cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-40 of 204 results. Next

A060816 a(0) = 1; a(n) = (5*3^(n-1) - 1)/2 for n > 0.

Original entry on oeis.org

1, 2, 7, 22, 67, 202, 607, 1822, 5467, 16402, 49207, 147622, 442867, 1328602, 3985807, 11957422, 35872267, 107616802, 322850407, 968551222, 2905653667, 8716961002, 26150883007, 78452649022, 235357947067, 706073841202
Offset: 0

Views

Author

Jason Earls, Apr 29 2001

Keywords

Comments

From Erich Friedman's math magic page 2nd paragraph under "Answers" section.
Let A be the Hessenberg matrix of order n, defined by: A[1,j] = 1, A[i,i] = 2,(i>1), A[i,i-1] = -1, and A[i,j] = 0 otherwise. Then, for n >= 1, a(n) = (-1)^n*charpoly(A,-1). - Milan Janjic, Jan 26 2010
If n > 0 and H = hex number (A003215), then 9*H(a(n)) - 2 = H(a(n+1)), for example 9*H(2) - 2 = 9*19 - 2 = 169 = H(7). For n > 2, this is a subsequence of A017209, see formula. - Klaus Purath, Mar 31 2021
Consider the Tower of Hanoi puzzle of order n (i.e., with n rings to be moved). Label each ring with a distinct symbol from an alphabet of size n. Construct words by performing moves according to the standard rules of the puzzle, recording the corresponding symbol each time a ring is moved. To ensure finiteness, we forbid returning to any previously encountered state. Additionally, we impose the constraint that the same ring cannot be moved twice in succession. Then, a(n) is the number of distinct words that can be formed under these rules. - Thomas Baruchel, Jul 22 2025

Crossrefs

Cf. A005030 (first differences), A244762 (partial sums).

Programs

Formula

The following is a summary of formulas added over the past 18 years.
a(n) = A057198(n) - 1.
a(n) = 3*a(n-1) + 1; with a(0)=1, a(1)=2. - Jason Earls, Apr 29 2001
From Henry Bottomley, May 01 2001: (Start)
For n>0, a(n) = a(n-1)+5*3^(n-2) = a(n-1)+A005030(n-2).
For n>0, a(n) = (5*A003462(n)+1)/3. (End)
From Colin Barker, Apr 24 2012: (Start)
a(n) = 4*a(n-1) - 3*a(n-2) for n > 2.
G.f.: (1-2*x+2*x^2)/((1-x)*(1-3*x)). (End)
a(n+1) = A134931(n) + 1. - Philippe Deléham, Apr 14 2013
For n > 0, A008343(a(n)) = 0. - Dmitry Kamenetsky, Feb 14 2017
For n > 0, a(n) = floor(3^n*5/6). - M. F. Hasler, Apr 06 2019
From Klaus Purath, Mar 31 2021: (Start)
a(n) = A017209(a(n-2)), n > 2.
a(n) = 2 + Sum_{i = 0..n-2} A005030(i).
a(n+1)*a(n+2) = a(n)*a(n+3) + 20*3^n, n > 1.
a(n) = 3^n - A007051(n-1). (End)
E.g.f.: (5*exp(3*x) - 3*exp(x) + 4)/6. - Stefano Spezia, Aug 28 2023

Extensions

Edited by M. F. Hasler, Apr 06 2019 and by N. J. A. Sloane, Apr 09 2019

A193649 Q-residue of the (n+1)st Fibonacci polynomial, where Q is the triangular array (t(i,j)) given by t(i,j)=1. (See Comments.)

Original entry on oeis.org

1, 1, 3, 5, 15, 33, 91, 221, 583, 1465, 3795, 9653, 24831, 63441, 162763, 416525, 1067575, 2733673, 7003971, 17938661, 45954543, 117709185, 301527355, 772364093, 1978473511
Offset: 0

Views

Author

Clark Kimberling, Aug 02 2011

Keywords

Comments

Suppose that p=p(0)*x^n+p(1)*x^(n-1)+...+p(n-1)*x+p(n) is a polynomial of positive degree and that Q is a sequence of polynomials: q(k,x)=t(k,0)*x^k+t(k,1)*x^(k-1)+...+t(k,k-1)*x+t(k,k), for k=0,1,2,... The Q-downstep of p is the polynomial given by D(p)=p(0)*q(n-1,x)+p(1)*q(n-2,x)+...+p(n-1)*q(0,x)+p(n).
Since degree(D(p))
Example: let p(x)=2*x^3+3*x^2+4*x+5 and q(k,x)=(x+1)^k.
D(p)=2(x+1)^2+3(x+1)+4(1)+5=2x^2+7x+14
D(D(p))=2(x+1)+7(1)+14=2x+23
D(D(D(p)))=2(1)+23=25;
the Q-residue of p is 25.
We may regard the sequence Q of polynomials as the triangular array formed by coefficients:
t(0,0)
t(1,0)....t(1,1)
t(2,0)....t(2,1)....t(2,2)
t(3,0)....t(3,1)....t(3,2)....t(3,3)
and regard p as the vector (p(0),p(1),...,p(n)). If P is a sequence of polynomials [or triangular array having (row n)=(p(0),p(1),...,p(n))], then the Q-residues of the polynomials form a numerical sequence.
Following are examples in which Q is the triangle given by t(i,j)=1 for 0<=i<=j:
Q.....P...................Q-residue of P
1.....1...................A000079, 2^n
1....(x+1)^n..............A007051, (1+3^n)/2
1....(x+2)^n..............A034478, (1+5^n)/2
1....(x+3)^n..............A034494, (1+7^n)/2
1....(2x+1)^n.............A007582
1....(3x+1)^n.............A081186
1....(2x+3)^n.............A081342
1....(3x+2)^n.............A081336
1.....A040310.............A193649
1....(x+1)^n+(x-1)^n)/2...A122983
1....(x+2)(x+1)^(n-1).....A057198
1....(1,2,3,4,...,n)......A002064
1....(1,1,2,3,4,...,n)....A048495
1....(n,n+1,...,2n).......A087323
1....(n+1,n+2,...,2n+1)...A099035
1....p(n,k)=(2^(n-k))*3^k.A085350
1....p(n,k)=(3^(n-k))*2^k.A090040
1....A008288 (Delannoy)...A193653
1....A054142..............A101265
1....cyclotomic...........A193650
1....(x+1)(x+2)...(x+n)...A193651
1....A114525..............A193662
More examples:
Q...........P.............Q-residue of P
(x+1)^n...(x+1)^n.........A000110, Bell numbers
(x+1)^n...(x+2)^n.........A126390
(x+2)^n...(x+1)^n.........A028361
(x+2)^n...(x+2)^n.........A126443
(x+1)^n.....1.............A005001
(x+2)^n.....1.............A193660
A094727.....1.............A193657
(k+1).....(k+1)...........A001906 (even-ind. Fib. nos.)
(k+1).....(x+1)^n.........A112091
(x+1)^n...(k+1)...........A029761
(k+1)......A049310........A193663
(In these last four, (k+1) represents the triangle t(n,k)=k+1, 0<=k<=n.)
A051162...(x+1)^n.........A193658
A094727...(x+1)^n.........A193659
A049310...(x+1)^n.........A193664
Changing the notation slightly leads to the Mathematica program below and the following formulation for the Q-downstep of p: first, write t(n,k) as q(n,k). Define r(k)=Sum{q(k-1,i)*r(k-1-i) : i=0,1,...,k-1} Then row n of D(p) is given by v(n)=Sum{p(n,k)*r(n-k) : k=0,1,...,n}.

Examples

			First five rows of Q, coefficients of Fibonacci polynomials (A049310):
1
1...0
1...0...1
1...0...2...0
1...0...3...0...1
To obtain a(4)=15, downstep four times:
D(x^4+3*x^2+1)=(x^3+x^2+x+1)+3(x+1)+1: (1,1,4,5) [coefficients]
DD(x^4+3*x^2+1)=D(1,1,4,5)=(1,2,11)
DDD(x^4+3*x^2+1)=D(1,2,11)=(1,14)
DDDD(x^4+3*x^2+1)=D(1,14)=15.
		

Crossrefs

Cf. A192872 (polynomial reduction), A193091 (polynomial augmentation), A193722 (the upstep operation and fusion of polynomial sequences or triangular arrays).

Programs

  • Mathematica
    q[n_, k_] := 1;
    r[0] = 1; r[k_] := Sum[q[k - 1, i] r[k - 1 - i], {i, 0, k - 1}];
    f[n_, x_] := Fibonacci[n + 1, x];
    p[n_, k_] := Coefficient[f[n, x], x, k]; (* A049310 *)
    v[n_] := Sum[p[n, k] r[n - k], {k, 0, n}]
    Table[v[n], {n, 0, 24}]    (* A193649 *)
    TableForm[Table[q[i, k], {i, 0, 4}, {k, 0, i}]]
    Table[r[k], {k, 0, 8}]  (* 2^k *)
    TableForm[Table[p[n, k], {n, 0, 6}, {k, 0, n}]]

Formula

Conjecture: G.f.: -(1+x)*(2*x-1) / ( (x-1)*(4*x^2+x-1) ). - R. J. Mathar, Feb 19 2015

A191450 Dispersion of (3*n-1), read by antidiagonals.

Original entry on oeis.org

1, 2, 3, 5, 8, 4, 14, 23, 11, 6, 41, 68, 32, 17, 7, 122, 203, 95, 50, 20, 9, 365, 608, 284, 149, 59, 26, 10, 1094, 1823, 851, 446, 176, 77, 29, 12, 3281, 5468, 2552, 1337, 527, 230, 86, 35, 13, 9842, 16403, 7655, 4010, 1580, 689, 257, 104, 38, 15, 29525
Offset: 1

Author

Clark Kimberling, Jun 05 2011

Keywords

Comments

Suppose that s is an increasing sequence of positive integers, that the complement t of s is infinite, and that t(1)=1. The dispersion of s is the array D whose n-th row is (t(n), s(t(n)), s(s(t(n))), s(s(s(t(n)))), ...). Every positive integer occurs exactly once in D, so that, as a sequence, D is a permutation of the positive integers. The sequence u given by u(n) = {index of the row of D that contains n} is a fractal sequence. In this case s(n) = A016789(n-1), t(n) = A032766(n) [from term A032766(1) onward] and u(n) = A253887(n). [Author's original comment edited by Antti Karttunen, Jan 24 2015]
For other examples of such sequences, please see the Crossrefs section.

Examples

			The northwest corner of the square array:
  1,  2,  5,  14,  41,  122,  365,  1094,  3281,   9842,  29525,   88574, ...
  3,  8, 23,  68, 203,  608, 1823,  5468, 16403,  49208, 147623,  442868, ...
  4, 11, 32,  95, 284,  851, 2552,  7655, 22964,  68891, 206672,  620015, ...
  6, 17, 50, 149, 446, 1337, 4010, 12029, 36086, 108257, 324770,  974309, ...
  7, 20, 59, 176, 527, 1580, 4739, 14216, 42647, 127940, 383819, 1151456, ...
  9, 26, 77, 230, 689, 2066, 6197, 18590, 55769, 167306, 501917, 1505750, ...
  etc.
The leftmost column is A032766, and each successive column to the right of it is obtained by multiplying the left neighbor on that row by three and subtracting one, thus the second column is (3*1)-1, (3*3)-1, (3*4)-1, (3*6)-1, (3*7)-1, (3*9)-1, ... = 2, 8, 11, 17, 20, 26, ...
		

Crossrefs

Inverse: A254047.
Transpose: A254051.
Column 1: A032766.
Cf. A007051, A057198, A199109, A199113 (rows 1-4).
Cf. A253887 (row index of n in this array) & A254046 (column index, see also A253786).
Examples of other arrays of dispersions: A114537, A035513, A035506, A191449, A191426-A191455.

Programs

  • Maple
    A191450 := proc(r, c)
        option remember;
        if c = 1 then
            A032766(r) ;
        else
            A016789(procname(r, c-1)-1) ;
        end if;
    end proc: # R. J. Mathar, Jan 25 2015
  • Mathematica
    (* Program generates the dispersion array T of increasing sequence f[n] *)
    r=40; r1=12; c=40; c1=12;
    f[n_] :=3n-1 (* complement of column 1 *)
    mex[list_] := NestWhile[#1 + 1 &, 1, Union[list][[#1]] <= #1 &, 1, Length[Union[list]]]
    rows = {NestList[f, 1, c]};
    Do[rows = Append[rows, NestList[f, mex[Flatten[rows]], r]], {r}];
    t[i_, j_] := rows[[i, j]];
    TableForm[Table[t[i, j], {i, 1, 10}, {j, 1, 10}]]
    (* A191450 array *)
    Flatten[Table[t[k, n - k + 1], {n, 1, c1}, {k, 1, n}]] (* A191450 sequence *)
    (* Program by Peter J. C. Moses, Jun 01 2011 *)
  • PARI
    a(n,k)=3^(n-1)*(k*3\2*2-1)\2+1 \\ =3^(n-1)*(k*3\2-1/2)+1/2, but 30% faster. - M. F. Hasler, Jan 20 2015
    
  • Scheme
    (define (A191450 n) (A191450bi (A002260 n) (A004736 n)))
    (define (A191450bi row col) (if (= 1 col) (A032766 row) (A016789 (- (A191450bi row (- col 1)) 1))))
    (define (A191450bi row col) (/ (+ 3 (* (A000244 col) (- (* 2 (A032766 row)) 1))) 6)) ;; Another implementation based on L. Edson Jeffery's direct formula.
    ;; Antti Karttunen, Jan 21 2015

Formula

Conjecture: A(n,k) = (3 + (2*A032766(n) - 1)*A000244(k))/6. - L. Edson Jeffery, with slight changes by Antti Karttunen, Jan 21 2015
a(n) = A254051(A038722(n)). [When both this and transposed array A254051 are interpreted as one-dimensional sequences.] - Antti Karttunen, Jan 22 2015

Extensions

Example corrected and description clarified by Antti Karttunen, Jan 24 2015

A198715 T(n,k)=Number of nXk 0..3 arrays with values 0..3 introduced in row major order and no element equal to any horizontal or vertical neighbor.

Original entry on oeis.org

1, 1, 1, 2, 4, 2, 5, 25, 25, 5, 14, 172, 401, 172, 14, 41, 1201, 6548, 6548, 1201, 41, 122, 8404, 107042, 250031, 107042, 8404, 122, 365, 58825, 1749965, 9548295, 9548295, 1749965, 58825, 365, 1094, 411772, 28609241, 364637102, 851787199, 364637102
Offset: 1

Author

R. H. Hardin, Oct 29 2011

Keywords

Comments

Number of colorings of the grid graph P_n X P_k using a maximum of 4 colors up to permutation of the colors. - Andrew Howroyd, Jun 26 2017

Examples

			Table starts
....1........1............2...............5..................14
....1........4...........25.............172................1201
....2.......25..........401............6548..............107042
....5......172.........6548..........250031.............9548295
...14.....1201.......107042.........9548295...........851787199
...41.....8404......1749965.......364637102.........75987485516
..122....58825.....28609241.....13925032958.......6778819400772
..365...411772....467717288....531779578441.....604736581320925
.1094..2882401...7646461682..20307996787865...53948385378521909
.3281.20176804.125007943505.775536991678112.4812720805166620356
...
Some solutions with all values from 0 to 3 for n=6 k=4
..0..1..0..1....0..1..0..1....0..1..0..1....0..1..0..1....0..1..0..1
..1..0..1..0....1..0..1..0....1..0..1..0....1..0..1..0....1..0..1..0
..0..1..2..1....0..1..0..1....0..1..0..1....0..1..0..2....0..1..0..1
..1..2..0..3....2..0..3..0....2..0..1..0....1..2..1..3....1..2..3..0
..2..0..2..0....1..3..0..2....3..2..0..2....0..3..0..2....3..1..2..3
..3..2..0..1....3..2..1..0....0..3..2..1....3..1..3..0....1..3..1..0
		

Crossrefs

Columns 1-7 are A007051(n-2), A034494(n-1), A198710, A198711, A198712, A198713, A198714.
Main diagonal is A198709.
Cf. A207997 (3 colorings), A222444 (labeled 4 colorings), A198906 (5 colorings), A198982 (6 colorings), A198723 (7 colorings), A198914 (8 colorings), A207868 (unlimited).

A243505 Permutation of natural numbers, take the odd bisection of A122111 and divide the largest prime factor out: a(n) = A052126(A122111(2n-1)).

Original entry on oeis.org

1, 2, 4, 8, 3, 16, 32, 6, 64, 128, 12, 256, 9, 5, 512, 1024, 24, 18, 2048, 48, 4096, 8192, 10, 16384, 27, 96, 32768, 36, 192, 65536, 131072, 20, 72, 262144, 384, 524288, 1048576, 15, 54, 2097152, 7, 4194304, 144, 768, 8388608, 108, 1536, 288, 16777216, 40, 33554432, 67108864, 30
Offset: 1

Author

Antti Karttunen, Jun 25 2014

Keywords

Crossrefs

Programs

Formula

a(n) = A052126(A122111((2*n)-1)).
a(n) = A122111((2*n)-1) / A105560((2*n)-1).
As a composition of related permutations:
a(n) = A122111(A064216(n)).
a(n) = A241916(A243065(n)).
Other identities:
For all n >= 2, a(n) = A070003(A244984(n)-1) / A105560((2*n)-1).
For all n >= 1, a(A006254(n)) = A000079(n) and a(A007051(n)) = A000040(n).
For all n >= 1, A105560(2n-1) divides a(n).

A254051 Square array A by downward antidiagonals: A(n,k) = (3 + 3^n*(2*floor(3*k/2) - 1))/6, n,k >= 1; read as A(1,1), A(1,2), A(2,1), A(1,3), A(2,2), A(3,1), ...

Original entry on oeis.org

1, 3, 2, 4, 8, 5, 6, 11, 23, 14, 7, 17, 32, 68, 41, 9, 20, 50, 95, 203, 122, 10, 26, 59, 149, 284, 608, 365, 12, 29, 77, 176, 446, 851, 1823, 1094, 13, 35, 86, 230, 527, 1337, 2552, 5468, 3281, 15, 38, 104, 257, 689, 1580, 4010, 7655, 16403, 9842, 16, 44, 113, 311, 770, 2066, 4739, 12029, 22964, 49208, 29525, 18, 47
Offset: 1

Author

Keywords

Comments

This is transposed dispersion of (3n-1), starting from its complement A032766 as the first row of square array A(row,col). Please see the transposed array A191450 for references and background discussion about dispersions.
For any odd number x = A135765(row,col), the result after one combined Collatz step (3x+1)/2 -> x (A165355) is found in this array at A(row+1,col).

Examples

			The top left corner of the array:
   1,   3,   4,   6,   7,   9,  10,  12,   13,   15,   16,   18,   19,   21
   2,   8,  11,  17,  20,  26,  29,  35,   38,   44,   47,   53,   56,   62
   5,  23,  32,  50,  59,  77,  86, 104,  113,  131,  140,  158,  167,  185
  14,  68,  95, 149, 176, 230, 257, 311,  338,  392,  419,  473,  500,  554
  41, 203, 284, 446, 527, 689, 770, 932, 1013, 1175, 1256, 1418, 1499, 1661
...
		

Crossrefs

Inverse: A254052.
Transpose: A191450.
Row 1: A032766.
Cf. A007051, A057198, A199109, A199113 (columns 1-4).
Cf. A254046 (row index of n in this array, see also A253786), A253887 (column index).
Array A135765(n,k) = 2*A(n,k) - 1.
Other related arrays: A254055, A254101, A254102.
Related permutations: A048673, A254053, A183209, A249745, A254103, A254104.

Formula

In A(n,k)-formulas below, n is the row, and k the column index, both starting from 1:
A(n,k) = (3 + ( A000244(n) * (2*A032766(k) - 1) )) / 6. - Antti Karttunen after L. Edson Jeffery's direct formula for A191450, Jan 24 2015
A(n,k) = A048673(A254053(n,k)). [Alternative formula.]
A(n,k) = (1/2) * (1 + A003961((2^(n-1)) * A254050(k))). [The above expands to this.]
A(n,k) = (1/2) * (1 + (A000244(n-1) * A007310(k))). [Which further reduces to this, equivalent to L. Edson Jeffery's original formula above.]
A(1,k) = A032766(k) and for n > 1: A(n,k) = (3 * A254051(n-1,k)) - 1. [The definition of transposed dispersion of (3n-1).]
A(n,k) = (1+A135765(n,k))/2, or when expressed one-dimensionally, a(n) = (1+A135765(n))/2.
A(n+1,k) = A165355(A135765(n,k)).
As a composition of related permutations. All sequences interpreted as one-dimensional:
a(n) = A048673(A254053(n)). [Proved above.]
a(n) = A191450(A038722(n)). [Transpose of array A191450.]

A047926 a(n) = (3^(n+1) + 2*n + 1)/4.

Original entry on oeis.org

1, 3, 8, 22, 63, 185, 550, 1644, 4925, 14767, 44292, 132866, 398587, 1195749, 3587234, 10761688, 32285049, 96855131, 290565376, 871696110, 2615088311, 7845264913, 23535794718, 70607384132, 211822152373, 635466457095, 1906399371260
Offset: 0

Keywords

Comments

Density of regular language L{0}* over {0,1,2,3} (i.e., number of strings of length n in L), where L is described by regular expression with c=3: Sum_{i=1..c} Product_{j=1..i} (j(1+...+j)*), where "Sum" stands for union and "Product" for concatenation. I.e., L = L((11*+11*2(1+2)*+11*2(1+2)*3(1+2+3)*)0*) - Nelma Moreira, Oct 10 2004
Conjecture: Number of representations of 3^(2n) as a sum a^2 + b^2 + c^2 with 0 < a <= b <= c. That is, a(1) = 3 because 3^2 = 1^2 + 2^2 + 2^2, a(2) = 3 because 3^4 = 1^2 + 4^2 + 8^2 = 3^2 + 6^2 + 6^2 = 4^2 + 4^2 + 7^2. - Zak Seidov, Mar 01 2012

References

  • M. Aigner, Combinatorial Search, Wiley, 1988, see Exercise 6.4.5.

Crossrefs

Cf. A007051.

Programs

  • Magma
    [(3^(n+1)+2*n+1)/4: n in [0..40]]; // Vincenzo Librandi, May 02 2011
    
  • Mathematica
    Table[(3^(n+1)+2n+1)/4,{n,0,30}] (* or *) LinearRecurrence[{5,-7,3},{1,3,8},30] (* Harvey P. Dale, Apr 19 2019 *)
  • PARI
    a(n)=(3^(n+1)+2*n+1)/4 \\ Charles R Greathouse IV, Mar 02 2012
  • Sage
    [(gaussian_binomial(n,1,3)+n)/2 for n in range(1,28)] # Zerinvary Lajos, May 29 2009
    

Formula

From Paul Barry, Sep 03 2003: (Start)
a(n) = Sum_{k=0..n} (3^k + 1)/2. Partial sums of A007051.
G.f.: (1 - 2*x)/((1 - x)^2*(1 - 3*x)). (End)
For c = 3, a(c,n) = g(1,c)*n + Sum_{k=2..c} g(k,c)*k*(k^n - 1)/(k-1), where g(1,1) = 1, g(1,c) = g(1,c-1) + (-1)^(c-1)/(c-1)! for c > 1, and g(k,c) = g(k-1, c-1)/k, for c > 1 and 2 <= k <= c. - Nelma Moreira, Oct 10 2004
a(n+1) = 3*a(n) - n. - Franklin T. Adams-Watters, Jul 05 2014
E.g.f.: exp(x)*(1 + 2*x + 3*exp(2*x))/4. - Stefano Spezia, Sep 26 2023

A047848 Array A read by diagonals; n-th difference of (A(k,n), A(k,n-1),..., A(k,0)) is (k+2)^(n-1), for n=1,2,3,...; k=0,1,2,...

Original entry on oeis.org

1, 2, 1, 5, 2, 1, 14, 6, 2, 1, 41, 22, 7, 2, 1, 122, 86, 32, 8, 2, 1, 365, 342, 157, 44, 9, 2, 1, 1094, 1366, 782, 260, 58, 10, 2, 1, 3281, 5462, 3907, 1556, 401, 74, 11, 2, 1, 9842, 21846, 19532, 9332, 2802, 586, 92, 12, 2, 1, 29525, 87382, 97657, 55988, 19609, 4682, 821, 112, 13, 2, 1
Offset: 0

Keywords

Examples

			Array, A(n, k), begins as:
  1, 2,  5,  14,   41, ... = A007051.
  1, 2,  6,  22,   86, ... = A047849.
  1, 2,  7,  32,  157, ... = A047850.
  1, 2,  8,  44,  260, ... = A047851.
  1, 2,  9,  58,  401, ... = A047852.
  1, 2, 10,  74,  586, ... = A047853.
  1, 2, 11,  92,  821, ... = A047854.
  1, 2, 12, 112, 1112, ... = A047855.
  1, 2, 13, 134, 1465, ... = A047856.
  1, 2, 14, 158, 1886, ... = A196791.
  1, 2, 15, 184, 2381, ... = A196792.
Downward antidiagonals, T(n, k), begins as:
      1;
      2,     1;
      5,     2,     1;
     14,     6,     2,     1;
     41,    22,     7,     2,     1;
    122,    86,    32,     8,     2,    1;
    365,   342,   157,    44,     9,    2,   1;
   1094,  1366,   782,   260,    58,   10,   2,   1;
   3281,  5462,  3907,  1556,   401,   74,  11,   2,  1;
   9842, 21846, 19532,  9332,  2802,  586,  92,  12,  2, 1;
  29525, 87382, 97657, 55988, 19609, 4682, 821, 112, 13, 2, 1;
		

Crossrefs

Cf. A047857 (row sums), A196793 (main diagonal).

Programs

  • Magma
    A:= func< n,k | ((n+3)^k +n+1)/(n+2) >; // array A047848
    [A(k,n-k): k in [0..n], n in [0..12]]; // G. C. Greubel, Jan 11 2025
    
  • Mathematica
    A[n_, k_]:= ((n+3)^k +n+1)/(n+2);
    A047848[n_, k_]:= A[k,n-k];
    Table[A047848[n,k], {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, Jan 11 2025 *)
  • Python
    def A(n,k): return (pow(n+3,k) +n+1)//(n+2) # array A047848
    print(flatten([[A(k,n-k) for k in range(n+1)] for n in range(13)])) # G. C. Greubel, Jan 11 2025

Formula

A(n, k) = ((n+3)^k + n + 1)/(n+2). - Ralf Stephan, Feb 14 2004
From G. C. Greubel, Jan 11 2025: (Start)
T(n, k) = ((k+3)^(n-k) + k + 1)/(k+2) (antidiagonal triangle).
T(n, n) = A196793(n).
Sum_{k=0..n} T(n, k) = A047857(n). (End)

A100774 a(n) = 2*(3^n - 1).

Original entry on oeis.org

0, 4, 16, 52, 160, 484, 1456, 4372, 13120, 39364, 118096, 354292, 1062880, 3188644, 9565936, 28697812, 86093440, 258280324, 774840976, 2324522932, 6973568800, 20920706404, 62762119216, 188286357652, 564859072960, 1694577218884
Offset: 0

Author

Pawel P. Mazur (Pawel.Mazur(AT)pwr.wroc.pl), Apr 06 2005

Keywords

Comments

a(n) is the number of steps which are made when generating all n-step nonreversing random walks that begin in a fixed point P on a two-dimensional square lattice. To make one step means to move along one edge on the lattice.
These are also the first local maxima reached in the Collatz trajectories of 2^n - 1. - David Rabahy, Oct 30 2017
Also the graph diameter of the n-Sierpinski carpet graph. - Eric W. Weisstein, Mar 13 2018
a(n) is the number of edge covers of F_{n,2}, which has adjacent vertices u and w, and n vertices each adjacent to both u and w. An edge cover is a subset of the edges where each vertex is adjacent to at least one vertex. To cover each of the n vertices v_i, we need to have at least the edge uv_i or wv_i or both, giving us three choices for each. We can then add the edge uw or not, which is 2*3^n choices. But we need to remove the case where all uv_i's were chosen and uw not chosen, and all ww_i's were chosen and uw not chosen. - Feryal Alayont, Jun 17 2024

Programs

Formula

a(n) = 2*(3^n - 1).
a(n) = 4*Sum_{i=0..n-1} 3^i.
a(n) = 4*A003462(n).
a(n) = A048473(n) - 1. - Paul Curtz, Jan 19 2009
G.f.: 4*x/((1-x)*(1-3*x)). - Eric W. Weisstein, Mar 13 2018
a(n) = 4*a(n-1) - 3*a(n-2). - Eric W. Weisstein, Mar 13 2018
From Elmo R. Oliveira, Dec 06 2023: (Start)
a(n) = 2*A024023(n).
a(n) = 3*a(n-1) + 4 for n>0.
E.g.f.: 2*(exp(3*x) - exp(x)). (End)

A134931 a(n) = (5*3^n-3)/2.

Original entry on oeis.org

1, 6, 21, 66, 201, 606, 1821, 5466, 16401, 49206, 147621, 442866, 1328601, 3985806, 11957421, 35872266, 107616801, 322850406, 968551221, 2905653666, 8716961001, 26150883006, 78452649021, 235357947066, 706073841201, 2118221523606
Offset: 0

Author

Rolf Pleisch, Jan 29 2008

Keywords

Comments

Numbers n where the recurrence s(0)=1, if s(n-1) >= n then s(n) = s(n-1) - n else s(n) = s(n-1) + n produces s(n)=0. - Hugo Pfoertner, Jan 05 2012
A046901(a(n)) = 1. - Reinhard Zumkeller, Jan 31 2013
Binomial transform of A146523: (1, 5, 10, 20, 40, ...) and double binomial transform of A010685: (1, 4, 1, 4, 1, 4, ...). - Gary W. Adamson, Aug 25 2016
Also the number of maximal cliques in the (n+1)-Hanoi graph. - Eric W. Weisstein, Dec 01 2017
a(n) is the least k such that f(a(n-1)+1) + ... + f(k) > f(a(n-2)+1) + ... + f(a(n-1)) for n > 1, where f(n) = 1/(n+1). Because Sum_{k=1..5*3^(n-1)} 1/(a(n)+3*k-1) + 1/(a(n)+3*k) + 1/(a(n)+3*k+1) - 1/((a(n)+1+5*3^n)*5*3^(n-1)) < Sum_{k=1..5*3^(n-1)} 1/(a(n-1)+k+1) < Sum_{k=1..5*3^(n-1)} 1/(a(n)+3*k-1) + 1/(a(n)+3*k) + 1/(a(n)+3*k+1), we have 1 < 1/3 + 1/4 + ... + 1/7 < 1/8 + 1/9 + ... + 1/22 < ... . - Jinyuan Wang, Jun 15 2020

Programs

Formula

a(n) = 3*(a(n-1) + 1), with a(0)=1.
From R. J. Mathar, Jan 31 2008: (Start)
O.g.f.: (5/2)/(1-3*x) - (3/2)/(1-x).
a(n) = (A005030(n) - 3)/2. (End)
a(n) = A060816(n+1) - 1. - Philippe Deléham, Apr 14 2013
E.g.f.: exp(x)*(5*exp(2*x) - 3)/2. - Stefano Spezia, Aug 28 2023

Extensions

More terms from Vladimir Joseph Stephan Orlovsky, Dec 25 2008
Previous Showing 31-40 of 204 results. Next