cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-40 of 233 results. Next

A175298 Smallest number >=n whose binary representation is palindromic and has a 1 whenever the binary representation of n has a 1.

Original entry on oeis.org

0, 1, 3, 3, 5, 5, 7, 7, 9, 9, 15, 15, 15, 15, 15, 15, 17, 17, 27, 27, 21, 21, 31, 31, 27, 27, 27, 27, 31, 31, 31, 31, 33, 33, 51, 51, 45, 45, 63, 63, 45, 45, 63, 63, 45, 45, 63, 63, 51, 51, 51, 51, 63, 63, 63, 63, 63, 63, 63, 63, 63, 63, 63, 63, 65, 65, 99, 99, 85, 85, 119, 119, 73
Offset: 0

Views

Author

Leroy Quet, Mar 24 2010

Keywords

Comments

Old name: "Convert n to binary. OR each respective digit of binary n and binary A030101(n), where A030101(n) is the reversal of the order of the digits in the binary representation of n (given in decimal). a(n) is the decimal value of the result."
By "respective" digits of binary n and binary A030101(n), the rightmost digit of A030101(n) ( which is a 1) is OR'ed with the rightmost digit of n. A030101(n) is represented with the appropriate number of leading 0's.
This is the binary next-palindrome function, the base-2 analog of A262038. - N. J. A. Sloane, Dec 08 2015

Examples

			20 in binary is 10100. The reversal of the binary digits is 00101. So, from leftmost to rightmost respective digits, we OR 10100 and 00101: 1 OR 0 = 1. 0 OR 0 = 0. 1 OR 1 = 1. 0 OR 0 = 0. And 0 OR 1 = 1. So, 10100 OR 00101 is 10101, which is 21 in decimal. So a(20) = 21.
		

Crossrefs

Sequences related to palindromic floor and ceiling: A175298, A206913, A206914, A261423, A262038, and the large block of consecutive sequences beginning at A265509.

Programs

  • Mathematica
    Table[f = IntegerDigits[x, 2]; f = f + Reverse[f]; FromDigits[ Table[If[Positive[f[[r]]], 1, 0], {r, 1, Length[f]}], 2], {x, STARTPOINT, ENDPOINT}] (* Dylan Hamilton, Oct 15 2010 *)
    f[n_] := Block[{id = IntegerDigits[n, 2]}, FromDigits[ BitOr[ id, Reverse@id], 2]]; Array[f, 72] (* Robert G. Wilson v, Nov 07 2010 *)

Extensions

Extended, with redundant initial entries included, by Dylan Hamilton, Oct 15 2010
Edited with new name and offset by N. J. A. Sloane, Dec 08 2015

A206914 Least binary palindrome >= n; the binary palindrome ceiling function.

Original entry on oeis.org

0, 1, 3, 3, 5, 5, 7, 7, 9, 9, 15, 15, 15, 15, 15, 15, 17, 17, 21, 21, 21, 21, 27, 27, 27, 27, 27, 27, 31, 31, 31, 31, 33, 33, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 51, 51, 51, 51, 51, 51, 63, 63, 63, 63, 63, 63, 63, 63, 63, 63, 63, 63, 65, 65, 73, 73
Offset: 0

Views

Author

Hieronymus Fischer, Feb 15 2012

Keywords

Comments

For n > 0 also the least binary palindrome > n - 1;
a(n+1) is the least binary palindrome > n

Examples

			a(0) = 0 since 0 is the least binary palindrome >= 0;
a(1) = 1 since 1 is the least binary palindrome >= 1;
a(2) = 3 since 3 is the least binary palindrome >= 2;
a(5) = 5 since 5 is the least binary palindrome >= 5;
		

Crossrefs

Sequences related to palindromic floor and ceiling: A175298, A206913, A206914, A261423, A262038, and the large block of consecutive sequences beginning at A265509.

Programs

  • Haskell
    a206914 n = head $ dropWhile (< n) a006995_list
    -- Reinhard Zumkeller, Feb 27 2012

Formula

a(n) = A006995(A206916(n));
a(n) = A006995(A206916(A206913(n-1))+1);
a(n) = A006995(A206915(A206913(n-1))+1);

A057889 Bijective bit-reverse of n: keep the trailing zeros in the binary expansion of n fixed, but reverse all the digits up to that point.

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 13, 12, 11, 14, 15, 16, 17, 18, 25, 20, 21, 26, 29, 24, 19, 22, 27, 28, 23, 30, 31, 32, 33, 34, 49, 36, 41, 50, 57, 40, 37, 42, 53, 52, 45, 58, 61, 48, 35, 38, 51, 44, 43, 54, 59, 56, 39, 46, 55, 60, 47, 62, 63, 64, 65, 66, 97, 68, 81, 98, 113
Offset: 0

Views

Author

Marc LeBrun, Sep 25 2000

Keywords

Comments

The original name was "Bit-reverse of n, including as many leading as trailing zeros." - Antti Karttunen, Dec 25 2024
A permutation of integers consisting only of fixed points and pairs. a(n)=n when n is a binary palindrome (including as many leading as trailing zeros), otherwise a(n)=A003010(n) (i.e. n has no axis of symmetry). A057890 gives the palindromes (fixed points, akin to A006995) while A057891 gives the "antidromes" (pairs). See also A280505.
This is multiplicative in domain GF(2)[X], i.e. with carryless binary arithmetic. A193231 is another such permutation of natural numbers. - Antti Karttunen, Dec 25 2024

Examples

			a(6)=6 because 0110 is a palindrome, but a(11)=13 because 1011 reverses into 1101.
		

Crossrefs

Cf. A030101, A000265, A006519, A006995, A057890, A057891, A280505, A280508, A331166 [= min(n,a(n))], A366378 [k for which a(k) = k (mod 3)], A369044 [= A014963(a(n))].
Similar permutations for other bases: A263273 (base-3), A264994 (base-4), A264995 (base-5), A264979 (base-9).
Other related (binary) permutations: A056539, A193231.
Compositions of this permutation with other binary (or other base-related) permutations: A264965, A264966, A265329, A265369, A379471, A379472.
Compositions with permutations involving prime factorization: A245450, A245453, A266402, A266404, A293448, A366275, A366276.
Other derived permutations: A246200 [= a(3*n)/3], A266351, A302027, A302028, A345201, A356331, A356332, A356759, A366389.
See also A235027 (which is not a permutation).

Programs

  • Mathematica
    Table[FromDigits[Reverse[IntegerDigits[n, 2]], 2]*2^IntegerExponent[n, 2], {n, 71}] (* Ivan Neretin, Jul 09 2015 *)
  • PARI
    A030101(n) = if(n<1,0,subst(Polrev(binary(n)),x,2));
    A057889(n) = if(!n,n,A030101(n/(2^valuation(n,2))) * (2^valuation(n, 2))); \\ Antti Karttunen, Dec 25 2024
  • Python
    def a(n):
        x = bin(n)[2:]
        y = x[::-1]
        return int(str(int(y))+(len(x) - len(str(int(y))))*'0', 2)
    print([a(n) for n in range(101)]) # Indranil Ghosh, Jun 11 2017
    
  • Python
    def A057889(n): return int(bin(n>>(m:=(~n&n-1).bit_length()))[-1:1:-1],2)<Chai Wah Wu, Dec 25 2024
    

Formula

a(n) = A030101(A000265(n)) * A006519(n), with a(0)=0.

Extensions

Clarified the name with May 30 2016 comment from N. J. A. Sloane, and moved the old name to the comments - Antti Karttunen, Dec 25 2024

A052955 a(2n) = 2*2^n - 1, a(2n+1) = 3*2^n - 1.

Original entry on oeis.org

1, 2, 3, 5, 7, 11, 15, 23, 31, 47, 63, 95, 127, 191, 255, 383, 511, 767, 1023, 1535, 2047, 3071, 4095, 6143, 8191, 12287, 16383, 24575, 32767, 49151, 65535, 98303, 131071, 196607, 262143, 393215, 524287, 786431, 1048575, 1572863, 2097151, 3145727
Offset: 0

Views

Author

encyclopedia(AT)pommard.inria.fr, Jan 25 2000

Keywords

Comments

a(n) is the least k such that A056792(k) = n.
One quarter of the number of positive integer (n+2) X (n+2) arrays with every 2 X 2 subblock summing to 1. - R. H. Hardin, Sep 29 2008
Number of length n+1 left factors of Dyck paths having no DUU's (here U=(1,1) and D=(1,-1)). Example: a(4)=7 because we have UDUDU, UUDDU, UUDUD, UUUDD, UUUDU, UUUUD, and UUUUU (the paths UDUUD, UDUUU, and UUDUU do not qualify).
Number of binary palindromes < 2^n (see A006995). - Hieronymus Fischer, Feb 03 2012
Partial sums of A016116 (omitting the initial term). - Hieronymus Fischer, Feb 18 2012
a(n - 1), n > 1, is the number of maximal subsemigroups of the monoid of order-preserving or -reversing partial injective mappings on a set with n elements. - Wilf A. Wilson, Jul 21 2017
Number of monomials of the algebraic normal form of the Boolean function representing the n-th bit of the product 3x in terms of the bits of x. - Sebastiano Vigna, Oct 04 2020

Examples

			G.f. = 1 + 2*x + 3*x^2 + 5*x^3 + 7*x^4 + 11*x^5 + 15*x^6 + 23*x^7 + ... - _Michael Somos_, Jun 24 2018
		

Crossrefs

Cf. A000225 for even terms, A055010 for odd terms. See also A056792.
Essentially 1 more than A027383, 2 more than A060482. [Comment corrected by Klaus Brockhaus, Aug 09 2009]
Union of A000225 & A055010.
For partial sums see A027383.
See A016116 for the first differences.
The following sequences are all essentially the same, in the sense that they are simple transformations of each other, with A029744 = {s(n), n>=1}, the numbers 2^k and 3*2^k, as the parent: A029744 (s(n)); A052955 (s(n)-1), A027383 (s(n)-2), A354788 (s(n)-3), A347789 (s(n)-4), A209721 (s(n)+1), A209722 (s(n)+2), A343177 (s(n)+3), A209723 (s(n)+4); A060482, A136252 (minor differences from A354788 at the start); A354785 (3*s(n)), A354789 (3*s(n)-7). The first differences of A029744 are 1,1,1,2,2,4,4,8,8,... which essentially matches eight sequences: A016116, A060546, A117575, A131572, A152166, A158780, A163403, A320770. The bisections of A029744 are A000079 and A007283. - N. J. A. Sloane, Jul 14 2022

Programs

  • GAP
    List([0..45], n-> ((5-(-1)^n)/2)*2^((2*n-1+(-1)^n)/4)-1); # G. C. Greubel, Oct 22 2019
    
  • Haskell
    a052955 n = a052955_list !! n
    a052955_list = 1 : 2 : map ((+ 1) . (* 2)) a052955_list
    -- Reinhard Zumkeller, Feb 22 2012
    
  • Magma
    [((5-(-1)^n)/2)*2^((2*n-1+(-1)^n)/4)-1: n in [0..45]]; // G. C. Greubel, Oct 22 2019
    
  • Maple
    spec := [S,{S=Prod(Sequence(Prod(Union(Z,Z),Z)),Union(Sequence(Z),Z))}, unlabeled ]: seq(combstruct[count ](spec,size=n), n=0..20);
    a[0]:=0:a[1]:=1:for n from 2 to 100 do a[n]:=2*a[n-2]+2 od: seq(a[n]/2, n=2..43); # Zerinvary Lajos, Mar 16 2008
  • Mathematica
    a[n_]:= If[EvenQ[n], 2^(n/2+1) -1, 3*2^((n-1)/2) -1]; Table[a[n], {n, 0, 41}] (* Robert G. Wilson v, Jun 05 2004 *)
    a[0]=1; a[1]=2; a[n_]:= a[n]= 2 a[n-2] +1; Array[a, 42, 0]
    a[n_]:= (2 + Mod[n, 2]) 2^Quotient[n, 2] - 1; (* Michael Somos, Jun 24 2018 *)
  • PARI
    a(n)=(2+n%2)<<(n\2)-1 \\ Charles R Greathouse IV, Jun 19 2011
    
  • PARI
    {a(n) = (n%2 + 2) * 2^(n\2) - 1}; /* Michael Somos, Jun 24 2018 */
    
  • Perl
    # command line argument tells how high to take n
    # Beyond a(38) = 786431 you may need a special code to handle large integers
      $lim = shift;
      sub show{};
    $n = $incr = $P = 1;
    show($n, $incr, $P);
    $incr = 1;
    for $n (2..$lim) {
        $P += $incr;
        show($n, $P, $incr, $P);
        $incr *=2 if ($n % 2); # double the increment after an odd n
    }
    sub show {
        my($n, $P) = @_;
        printf("%4d\t%16g\n", $n, $P);
    }
    # Mark A. Mandel (thnidu aT  g ma(il) doT c0m), Dec 29 2010
    
  • Python
    def A052955(n): return ((2|n&1)<<(n>>1))-1 # Chai Wah Wu, Jul 13 2023
  • Sage
    [((5-(-1)^n)/2)*2^((2*n-1+(-1)^n)/4)-1 for n in (0..45)] # G. C. Greubel, Oct 22 2019
    

Formula

a(0)=1, a(1)=2; thereafter a(n) = 2*a(n-2) + 1, n >= 2.
G.f.: (1 + x - x^2)/((1 - x)*(1 - 2*x^2)).
a(n) = -1 + Sum_{alpha = RootOf(-1 + 2*Z^2)} (1/4) * (3 + 4*alpha) * alpha^(-1-n). (That is, the sum is indexed by the roots of the polynomial -1 + 2*Z^2.)
a(n) = 2^(n/2) * (3*sqrt(2)/4 + 1 - (3*sqrt(2)/4 - 1) * (-1)^n) - 1. - Paul Barry, May 23 2004
a(n) = 1 + Sum_{k=0..n-1} A016116(k). - Robert G. Wilson v, Jun 05 2004
A132340(a(n)) = A027383(n). - Reinhard Zumkeller, Aug 20 2007
From Hieronymus Fischer, Sep 15 2007: (Start)
a(n) = A027383(n-1) + 1 for n>0.
a(n) = A132666(a(n+1)-1).
a(n) = A132666(a(n-1)) + 1 for n>0.
A132666(a(n)) = a(n+1) - 1. (End)
a(n) = A027383(n+1)/2. - Zerinvary Lajos, Mar 16 2008
a(n) = (5 - (-1)^n)/2*2^floor(n/2) - 1. - Hieronymus Fischer, Feb 03 2012
a(2n+1) = (a(2*n) + a(2*n+2))/2. Combined with a(n) = 2*a(n-2) + 1, n >= 2 and a(0) = 1, this specifies the sequence. - Richard R. Forberg, Nov 30 2013
a(n) = ((5 - (-1)^n)/2)*2^((2*n - 1 + (-1)^n)/4) - 1. - Luce ETIENNE, Sep 20 2014
a(n) = -(2^(n+1)) * A107659(-3-n) for all n in Z. - Michael Somos, Jun 24 2018
E.g.f.: (1/4)*exp(-sqrt(2)*x)*(4 - 3*sqrt(2) + (4 + 3*sqrt(2))*exp(2*sqrt(2)*x) - 4*exp(x + sqrt(2)*x)). - Stefano Spezia, Oct 22 2019
A term k appears in this sequence <=> 4 does not divide binomial(k, j) for any j in 0..k. - Peter Luschny, Jun 28 2025

Extensions

Formula and more terms from Henry Bottomley, May 03 2000
Additional comments from Robert G. Wilson v, Jan 29 2001
Minor edits from N. J. A. Sloane, Jul 09 2022

A014551 Jacobsthal-Lucas numbers.

Original entry on oeis.org

2, 1, 5, 7, 17, 31, 65, 127, 257, 511, 1025, 2047, 4097, 8191, 16385, 32767, 65537, 131071, 262145, 524287, 1048577, 2097151, 4194305, 8388607, 16777217, 33554431, 67108865, 134217727, 268435457, 536870911, 1073741825, 2147483647, 4294967297, 8589934591
Offset: 0

Views

Author

Keywords

Comments

Also gives the number of points of period n in the subshift of finite type corresponding to the square matrix A=[1,2;1,0] (this is then given by trace(A^n)). - Thomas Ward, Mar 07 2001
Sequence is identical to its signed inverse binomial transform (autosequence of the second kind). - Paul Curtz, Jul 11 2008
a(n) can be expressed in terms of values of the Fibonacci polynomials F_n(x), computed at x=1/sqrt(2). - Tewodros Amdeberhan (tewodros(AT)math.mit.edu), Dec 15 2008
Pisano period lengths: 1, 1, 2, 2, 4, 2, 6, 2, 6, 4, 10, 2, 12, 6, 4, 2, 8, 6, 18, 4, ... - R. J. Mathar, Aug 10 2012
Let F(x) = Product_{n >= 0} (1 - x^(3*n+1))/(1 - x^(3*n+2)). This sequence is the simple continued fraction expansion of the real number 1 + F(-1/2) = 2.83717 78068 73232 99799 ... = 2 + 1/(1 + 1/(5 + 1/(7 + 1/(17 + ...)))). See A111317. - Peter Bala, Dec 26 2012
With different signs, 2, -1, 5, -7, 17, -31, 65, -127, 257, -511, 1025, -2047, ... is the Lucas V(-1,-2) sequence. - R. J. Mathar, Jan 08 2013
The identity 2 = 2/2 + 2^2/(2*1) - 2^3/(2*1*5) - 2^4/(2*1*5*7) + 2^5/(2*1*5*7*17) + 2^6/(2*1*5*7*17*31) - - + + can be viewed as a generalized Engel-type expansion of the number 2 to the base 2. Compare with A062510. - Peter Bala, Nov 13 2013
For n >= 2, a(n) is the number of ways to tile a 2 X n strip, where the first two columns have an extra cell at the top, with 1 X 2 dominoes and 2 X 2 squares. Shown here is one of the a(7)=127 ways for the n=7 case:
._.
|_|_________.
| | | |_| |
||__|_|_|_|. - Greg Dresden, Sep 26 2021
Named by Horadam (1988) after the German mathematician Ernst Jacobsthal (1882-1965) and the French mathematician Édouard Lucas (1842-1891). - Amiram Eldar, Oct 02 2023

References

  • G. Everest, A. van der Poorten, I. Shparlinski and T. Ward, Recurrence Sequences, Amer. Math. Soc., 2003; see esp. pp. 180, 255.
  • Lind and Marcus, An Introduction to Symbolic Dynamics and Coding, Cambridge University Press, 1995. (General material on subshifts of finite type)
  • Kritkhajohn Onphaeng and Prapanpong Pongsriiam. Jacobsthal and Jacobsthal-Lucas Numbers and Sums Introduced by Jacobsthal and Tverberg. Journal of Integer Sequences, Vol. 20 (2017), Article 17.3.6.
  • Abdelmoumène Zekiri, Farid Bencherif, Rachid Boumahdi, Generalization of an Identity of Apostol, J. Int. Seq., Vol. 21 (2018), Article 18.5.1.

Crossrefs

Cf. A001045 (companion "autosequence"), A019322, A066845, A111317.
Cf. A135440 (first differences), A166920 (partial sums).
Cf. A006995.

Programs

Formula

a(n+1) = 2 * a(n) - (-1)^n * 3.
From Len Smiley, Dec 07 2001: (Start)
a(n) = 2^n + (-1)^n.
G.f.: (2-x)/(1-x-2*x^2). (End)
E.g.f.: exp(x) + exp(-2*x) produces a signed version. - Paul Barry, Apr 27 2003
a(n+1) = Sum_{k=0..floor(n/2)} binomial(n-1, 2*k)*3^(2*k)/2^(n-2). - Paul Barry, Feb 21 2003
0, 1, 5, 7 ... is 2^n - 2*0^n + (-1)^n, the 2nd inverse binomial transform of (2^n-1)^2 (A060867). - Paul Barry, Sep 05 2003
a(n) = 2*T(n, i/(2*sqrt(2))) * (-i*sqrt(2))^n with i^2=-1. - Paul Barry, Nov 17 2003
a(n) = A078008(n) + A001045(n+1). - Paul Barry, Feb 12 2004
a(n) = 2*A001045(n+1) - A001045(n). - Paul Barry, Mar 22 2004
a(0)=2, a(1)=1, a(n) = a(n-1) + 2*a(n-2) for n > 1. - Philippe Deléham, Nov 07 2006
a(2*n+1) = Product_{d|(2*n+1)} cyclotomic(d,2). a(2^k*(2*n+1)) = Product_{d|(2*n+1)} cyclotomic(2*d,2^(2^k)). - Miklos Kristof, Mar 12 2007
a(n) = 2^{(n-1)/2}F_{n-1}(1/sqrt(2)) + 2^{(n+2)/2}F_{n-2}(1/sqrt(2)). - Tewodros Amdeberhan (tewodros(AT)math.mit.edu), Dec 15 2008
E.g.f.: U(0) where U(k) = 1 + (-1)^k/(2^k - 4^k*x*2/(2*x*2^k + (-1)^k*(k+1)/U(k+1))) ; (continued fraction, 3rd kind, 3-step). - Sergei N. Gladkovskii, Nov 02 2012
G.f.: U(0) where U(k) = 1 + (-1)^k/(2^k - 4^k*x*2/(2*x*2^k + (-1)^k/U(k+1))) ; (continued fraction, 3rd kind, 3-step). - Sergei N. Gladkovskii, Nov 02 2012
a(n) = sqrt(9*(A001045)^2 + (-1)^n*2^(n+2)). - Vladimir Shevelev, Mar 13 2013
G.f.: 2 + G(0)*x*(1+4*x)/(2-x), where G(k) = 1 + 1/(1 - x*(9*k-1)/( x*(9*k+8) - 2/G(k+1) )); (continued fraction). - Sergei N. Gladkovskii, Aug 13 2013
a(n) = [x^n] ( (1 + x + sqrt(1 + 2*x + 9*x^2))/2 )^n for n >= 1. - Peter Bala, Jun 23 2015
For n >= 1: a(n) = A006995(2^((n+2)/2)) when n is even, a(n) = A006995(3*2^((n-1)/2) - 1) when n is odd. - Bob Selcoe, Sep 04 2017
a(n) = J(n) + 4*J(n-1), a(0)=2, where J is A001045. - Yuchun Ji, Apr 23 2019
For n >= 0, 1/(2*a(n+1)) = Sum_{m>=n} a(m)/(a(m+1)*a(m+2)). - Kai Wang, Mar 03 2020
For 4 > h >= 0, k >= 0, a(4*k+h) mod 5 = a(h) mod 5. - Kai Wang, May 06 2020
From Kai Wang, May 30 2020: (Start)
(2 - a(n+1)/a(n))/9 = Sum_{m>=n} (-2)^m/(a(m)*a(m+1)).
a(n) = 2*A001045(n+1) - A001045(n).
a(n)^2 = a(2*n) + 2*(-2)^n.
a(n)^2 = 9*A001045(n)^2 + 4*(-2)^n.
a(2*n) = 9*A001045(n)^2 + 2*(-2)^n.
2*A001045(m+n) = A001045(m)*a(n) + a(m)*A001045(n).
2*(-2)^n*A001045(m-n) = A001045(m)*a(n) - a(m)*A001045(n).
A001045(m+n) + (-2)^n*A001045(m-n) = A001045(m)*a(n).
A001045(m+n) - (-2)^n*A001045(m-n) = a(m)*A001045(n).
2*a(m+n) = 9*A001045(m)*A001045(n) + a(m)*a(n).
2*(-2)^n*a(m-n) = a(m)*a(n) - 9*A001045(m)*A001045(n).
a(m+n) - (-2)^n*a(m-n) = 9*A001045(m)*A001045(n).
a(m+n) + (-2)^n*a(m-n) = a(m)*a(n).
a(m+n)*a(m-n) - a(m)*a(m) = 9*(-2)^(m-n)*A001045(n)^2.
a(m+1)*a(n) - a(m)*a(n+1) = 9*(-2)^n*A001045(m-n). (End)
a(n) = F(n+1) + F(n-1) + Sum_{k=0..(n-2)} a(k)*F(n-1-k) for F(n) the Fibonacci numbers and for n > 1. - Greg Dresden, Jun 03 2020

A007632 Numbers that are palindromic in bases 2 and 10.

Original entry on oeis.org

0, 1, 3, 5, 7, 9, 33, 99, 313, 585, 717, 7447, 9009, 15351, 32223, 39993, 53235, 53835, 73737, 585585, 1758571, 1934391, 1979791, 3129213, 5071705, 5259525, 5841485, 13500531, 719848917, 910373019, 939474939, 1290880921, 7451111547
Offset: 1

Views

Author

Keywords

Comments

Charlton Harrison found a new record binary-decimal palindrome: 11000101111000010101010110100001110100000100000101110000101101010101000011110100011_2 = 7475703079870789703075747_10 on Dec 01 2001. The binary string contains 83 digits! Since then he has added twenty more terms. - Robert G. Wilson v, Jul 03 2006
Intersection of A002113 and A006995. - Reinhard Zumkeller, Jan 22 2012, Feb 07 2010

References

  • M. R. Calandra, Integers which are palindromic in both decimal and binary notation, J. Rec. Math., 18 (No. 1, 1985-1986), 47.
  • S. Pilpel, Some More Double Palindromic Integers, J. Rec. Math., 18 (1985), 174-176.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

For number of terms less than or equal to 10^n, see A120764.

Programs

  • Haskell
    a007632 n = a007632_list !! (n-1)
    a007632_list = filter ((== 1) . a178225) a002113_list
    -- Reinhard Zumkeller, Jan 22 2012
    
  • Magma
    [n: n in [0..2*10^7] | Intseq(n, 10) eq Reverse(Intseq(n, 10))and Intseq(n, 2) eq Reverse(Intseq(n, 2))]; // Vincenzo Librandi, Dec 31 2015
    
  • Maple
    N:= 12: # to get all terms <= 10^N
    ispal2:= proc(n) local L; if n::even then return false fi;
      L:= convert(n,base,2); evalb(L=ListTools:-Reverse(L)) end proc:
    rev10:= proc(n) local L; L:= convert(n,base,10); add(10^i*L[-i-1],i=0..nops(L)-1) end proc:
    pals10:= proc(d) local x,y;
      if d::even then [seq(x*10^(d/2)+rev10(x),x=10^(d/2-1)..10^(d/2)-1)]
      else [seq(seq(x*10^((d+1)/2)+y*10^((d-1)/2)+rev10(x), y=0..9), x=10^((d-1)/2-1)..10^((d-1)/2)-1)]
      fi
    end proc:
    0, 1, 3, 5, 7, 9, seq(op(select(ispal2,pals10(d))),d=2..N); # Robert Israel, Dec 31 2015
  • Mathematica
    NextPalindrome[n_] := Block[{l = Floor[ Log[10, n] + 1], idn = IntegerDigits[n]}, If[ Union[ idn] == {9}, Return[n + 2], If[l < 2, Return[n + 1], If[ FromDigits[ Reverse[ Take[idn, Ceiling[l/2]] ]] > FromDigits[ Take[idn, -Ceiling[l/2]]], FromDigits[ Join[ Take[idn, Ceiling[l/2]], Reverse[ Take[idn, Floor[l/2]]] ]], idfhn = FromDigits[ Take[idn, Ceiling[l/2]]] + 1; idp = FromDigits[ Join[ IntegerDigits[ idfhn], Drop[ Reverse[ IntegerDigits[ idfhn]], Mod[l, 2]] ]] ]] ]]; palQ[n_Integer, base_Integer]:= Block[{idn = IntegerDigits[n, base]}, idn == Reverse[idn]]; l = {0}; a = 0; Do[a = NextPalindrome[a]; If[ palQ[a, 2], AppendTo[l, a]], {n, 1000000}]; l (* Robert G. Wilson v, Sep 30 2004 *)
    b1=2; b2=10; lst={}; Do[d1=IntegerDigits[n, b1]; d2=IntegerDigits[n, b2]; If[d1==Reverse[d1]&&d2==Reverse[d2], AppendTo[lst, n]], {n, 0, 2 10^7}]; lst (* Vincenzo Librandi, Dec 31 2015 *)
    Select[Range[0,10^5], PalindromeQ[#] && # == IntegerReverse[#, 2] &] (* Robert Price, Nov 09 2019 *)
  • PARI
    isok(n) = my(d = digits(n), b=binary(n)); (d == Vecrev(d)) && (b == Vecrev(b)); \\ Michel Marcus, Dec 31 2015
  • Python
    from itertools import chain
    A007632_list = sorted([n for n in chain((int(str(x)+str(x)[::-1]) for x in range(1,10**6)),(int(str(x)+str(x)[-2::-1]) for x in range(10**6))) if bin(n)[2:] == bin(n)[:1:-1]]) # Chai Wah Wu, Nov 23 2014
    

Extensions

One more term from George Russell (ger(AT)tzi.de), Nov 20 2000
Two further terms from Harvey P. Dale, Mar 09 2001
Further terms from George Russell (ger(AT)tzi.de), Nov 02 2001

A014190 Palindromes in base 3 (written in base 10).

Original entry on oeis.org

0, 1, 2, 4, 8, 10, 13, 16, 20, 23, 26, 28, 40, 52, 56, 68, 80, 82, 91, 100, 112, 121, 130, 142, 151, 160, 164, 173, 182, 194, 203, 212, 224, 233, 242, 244, 280, 316, 328, 364, 400, 412, 448, 484, 488, 524, 560, 572, 608, 644, 656, 692, 728, 730, 757
Offset: 1

Views

Author

Keywords

Comments

Rajasekaran, Shallit, & Smith prove that this sequence is an additive basis of order (exactly) 3. - Charles R Greathouse IV, May 03 2020

Crossrefs

Cf. A007089, A118594, A134027, A330312 (first differences).
Palindromes in bases 2 through 10: A006995, A014190, A014192, A029952, A029953, A029954, A029803, A029955, A002113.

Programs

  • Magma
    [n: n in [0..800] | Intseq(n, 3) eq Reverse(Intseq(n, 3))]; // Vincenzo Librandi, Sep 09 2015
    
  • Maple
    isA014190 := proc(n)
        local L;
        L := convert(n,base,3) ;
        ListTools[Reverse](L) = L ;
    end proc:
    for n from 0 to 500 do
        if isA014190(n) then
            printf("%d,",n) ;
        end if;
    end do: # R. J. Mathar, Jul 07 2015
  • Mathematica
    f[n_,b_] := Module[{i=IntegerDigits[n,b]}, i==Reverse[i]]; lst={}; Do[If[f[n,3], AppendTo[lst,n]], {n,1000}]; lst (* Vladimir Joseph Stephan Orlovsky, Jul 08 2009 *)
  • PARI
    ispal(n,b=3)=my(d=digits(n,b)); d==Vecrev(d) \\ Charles R Greathouse IV, May 03 2020
    
  • Python
    from gmpy2 import digits
    def A014190(n):
        if n == 1: return 0
        y = 3*(x:=3**(len(digits(n>>1,3))-1))
        return int((c:=n-x)*x+int(digits(c,3)[-2::-1]or'0',3) if nChai Wah Wu, Jun 13 2024
  • Sage
    [n for n in (0..757) if Word(n.digits(3)).is_palindrome()] # Peter Luschny, Sep 13 2018
    

Formula

Sum_{n>=2} 1/a(n) = 2.61676111... (Phunphayap and Pongsriiam, 2019). - Amiram Eldar, Oct 17 2020

A016041 Primes that are palindromic in base 2 (but written here in base 10).

Original entry on oeis.org

3, 5, 7, 17, 31, 73, 107, 127, 257, 313, 443, 1193, 1453, 1571, 1619, 1787, 1831, 1879, 4889, 5113, 5189, 5557, 5869, 5981, 6211, 6827, 7607, 7759, 7919, 8191, 17377, 18097, 18289, 19433, 19609, 19801, 21157, 22541, 22669, 22861, 23581, 24029
Offset: 1

Views

Author

Keywords

Comments

See A002385 for palindromic primes in base 10, and A256081 for primes whose binary expansion is "balanced" (see there) but not palindromic. - M. F. Hasler, Mar 14 2015
Number of terms less than 4^k, k=1,2,3,...: 1, 3, 5, 8, 11, 18, 30, 53, 93, 187, 329, 600, 1080, 1936, 3657, 6756, 12328, 23127, 43909, 83377, 156049, 295916, 570396, 1090772, 2077090, 3991187, 7717804, 14825247, 28507572, 54938369, 106350934, ..., partial sums of A095741 plus 1. - Robert G. Wilson v, Feb 23 2018, corrected by Jeppe Stig Nielsen, Jun 17 2023

Crossrefs

Intersection of A000040 and A006995.
First row of A095749.
A095741 gives the number of terms in range [2^(2n), 2^(2n+1)].
Cf. A095730 (primes whose Zeckendorf expansion is palindromic), A029971 (primes whose ternary (base-3) expansion is palindromic).
Cf. A117697 (written in base 2), A002385, A194097, A256081.

Programs

  • Magma
    [NthPrime(n): n in [1..5000] | (Intseq(NthPrime(n), 2) eq Reverse(Intseq(NthPrime(n), 2)))]; // Vincenzo Librandi, Feb 24 2018
    
  • Mathematica
    lst = {}; Do[ If[ PrimeQ@n, t = IntegerDigits[n, 2]; If[ FromDigits@t == FromDigits@ Reverse@ t, AppendTo[lst, n]]], {n, 3, 50000, 2}]; lst (* syntax corrected by Robert G. Wilson v, Aug 10 2009 *)
    pal2Q[n_] := Reverse[x = IntegerDigits[n, 2]] == x; Select[Prime[Range[2800]], pal2Q[#] &] (* Jayanta Basu, Jun 23 2013 *)
    genPal[n_Integer, base_Integer: 10] := Block[{id = IntegerDigits[n, base], insert = Join[{{}}, {# - 1} & /@ Range[base]]}, FromDigits[#, base] & /@ (Join[id, #, Reverse@id] & /@ insert)]; k = 0; lst = {}; While[k < 100, AppendTo[lst, Select[ genPal[k, 2], PrimeQ]]; lst = Flatten@ lst; k++]; lst (* Robert G. Wilson v, Feb 23 2018 *)
  • PARI
    is(n)=isprime(n)&&Vecrev(n=binary(n))==n \\ M. F. Hasler, Feb 23 2018
    
  • Python
    from sympy import isprime
    def ok(n): return isprime(n) and (b:=bin(n)[2:]) == b[::-1]
    print([k for k in range(10**5) if ok(k)]) # Michael S. Branicky, Apr 20 2024

Formula

Sum_{n>=1} 1/a(n) = A194097. - Amiram Eldar, Mar 19 2021

Extensions

More terms from Patrick De Geest

A029803 Numbers that are palindromic in base 8.

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 6, 7, 9, 18, 27, 36, 45, 54, 63, 65, 73, 81, 89, 97, 105, 113, 121, 130, 138, 146, 154, 162, 170, 178, 186, 195, 203, 211, 219, 227, 235, 243, 251, 260, 268, 276, 284, 292, 300, 308, 316, 325, 333, 341, 349, 357, 365, 373, 381, 390, 398
Offset: 1

Views

Author

Keywords

Comments

Cilleruelo, Luca, & Baxter prove that this sequence is an additive basis of order (exactly) 3. - Charles R Greathouse IV, May 03 2020

Crossrefs

Palindromes in bases 2 through 10: A006995, A014190, A014192, A029952, A029953, A029954, A029803, A029955, A002113.

Programs

  • Mathematica
    f[n_,b_] := Module[{i=IntegerDigits[n,b]}, i==Reverse[i]]; lst={}; Do[If[f[n,8], AppendTo[lst,n]], {n,1000}]; lst (* Vladimir Joseph Stephan Orlovsky, Jul 08 2009 *)
  • PARI
    ispal(n,b=8)=my(d=digits(n,b)); d==Vecrev(d) \\ Charles R Greathouse IV, May 03 2020
    
  • Python
    from itertools import chain, count, islice
    def A029803_gen(): # generator of terms
        return chain((0,),chain.from_iterable(chain((int((s:=oct(d)[2:])+s[-2::-1],8) for d in range(8**l,8**(l+1))), (int((s:=oct(d)[2:])+s[::-1],8) for d in range(8**l,8**(l+1)))) for l in count(0)))
    A029803_list = list(islice(A029803_gen(),20)) # Chai Wah Wu, Jun 23 2022
    
  • Python
    def A029803(n):
        if n == 1: return 0
        y = (x:=1<<(m:=n.bit_length()-2)-m%3)<<3
        return (c:=n-x)*x+int(oct(c)[-2:1:-1]or'0',8) if nChai Wah Wu, Jun 13 2024

Formula

Sum_{n>=2} 1/a(n) = 3.2188878... (Phunphayap and Pongsriiam, 2019). - Amiram Eldar, Oct 17 2020

A029955 Palindromic in base 9.

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 6, 7, 8, 10, 20, 30, 40, 50, 60, 70, 80, 82, 91, 100, 109, 118, 127, 136, 145, 154, 164, 173, 182, 191, 200, 209, 218, 227, 236, 246, 255, 264, 273, 282, 291, 300, 309, 318, 328, 337, 346, 355, 364, 373, 382, 391, 400, 410, 419, 428, 437
Offset: 1

Views

Author

Keywords

Comments

Cilleruelo, Luca, & Baxter prove that this sequence is an additive basis of order (exactly) 3. - Charles R Greathouse IV, May 03 2020

Crossrefs

Palindromes in bases 2 through 10: A006995, A014190, A014192, A029952, A029953, A029954, A029803, A029955, A002113.

Programs

  • Mathematica
    f[n_,b_] := Module[{i=IntegerDigits[n,b]}, i==Reverse[i]]; lst={}; Do[If[f[n,9], AppendTo[lst,n]], {n,1000}]; lst (* Vladimir Joseph Stephan Orlovsky, Jul 08 2009 *)
  • PARI
    ispal(n,b=9)=my(d=digits(n,b)); d==Vecrev(d) \\ Charles R Greathouse IV, May 03 2020
  • Python
    from gmpy2 import digits
    def palQgen(l,b): # generator of palindromes in base b of length <= 2*l
        if l > 0:
            yield 0
            for x in range(1,l+1):
                for y in range(b**(x-1),b**x):
                    s = digits(y,b)
                    yield int(s+s[-2::-1],b)
                for y in range(b**(x-1),b**x):
                    s = digits(y,b)
                    yield int(s+s[::-1],b)
    A029955_list = list(palQgen(4,9)) # Chai Wah Wu, Dec 01 2014
    
  • Python
    from gmpy2 import digits
    def A029955(n):
        if n == 1: return 0
        y = 9*(x:=9**(len(digits(n>>1,9))-1))
        return int((c:=n-x)*x+int(digits(c,9)[-2::-1]or'0',9) if nChai Wah Wu, Jun 14 2024
    

Formula

Sum_{n>=2} 1/a(n) = 3.29797695... (Phunphayap and Pongsriiam, 2019). - Amiram Eldar, Oct 17 2020
Previous Showing 31-40 of 233 results. Next