 + 2*x^3)*exp(x)/6 + 1)) \\ G. C. Greubel, Dec 01 2017
A005914
Number of points on surface of hexagonal prism: 12*n^2 + 2 for n > 0 (coordination sequence for W(2)).
Original entry on oeis.org
1, 14, 50, 110, 194, 302, 434, 590, 770, 974, 1202, 1454, 1730, 2030, 2354, 2702, 3074, 3470, 3890, 4334, 4802, 5294, 5810, 6350, 6914, 7502, 8114, 8750, 9410, 10094, 10802, 11534, 12290, 13070, 13874, 14702, 15554, 16430, 17330, 18254, 19202, 20174, 21170
Offset: 0
- Gmelin Handbook of Inorganic and Organometallic Chemistry, 8th Ed., 1994, TYPIX search code (229) cI2.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- Vincenzo Librandi, Table of n, a(n) for n = 0..10000
- Ovidiu Bagdasar, On Some Functions Involving the lcm and gcd of Integer Tuples, Scientific Publications of the State University of Novi Pazar, Appl. Maths. Inform. and Mech., Vol. 6, No. 2 (2014), pp. 91-100.
- Ralf W. Grosse-Kunstleve, Coordination Sequences and Encyclopedia of Integer Sequences, 1996.
- Ralf W. Grosse-Kunstleve, G. O. Brunner and N. J. A. Sloane, Algebraic Description of Coordination Sequences and Exact Topological Densities for Zeolites, Acta Cryst., A52 (1996), pp. 879-889.
- Milan Janjic, Enumerative Formulas for Some Functions on Finite Sets.
- Claudio de J. Pita Ruiz V., Some Number Arrays Related to Pascal and Lucas Triangles, J. Int. Seq., Vol. 16 (2013), Article 13.5.7.
- Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992, arXiv:0911.4975 [math.NT], 2009.
- Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992.
- Boon K. Teo and N. J. A. Sloane, Magic numbers in polygonal and polyhedral clusters, Inorgan. Chem., Vol. 24 (1985), pp. 4545-4558.
- Index entries for linear recurrences with constant coefficients, signature (3,-3,1).
-
A005914:=-(z+1)*(z**2+10*z+1)/(z-1)**3; # Simon Plouffe in his 1992 dissertation.
-
Table[If[n == 0, 1, 12*n^2 + 2], {n, 0, 100}] (* Vladimir Joseph Stephan Orlovsky, Jun 19 2011 *)
Join[{1},LinearRecurrence[{3,-3,1},{14,50,110},50]] (* Harvey P. Dale, Oct 09 2012 *)
-
a(n)=12*n^2+2 \\ Charles R Greathouse IV, Jan 31 2012
A132366
Partial sum of centered tetrahedral numbers A005894.
Original entry on oeis.org
1, 6, 21, 56, 125, 246, 441, 736, 1161, 1750, 2541, 3576, 4901, 6566, 8625, 11136, 14161, 17766, 22021, 27000, 32781, 39446, 47081, 55776, 65625, 76726, 89181, 103096, 118581, 135750, 154721, 175616, 198561, 223686, 251125, 281016, 313501, 348726, 386841
Offset: 0
Cf.
A000292,
A005894,
A063488,
A001845,
A063489,
A005898,
A063490,
A057813,
A063491,
A005902,
A063492,
A005917,
A063493,
A063494,
A063495,
A063496.
Cf.
A337895 (oriented),
A000389(n+4) (unoriented),
A000389 (chiral),
A331353 (5-cell edges, faces),
A337955 (8-cell vertices, 16-cell facets),
A337958 (16-cell vertices, 8-cell facets),
A338951 (24-cell),
A338967 (120-cell, 600-cell).
-
Do[Print[n, " ", (n^4 + 4 n^3 + 11 n^2 + 14 n + 6)/6 ], {n, 0, 10000}]
Accumulate[Table[(2n+1)(n^2+n+3)/3,{n,0,40}]] (* or *) LinearRecurrence[ {5,-10,10,-5,1},{1,6,21,56,125},40] (* Harvey P. Dale, Feb 26 2020 *)
Corrected offset, Mathematica program by Tomas J. Bulka (tbulka(AT)rodincoil.com), Sep 02 2009
A195522
T(n,k) = Number of lower triangles of an n X n -k..k array with all row and column sums zero.
Original entry on oeis.org
1, 1, 1, 1, 1, 3, 1, 1, 5, 15, 1, 1, 7, 65, 199, 1, 1, 9, 175, 3753, 6247, 1, 1, 11, 369, 27267, 860017, 505623, 1, 1, 13, 671, 121367, 23663523, 839301197, 105997283, 1, 1, 15, 1105, 401565, 286168923, 122092290831, 3535646416019, 58923059879, 1, 1, 17
Offset: 1
Some solutions for n=5 k=6
..0..........0..........0..........0..........0..........0..........0
..0.0.......-2.2........6-6.......-1.1........5-5.......-4.4.......-4.4
.-1.3-2.....-6.0.6.....-6.6.0.....-1.5-4.....-6.4.2......3-6.3.....-4.1.3
..6-3-2-1....4-4-4.4....5.3-5-3....0-5.3.2....0.4-3-1...-5.5.1-1....5-2-4.1
.-5.0.4.1.0..4.2-2-4.0.-5-3.5.3.0..2-1.1-2.0..1-3.1.1.0..6-3-4.1.0..3-3.1-1.0
A219086
a(n) = floor((n + 1/2)^4).
Original entry on oeis.org
0, 5, 39, 150, 410, 915, 1785, 3164, 5220, 8145, 12155, 17490, 24414, 33215, 44205, 57720, 74120, 93789, 117135, 144590, 176610, 213675, 256289, 304980, 360300, 422825, 493155, 571914, 659750, 757335, 865365, 984560, 1115664
Offset: 0
0^(1/4) = 0.000...; 1^(1/4) = 1.000...
5^(1/4) = 1.495...; 6^(1/4) = 1.565...
39^(1/4) = 2.499...; 40^(1/4) = 2.514...
-
A219086:=n->floor((n + (1/2))^4); seq(A219086(n), n=0..50); # Wesley Ivan Hurt, Apr 05 2014
-
Table[Floor[(n + 1/2)^4], {n, 0, 100}]
LinearRecurrence[{5,-10,10,-5,1},{0,5,39,150,410},40] (* Harvey P. Dale, Jan 15 2023 *)
-
a(n)=floor((n + 1/2)^4) \\ Charles R Greathouse IV, Apr 15 2014
A007606
Take 1, skip 2, take 3, etc.
Original entry on oeis.org
1, 4, 5, 6, 11, 12, 13, 14, 15, 22, 23, 24, 25, 26, 27, 28, 37, 38, 39, 40, 41, 42, 43, 44, 45, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 137, 138
Offset: 1
From _Omar E. Pol_, Aug 29 2018: (Start)
Written as an irregular triangle in which the row lengths are the odd numbers the sequence begins:
1;
4, 5, 6;
11, 12, 13, 14, 15;
22, 23, 24, 25, 26, 27, 28;
37, 38, 39, 40, 41, 42, 43, 44, 45;
56, 57, 58, 59, 60, 61, 62 , 63, 64, 65, 66;
79, 80, 81, 82 , 83, 84, 85, 86, 87, 88, 89, 90, 91;
106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120;
...
Row sums give A005917.
Column 1 gives A084849.
Column 2 gives A096376, n >= 1.
Right border gives A000384, n >= 1.
(End)
- C. Dumitrescu & V. Seleacu, editors, Some Notions and Questions in Number Theory, Vol. I, Erhus Publ., Glendale, 1994.
- R. Honsberger, Mathematical Gems III, M.A.A., 1985, p. 177.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- F. Smarandache, Properties of Numbers, 1972.
-
a007606 n = a007606_list !! (n-1)
a007606_list = takeSkip 1 [1..] where
takeSkip k xs = take k xs ++ takeSkip (k + 2) (drop (2*k + 1) xs)
-- Reinhard Zumkeller, Feb 12 2011
-
Flatten[ Table[i, {j, 1, 17, 2}, {i, j(j - 1)/2 + 1, j(j + 1)/2}]] (* Robert G. Wilson v, Mar 11 2004 *)
Join[{1},Flatten[With[{nn=20},Range[#[[1]],Total[#]]&/@Take[Thread[ {Accumulate[ Range[nn]]+1,Range[nn]}],{2,-1,2}]]]] (* Harvey P. Dale, Jun 23 2013 *)
With[{nn=20},Take[TakeList[Range[(nn(nn+1))/2],Range[nn]],{1,nn,2}]]//Flatten (* Harvey P. Dale, Feb 10 2023 *)
-
for(n=1,66,m=sqrtint(n-1);print1(n+m*(m+1),","))
A254681
Fifth partial sums of fourth powers (A000583).
Original entry on oeis.org
1, 21, 176, 936, 3750, 12342, 35112, 89232, 207207, 446875, 906048, 1743248, 3206268, 5670588, 9690000, 16062144, 25912029, 40797009, 62837104, 94875000, 140670530, 205134930, 294610680, 417203280, 583171875, 805386231
Offset: 1
Fourth differences: 1, 12, 23, 24, (repeat 24) ... (A101104)
Third differences: 1, 13, 36, 60, 84, 108, ... (A101103)
Second differences: 1, 14, 50, 110, 194, 302, ... (A005914)
First differences: 1, 15, 65, 175, 369, 671, ... (A005917)
-------------------------------------------------------------------------
The fourth powers: 1, 16, 81, 256, 625, 1296, ... (A000583)
-------------------------------------------------------------------------
First partial sums: 1, 17, 98, 354, 979, 2275, ... (A000538)
Second partial sums: 1, 18, 116, 470, 1449, 3724, ... (A101089)
Third partial sums: 1, 19, 135, 605, 2054, 5778, ... (A101090)
Fourth partial sums: 1, 20, 155, 760, 2814, 8592, ... (A101091)
Fifth partial sums: 1, 21, 176, 936, 3750, 12342, ... (this sequence)
- Luciano Ancora, Table of n, a(n) for n = 1..1000
- Luciano Ancora, Partial sums of m-th powers with Faulhaber polynomials.
- Luciano Ancora, Pascal’s triangle and recurrence relations for partial sums of m-th powers .
- Index entries for linear recurrences with constant coefficients, signature (10,-45,120,-210,252,-210,120,-45,10,-1).
Cf.
A000538,
A000583,
A005914,
A005917,
A101089,
A101090,
A101091,
A101103,
A101104,
A254682,
A254683,
A254684.
-
[Binomial(n+5,6)*n*(n+5)*(2*n+5)/42: n in [1..30]]; // G. C. Greubel, Dec 01 2018
-
seq(coeff(series((x+11*x^2+11*x^3+x^4)/(1-x)^10,x,n+1), x, n), n = 1 .. 30); # Muniru A Asiru, Dec 02 2018
-
Table[n^2(1+n)(2+n)(3+n)(4+n)(5+n)^2(5+2n)/30240, {n,26}] (* or *)
CoefficientList[Series[(1 + 11 x + 11 x^2 + x^3)/(1-x)^10, {x,0,25}], x]
CoefficientList[Series[(1/30240)E^x (30240 + 604800 x + 2041200 x^2 + 2368800 x^3 + 1233540 x^4 + 326592 x^5 + 46410 x^6 + 3540 x^7 + 135 x^8 + 2 x^9), {x, 0, 50}], x]*Table[n!, {n, 0, 50}] (* Stefano Spezia, Dec 02 2018 *)
Nest[Accumulate[#]&,Range[30]^4,5] (* Harvey P. Dale, Jan 03 2022 *)
-
my(x='x+O('x^30)); Vec((x+11*x^2+11*x^3+x^4)/(1-x)^10) \\ G. C. Greubel, Dec 01 2018
-
[binomial(n+5,6)*n*(n+5)*(2*n+5)/42 for n in (1..30)] # G. C. Greubel, Dec 01 2018
A101104
a(1)=1, a(2)=12, a(3)=23, and a(n)=24 for n>=4.
Original entry on oeis.org
1, 12, 23, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24
Offset: 1
Cecilia Rossiter, Dec 15 2004
- D. J. Pengelley, The bridge between the continuous and the discrete via original sources in Study the Masters: The Abel-Fauvel Conference [pdf], Kristiansand, 2002, (ed. Otto Bekken et al), National Center for Mathematics Education, University of Gothenburg, Sweden, in press.
- C. Rossiter, Depictions, Explorations and Formulas of the Euler/Pascal Cube [Dead link]
- C. Rossiter, Depictions, Explorations and Formulas of the Euler/Pascal Cube [Cached copy, May 15 2013]
- Eric Weisstein, Link to section of MathWorld: Worpitzky's Identity of 1883
- Eric Weisstein, Link to section of MathWorld: Eulerian Number
- Eric Weisstein, Link to section of MathWorld: Nexus number
- Eric Weisstein, Link to section of MathWorld: Finite Differences
- Index entries for linear recurrences with constant coefficients, signature (1).
For other sequences based upon MagicNKZ(n,k,z):
..... | n = 1 | n = 2 | n = 3 | n = 4 | n = 5 | n = 6 | n = 7
---------------------------------------------------------------------------
Cf.
A101095 for an expanded table and more about MagicNKZ.
-
MagicNKZ = Sum[(-1)^j*Binomial[n+1-z, j]*(k-j+1)^n, {j, 0, k+1}];Table[MagicNKZ, {n, 4, 4}, {z, 1, 1}, {k, 0, 34}]
Join[{1, 12, 23},LinearRecurrence[{1},{24},56]] (* Ray Chandler, Sep 23 2015 *)
Original Formula edited and Crossrefs table added by
Danny Rorabaugh, Apr 22 2015
Comments