cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 56 results. Next

A267112 Permutation of natural numbers: a(1) = 1; a(2n) = A087686(1+a(n)), a(2n+1) = A088359(a(n)), where A088359 and A087686 = numbers that occur only once (resp. more than once) in A004001.

Original entry on oeis.org

1, 2, 3, 4, 5, 7, 6, 8, 9, 12, 10, 15, 13, 14, 11, 16, 17, 21, 18, 27, 22, 24, 19, 31, 28, 29, 23, 30, 25, 26, 20, 32, 33, 38, 34, 48, 39, 42, 35, 58, 49, 51, 40, 54, 43, 45, 36, 63, 59, 60, 50, 61, 52, 53, 41, 62, 55, 56, 44, 57, 46, 47, 37, 64, 65, 71, 66, 86, 72, 76, 67, 106, 87, 90, 73, 96, 77, 80, 68, 121, 107, 109, 88
Offset: 1

Views

Author

Antti Karttunen, Jan 10 2016

Keywords

Comments

This sequence can be represented as a binary tree. Each left hand child is produced as A087686(1+n), and each right hand child as A088359(n), when their parent contains n:
|
...................1...................
2 3
4......../ \........5 7......../ \........6
/ \ / \ / \ / \
/ \ / \ / \ / \
/ \ / \ / \ / \
8 9 12 10 15 13 14 11
16 17 21 18 27 22 24 19 31 28 29 23 30 25 26 20
etc.
The level k of the tree contains all numbers of binary width k, like many base-2 related permutations (A003188, A054429, etc). For a proof, see A267110, which gives the contents of each parent node (for node containing n).
A276442 shows the mirror-image of the same tree.

Crossrefs

Inverse: A267111.
Similar or related permutations: A003188, A054429, A276442, A233276, A233278, A276344, A276346, A276446.
Cf. also permutations A266411, A266412 and arrays A265901, A265903.

Formula

a(1) = 1; after which, a(2n) = A087686(1+a(n)), a(2n+1) = A088359(a(n)).
As a composition of other permutations:
a(n) = A276442(A054429(n)).
a(n) = A276344(A233276(n)).
a(n) = A276346(A233278(n)).
a(n) = A276446(A003188(n)).
Other identities. For all n >= 0:
a(2^n) = 2^n. [Follows from the properties (3) and (4) of A004001 given on page 227 of Kubo & Vakil paper.]
a(A000225(n)) = A006127(n), i.e., a((2^(n+1)) - 1) = 2^n + n. [Numbers at the right edge.]

A081552 Leading terms of rows in A081551.

Original entry on oeis.org

1, 11, 102, 1003, 10004, 100005, 1000006, 10000007, 100000008, 1000000009, 10000000010, 100000000011, 1000000000012, 10000000000013, 100000000000014, 1000000000000015, 10000000000000016, 100000000000000017, 1000000000000000018
Offset: 1

Views

Author

Amarnath Murthy, Apr 01 2003

Keywords

Comments

More generally, a(n) = B^K + n; K = floor(log_B a(n-1)) + 1. This sequence has B=10, a(0)=1; A006127 has B=2, a(0)=1; A052944 has B=2, a(0)=2; A104743 has B=3, a(0)=1; A104745 has B=5, a(0)=1. - Ctibor O. Zizka, Mar 22 2008

Crossrefs

Cf. A011557, A081551, A081553, A085952 (first differences, after n=2).

Programs

  • Magma
    [10^(n-1)+n-1: n in [1..20]]; // Vincenzo Librandi, Jun 16 2013
    
  • Magma
    I:=[1, 11, 102]; [n le 3 select I[n] else 12*Self(n-1)-21*Self(n-2)+10*Self(n-3): n in [1..30]]; // Vincenzo Librandi, Jun 16 2013
    
  • Maple
    seq(10^(n-1) +n-1, n=1..40); # G. C. Greubel, May 27 2021
  • Mathematica
    Table[10^(n-1) +n-1, {n,30}] (* or *) CoefficientList[Series[(1-x-9x^2)/((1-10x)(1-x)^2), {x, 0, 30}], x]  (* Vincenzo Librandi, Jun 16 2013 *)
  • Sage
    [10^(n-1) +n-1 for n in (1..40)] # G. C. Greubel, May 27 2021

Formula

a(n) = 10^(n-1) + n-1.
G.f.: x*(1 -x -9*x^2)/((1-10*x)*(1-x)^2). - Vincenzo Librandi, Jun 16 2013
a(n) = 12*a(n-1) -21*a(n-2) +10*a(n-3). - Vincenzo Librandi, Jun 16 2013
E.g.f.: (1/10)*(9 - 10*(1-x)*exp(x) + exp(10*x)). - G. C. Greubel, May 27 2021

A158879 a(n) = 4^n + n.

Original entry on oeis.org

1, 5, 18, 67, 260, 1029, 4102, 16391, 65544, 262153, 1048586, 4194315, 16777228, 67108877, 268435470, 1073741839, 4294967312, 17179869201, 68719476754, 274877906963, 1099511627796, 4398046511125, 17592186044438, 70368744177687
Offset: 0

Views

Author

Philippe Deléham, Mar 28 2009

Keywords

Examples

			a(0)=4^0+0 = 1, a(1)=4^1+1 = 5, a(2)=4^2+2 = 18, a(3)=4^3+3 = 67, ...
		

Crossrefs

Programs

Formula

G.f.: (1 - x - 3*x^2)/((1-4*x)*(1-x)^2). - R. J. Mathar, Mar 29 2009
a(n) = 6*a(n-1) -9*a(n-2) +4*a(n-3). - R. J. Mathar, Mar 29 2009
E.g.f.: x*exp(x) + exp(4*x). - G. C. Greubel, Mar 04 2020

Extensions

Corrected typo in a(22) from R. J. Mathar, Mar 29 2009

A121270 Prime Sierpinski numbers of the first kind: primes of the form k^k+1.

Original entry on oeis.org

2, 5, 257
Offset: 1

Views

Author

Alexander Adamchuk, Aug 23 2006

Keywords

Comments

Sierpinski proved that k>1 must be of the form 2^(2^j) for k^k+1 to be a prime. All a(n) > 2 must be the Fermat numbers F(m) with m = j+2^j = A006127(j). [Edited by Jeppe Stig Nielsen, Jul 09 2023]

References

  • See e.g. pp. 156-157 in M. Krizek, F. Luca & L. Somer, 17 Lectures on Fermat Numbers, Springer-Verlag NY 2001. - Walter Nissen, Mar 20 2010

Crossrefs

Primes of form b*k^k + 1: this sequence (b=1), A216148 (b=2), A301644 (b=3), A301641 (b=4), A301642 (b=16).

Programs

  • Mathematica
    Do[f=n^n+1;If[PrimeQ[f],Print[{n,f}]],{n,1,1000}]
  • PARI
    for(n=1,9,if(ispseudoprime(t=n^n+1),print1(t", "))) \\ Charles R Greathouse IV, Feb 01 2013

Extensions

Definition rewritten by Walter Nissen, Mar 20 2010

A131520 Number of partitions of the graph G_n (defined below) into "strokes".

Original entry on oeis.org

2, 6, 12, 22, 40, 74, 140, 270, 528, 1042, 2068, 4118, 8216, 16410, 32796, 65566, 131104, 262178, 524324, 1048614, 2097192, 4194346, 8388652, 16777262, 33554480, 67108914, 134217780, 268435510, 536870968, 1073741882, 2147483708
Offset: 1

Views

Author

Yasutoshi Kohmoto, Aug 15 2007

Keywords

Comments

G_n = {V_n, E_n}, V_n = {v_1, v_2, ..., v_n}, E_n = {v_1 v_2, v_2 v_3, ..., v_{n-1} v_n, v_n v_1}
See the definition of "stroke" in A089243.
A partition of a graph G into strokes S_i must satisfy the following conditions, where H is a digraph on G:
- Union_{i} S_i = H,
- i != j => S_i and S_j do not have a common edge,
- i != j => S_i U S_j is not a directed path,
- For all i, S_i is a dipath.
a(n) is also the number of maximal subsemigroups of the monoid of partial order preserving mappings on a set with n elements. - James Mitchell and Wilf A. Wilson, Jul 21 2017

Examples

			Figure for G_4: o-o-o-o-o Two vertices on both sides are the same.
		

Crossrefs

Programs

  • Magma
    [2^n + 2*(n-1): n in [1..30]]; // G. C. Greubel, Feb 13 2021
  • Mathematica
    Table[2^n + 2*(n-1), {n, 30}] (* G. C. Greubel, Feb 13 2021 *)
  • Sage
    [2^n + 2*(n-1) for n in (1..30)] # G. C. Greubel, Feb 13 2021
    

Formula

a(n) = 2*(n-1) + 2^n = 2*A006127(n-1).
G.f.: 2*x*(1 - x - x^2)/((1-x)^2 * (1-2*x)). - R. J. Mathar, Nov 14 2007
a(n) = 4*a(n-1)-5*a(n-2)+2*a(n-3). - Wesley Ivan Hurt, May 20 2021

Extensions

More terms from Max Alekseyev, Sep 29 2007

A226199 a(n) = 7^n + n.

Original entry on oeis.org

1, 8, 51, 346, 2405, 16812, 117655, 823550, 5764809, 40353616, 282475259, 1977326754, 13841287213, 96889010420, 678223072863, 4747561509958, 33232930569617, 232630513987224, 1628413597910467, 11398895185373162, 79792266297612021, 558545864083284028, 3909821048582988071
Offset: 0

Views

Author

Vincenzo Librandi, Jun 16 2013

Keywords

Comments

Smallest prime of this form is a(34) = 54116956037952111668959660883.
In general, the g.f. of a sequence of numbers of the form k^n + n is (1-x-(k-1)*x^2)/((1-k*x)*(x-1)^2) with main linear recurrence (k+2)*a(n-1) - (2*k+1)*a(n-2) + k*a(n-3). - Bruno Berselli, Jun 16 2013

Crossrefs

Cf. numbers of the form k^n + n: A006127 (k=2), A104743 (k=3), A158879 (k=4), A104745 (k=5), A226200 (k=6), this sequence (k=7), A226201 (k=8), A226202 (k=9), A081552 (k=10), A226737 (k=11).
Cf. A199483 (first differences), A370657.

Programs

  • Magma
    [7^n+n: n in [0..20]];
    
  • Magma
    I:=[1, 8, 51]; [n le 3 select I[n] else 9*Self(n-1)-15*Self(n-2)+7*Self(n-3): n in [1..30]];
    
  • Mathematica
    Table[7^n + n, {n, 0, 30}] (* or *) CoefficientList[Series[(1 - x - 6 x^2) / ((1 - 7 x) (1 - x)^2), {x, 0, 20}], x]
    LinearRecurrence[{9,-15,7},{1,8,51},30] (* Harvey P. Dale, Jun 16 2025 *)
  • PARI
    a(n)=7^n+n \\ Charles R Greathouse IV, Oct 07 2015

Formula

G.f.: (1-x-6*x^2)/((1-7*x)*(1-x)^2).
a(n) = 9*a(n-1) - 15*a(n-2) + 7*a(n-3).
E.g.f.: exp(x)*(exp(6*x) + x). - Elmo R. Oliveira, Mar 05 2025

A218577 Triangle read by rows: T(n,k) is the number of ascent sequences of length n with maximal element k-1.

Original entry on oeis.org

1, 1, 1, 1, 3, 1, 1, 7, 6, 1, 1, 15, 25, 11, 1, 1, 31, 90, 74, 20, 1, 1, 63, 301, 402, 209, 37, 1, 1, 127, 966, 1951, 1629, 590, 70, 1, 1, 255, 3025, 8869, 10839, 6430, 1685, 135, 1, 1, 511, 9330, 38720, 65720, 56878, 25313, 4870, 264, 1
Offset: 1

Views

Author

Joerg Arndt, Nov 03 2012

Keywords

Comments

Row sums are A022493.
Second column is A000225 (2^n - 1).
Third column appears to be A000392 (Stirling numbers S(n,3)).
Second diagonal (from the right) appears to be A006127 (2^n + n).

Examples

			Triangle starts:
1;
1,    1;
1,    3,     1;
1,    7,     6,      1;
1,   15,    25,     11,      1;
1,   31,    90,     74,     20,      1;
1,   63,   301,    402,    209,     37,      1;
1,  127,   966,   1951,   1629,    590,     70,     1;
1,  255,  3025,   8869,  10839,   6430,   1685,   135,     1;
1,  511,  9330,  38720,  65720,  56878,  25313,  4870,   264,   1;
1, 1023, 28501, 164676, 376114, 444337, 292695, 99996, 14209, 521, 1;
...
The 53 ascent sequences of length 5 are (dots for zeros):
[ #]     ascent-seq.   #max digit
[ 1]    [ . . . . . ]   0
[ 2]    [ . . . . 1 ]   1
[ 3]    [ . . . 1 . ]   1
[ 4]    [ . . . 1 1 ]   1
[ 5]    [ . . . 1 2 ]   2
[ 6]    [ . . 1 . . ]   1
[ 7]    [ . . 1 . 1 ]   1
[ 8]    [ . . 1 . 2 ]   2
[ 9]    [ . . 1 1 . ]   1
[10]    [ . . 1 1 1 ]   1
[11]    [ . . 1 1 2 ]   2
[12]    [ . . 1 2 . ]   2
[13]    [ . . 1 2 1 ]   2
[14]    [ . . 1 2 2 ]   2
[15]    [ . . 1 2 3 ]   3
[16]    [ . 1 . . . ]   1
[17]    [ . 1 . . 1 ]   1
[18]    [ . 1 . . 2 ]   2
[19]    [ . 1 . 1 . ]   1
[20]    [ . 1 . 1 1 ]   1
[21]    [ . 1 . 1 2 ]   2
[22]    [ . 1 . 1 3 ]   3
[23]    [ . 1 . 2 . ]   2
[24]    [ . 1 . 2 1 ]   2
[25]    [ . 1 . 2 2 ]   2
[26]    [ . 1 . 2 3 ]   3
[27]    [ . 1 1 . . ]   1
[28]    [ . 1 1 . 1 ]   1
[29]    [ . 1 1 . 2 ]   2
[...]
[49]    [ . 1 2 3 . ]   3
[50]    [ . 1 2 3 1 ]   3
[51]    [ . 1 2 3 2 ]   3
[52]    [ . 1 2 3 3 ]   3
[53]    [ . 1 2 3 4 ]   4
There is 1 sequence with maximum zero, 15 with maximum one, etc.,
therefore the fifth row is 1, 15, 25, 11, 1.
		

Crossrefs

Cf. A022493 (number of ascent sequences), A137251 (ascent sequences with k ascents), A175579 (ascent sequences with k zeros).
Cf. A218579 (ascent sequences with last zero at position k-1), A218580 (ascent sequences with first occurrence of the maximal value at position k-1), A218581 (ascent sequences with last occurrence of the maximal value at position k-1).

A226201 a(n) = 8^n + n.

Original entry on oeis.org

1, 9, 66, 515, 4100, 32773, 262150, 2097159, 16777224, 134217737, 1073741834, 8589934603, 68719476748, 549755813901, 4398046511118, 35184372088847, 281474976710672, 2251799813685265, 18014398509482002, 144115188075855891, 1152921504606846996, 9223372036854775829
Offset: 0

Views

Author

Vincenzo Librandi, Jun 16 2013

Keywords

Comments

Smallest prime of this form is a(101). - Bruno Berselli, Jun 17 2013

Crossrefs

Cf. numbers of the form k^n+n: A006127 (k=2), A104743 (k=3), A158879 (k=4), A104745 (k=5), A226200 (k=6), A226199 (k=7), this sequence (k=8), A226202 (k=9), A081552 (k=10), A226737 (k=11).
Cf. A199555 (first differences).

Programs

  • Magma
    [8^n+n: n in [0..30]];
    
  • Magma
    I:=[1, 9, 66]; [n le 3 select I[n] else 10*Self(n-1)-17*Self(n-2)+8*Self(n-3): n in [1..30]];
    
  • Mathematica
    Table[8^n + n, {n, 0, 30}] (* or *) CoefficientList[Series[(-1 + x + 7 x^2) / ((8 x - 1) (x - 1)^2), {x, 0, 30}], x]
    LinearRecurrence[{10,-17,8},{1,9,66},30] (* Harvey P. Dale, Aug 11 2015 *)
  • PARI
    a(n)=8^n+n \\ Charles R Greathouse IV, Oct 07 2015

Formula

G.f.: (-1+x+7*x^2)/((8*x-1)*(x-1)^2).
a(n) = 10*a(n-1) - 17*a(n-2) + 8*a(n-3).
E.g.f.: exp(x)*(exp(7*x) + x). - Elmo R. Oliveira, Mar 05 2025

A226202 a(n) = 9^n + n.

Original entry on oeis.org

1, 10, 83, 732, 6565, 59054, 531447, 4782976, 43046729, 387420498, 3486784411, 31381059620, 282429536493, 2541865828342, 22876792454975, 205891132094664, 1853020188851857, 16677181699666586, 150094635296999139, 1350851717672992108, 12157665459056928821, 109418989131512359230
Offset: 0

Views

Author

Vincenzo Librandi, Jun 16 2013

Keywords

Comments

After 83, the next prime of this form is a(76). - Bruno Berselli, Jun 18 2013

Crossrefs

Cf. numbers of the form k^n + n: A006127 (k=2), A104743 (k=3), A158879 (k=4), A104745 (k=5), A226200 (k=6), A226199 (k=7), A226201 (k=8), this sequence (k=9), A081552 (k=10), A226737 (k=11).
Cf. A199677 (first differences).

Programs

  • Magma
    [9^n+n: n in [0..30]];
    
  • Magma
    I:=[1, 10, 83]; [n le 3 select I[n] else 11*Self(n-1)-19*Self(n-2)+9*Self(n-3): n in [1..30]];
    
  • Mathematica
    Table[9^n + n, {n, 0, 30}] (* or *) CoefficientList[Series[(- 1 + x + 8 x^2) / ((9 x - 1) (x - 1)^2), {x, 0, 30}], x]
    LinearRecurrence[{11,-19,9},{1,10,83},20] (* Harvey P. Dale, Feb 03 2016 *)
  • PARI
    a(n)=9^n+n \\ Charles R Greathouse IV, Oct 07 2015

Formula

G.f.: (-1+x+8*x^2)/((9*x-1)*(x-1)^2).
a(n) = 11*a(n-1) - 19*a(n-2) + 9*a(n-3).
E.g.f.: exp(x)*(exp(8*x) + x). - Elmo R. Oliveira, Sep 09 2024

A053221 Row sums of triangle A053218.

Original entry on oeis.org

1, 5, 16, 43, 106, 249, 568, 1271, 2806, 6133, 13300, 28659, 61426, 131057, 278512, 589807, 1245166, 2621421, 5505004, 11534315, 24117226, 50331625, 104857576, 218103783, 452984806, 939524069, 1946157028, 4026531811, 8321499106
Offset: 1

Views

Author

Asher Auel, Jan 01 2000

Keywords

Comments

Considered as a vector, the sequence = A074909 * [1, 2, 3, ...], where A074909 is the beheaded Pascal's triangle as a matrix. - Gary W. Adamson, Mar 06 2012
a(n) is the sum of the upper left n X n subarray of A052509 (viewed as an infinite square array). For example (1+1+1) + (1+2+2) + (1+3+4) = 16. - J. M. Bergot, Nov 06 2012
Number of ternary strings of length n that contain at least one 2 and at most one 0. For example, a(3) = 16 since the strings are the 6 permutations of 201, the 3 permutations of 211, the 3 permutations of 220, the 3 permutations of 221, and 222. - Enrique Navarrete, Jul 25 2021

Examples

			a(4) = 4 + 7 + 12 + 20 = 43.
		

Crossrefs

Programs

  • Magma
    [(n+2)*2^(n-1)-n-1: n in [1..50]]; // G. C. Greubel, Sep 03 2018
  • Maple
    A053221 := proc(n) (n+2)*2^(n-1)-n-1 ; end proc: # R. J. Mathar, Sep 02 2011
  • Mathematica
    Table[(n + 2)*2^(n - 1) - n - 1, {n, 29}] (* or *)
    Rest@ CoefficientList[Series[-x (-1 + x + x^2)/((2 x - 1)^2*(x - 1)^2), {x, 0, 29}], x] (* Michael De Vlieger, Sep 22 2017 *)
    LinearRecurrence[{6,-13,12,-4},{1,5,16,43},30] (* Harvey P. Dale, Jun 28 2021 *)
  • PARI
    vector(50,n, (n+2)*2^(n-1)-n-1) \\ G. C. Greubel, Sep 03 2018
    

Formula

a(n) = (n+2)*2^(n-1)-n-1. - Vladeta Jovovic, Feb 28 2003
G.f.: -x*(-1+x+x^2) / ( (2*x-1)^2*(x-1)^2 ). - R. J. Mathar, Sep 02 2011
a(n) = (1/2) * Sum_{k=1..n} Sum_{i=1..n} C(k,i) + C(n,k). - Wesley Ivan Hurt, Sep 22 2017
E.g.f.: exp(x)*(exp(x)-1)*(1+x). - Enrique Navarrete, Jul 25 2021
a(n+1) = 2*a(n) + A006127(n). - Ya-Ping Lu, Jan 01 2024
Previous Showing 11-20 of 56 results. Next