cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 101-110 of 246 results. Next

A048488 a(n) = 6*2^n - 5.

Original entry on oeis.org

1, 7, 19, 43, 91, 187, 379, 763, 1531, 3067, 6139, 12283, 24571, 49147, 98299, 196603, 393211, 786427, 1572859, 3145723, 6291451, 12582907, 25165819, 50331643, 100663291, 201326587, 402653179, 805306363, 1610612731
Offset: 0

Views

Author

Clark Kimberling, Dec 11 1999

Keywords

Comments

a(n) = T(5, n), array T given by A048483.
Sequence is generated by the Northwest (NW) direction of circles put around circle(s). See illustration. - Odimar Fabeny, Aug 09 2008

Examples

			a(2) = 6 * 2^2 - 5 = 6 * 4 - 5 = 24 - 5 = 19.
a(3) = 6 * 2^3 - 5 = 6 * 8 - 5 = 48 - 5 = 43.
		

Crossrefs

n-th difference of a(n), a(n-1), ..., a(0) is (6, 6, 6, ...).
Cf. A000079, A007283. - Omar E. Pol, Dec 21 2008

Programs

Formula

a(n) = 2*a(n-1) + 5, n > 0, a(0) = 1. - Paul Barry, Aug 25 2004
Equals binomial transform of [1, 6, 6, 6, ...]. - Gary W. Adamson, Apr 29 2008
a(n) = A000079(n)*6 - 5 = A007283(n)*2 - 5. - Omar E. Pol, Dec 21 2008
From Colin Barker, Sep 17 2012: (Start)
a(n) = 3*2^(1+n) - 5. a(n) = 3*a(n-1) - 2*a(n-2).
G.f.: (1+4*x)/((1-x)*(1-2*x)). (End)
a(n + 1) = 3 * 2^n - 5 = 1 + 2 * (Sum_{i=0..n-1} 3i) for n > 0. - Gerasimov Sergey and Alonso del Arte, May 03 2014
a(n) = A000225(n+1)+4*A000225(n). - R. J. Mathar, Feb 27 2019

Extensions

Simpler definition from Ralf Stephan

A080940 Smallest proper divisor of n which is a suffix of n in binary representation; a(n) = 0 if no such divisor exists.

Original entry on oeis.org

0, 0, 1, 0, 1, 2, 1, 0, 1, 2, 1, 4, 1, 2, 1, 0, 1, 2, 1, 4, 1, 2, 1, 8, 1, 2, 1, 4, 1, 2, 1, 0, 1, 2, 1, 4, 1, 2, 1, 8, 1, 2, 1, 4, 1, 2, 1, 16, 1, 2, 1, 4, 1, 2, 1, 8, 1, 2, 1, 4, 1, 2, 1, 0, 1, 2, 1, 4, 1, 2, 1, 8, 1, 2, 1, 4, 1, 2, 1, 16, 1, 2, 1, 4, 1, 2, 1, 8, 1, 2, 1, 4, 1, 2, 1, 32, 1, 2, 1, 4, 1, 2, 1, 8
Offset: 1

Views

Author

Reinhard Zumkeller, Feb 25 2003

Keywords

Comments

By definition, identical to A006519 except that a(2^k) = 0 for all k.
a(3*2^k)=2^k and a(m)<2^k for m<3*2^k (see A007283).
Also, the first repeating value of the periodic sequences created by 2^k mod n. - Alison J. McCrea, Apr 13 2025

Examples

			n=6='110', divisors<6: 1='1', 2='10' and 3='11', therefore a(6)=2='10';
n=7='111', divisors<7: 1='1', therefore a(7)=1;
n=8='1000', divisors<8: 1='1', 2='10' and 4='100', therefore a(8)=0.
		

Crossrefs

Programs

  • Haskell
    import Data.List (isPrefixOf); import Data.Function (on)
    a080940 n = if null ds then 0 else head ds  where
                ds = filter ((flip isPrefixOf `on` a030308_row) n) $
                            a027751_row n
    -- Reinhard Zumkeller, Mar 27 2014
    
  • Python
    def A080940(n): return (m:=n&-n)*(m!=n) # Chai Wah Wu, Jun 20 2023

Extensions

Definition improved by Reinhard Zumkeller, Mar 27 2014

A090994 Number of meaningful differential operations of the n-th order on the space R^9.

Original entry on oeis.org

9, 17, 32, 61, 116, 222, 424, 813, 1556, 2986, 5721, 10982, 21053, 40416, 77505, 148785, 285380, 547810, 1050876, 2017126, 3869845, 7427671, 14250855, 27351502, 52479500, 100719775, 193258375, 370895324, 711682501, 1365808847, 2620797529
Offset: 1

Views

Author

Branko Malesevic, Feb 29 2004

Keywords

Comments

Also number of meaningful compositions of the n-th order of the differential operations and Gateaux directional derivative on the space R^8. - Branko Malesevic and Ivana Jovovic (ivana121(AT)EUnet.yu), Jun 21 2007
Also (starting 5,9,...) the number of zig-zag paths from top to bottom of a rectangle of width 10, whose color is that of the top right corner. [From Joseph Myers, Dec 23 2008]
Also, number of n-digit terms in A033075 (stated without proof in A033075). - Zak Seidov, Feb 02 2011

Crossrefs

Programs

  • GAP
    a:=[9,17,32,61,116];; for n in [6..40] do a[n]:=a[n-1]+4*a[n-2] - 3*a[n-3]-3*a[n-4]+a[n-5]; od; a; # G. C. Greubel, Feb 02 2019
  • Magma
    m:=40; R:=PowerSeriesRing(Integers(), m); Coefficients(R!(  x*(9+8*x-21*x^2-12*x^3+5*x^4)/(1-x-4*x^2+3*x^3+3*x^4-x^5) )); // G. C. Greubel, Feb 02 2019
    
  • Maple
    NUM := proc(k :: integer) local i,j,n,Fun,Identity,v,A; n := 9; # <- DIMENSION Fun := (i,j)->piecewise(((j=i+1) or (i+j=n+1)),1,0); Identity := (i,j)->piecewise(i=j,1,0); v := matrix(1,n,1); A := piecewise(k>1,(matrix(n,n,Fun))^(k-1),k=1,matrix(n,n,Identity)); return(evalm(v&*A&*transpose(v))[1,1]); end:
  • Mathematica
    LinearRecurrence[{1, 4, -3, -3, 1}, {9, 17, 32, 61, 116}, 31] (* Jean-François Alcover, Nov 20 2017 *)
  • PARI
    my(x='x+O('x^40)); Vec(x*(9+8*x-21*x^2-12*x^3+5*x^4)/(1-x-4*x^2 +3*x^3+3*x^4-x^5)) \\ G. C. Greubel, Feb 02 2019
    
  • Sage
    a=(x*(9+8*x-21*x^2-12*x^3+5*x^4)/(1-x-4*x^2+3*x^3+3*x^4-x^5)).series(x, 40).coefficients(x, sparse=False); a[1:] # G. C. Greubel, Feb 02 2019
    

Formula

a(k+5) = a(k+4) + 4*a(k+3) - 3*a(k+2) - 3*a(k+1) + a(k).
G.f.: x*(9+8*x-21*x^2-12*x^3+5*x^4)/(1-x-4*x^2+3*x^3+3*x^4-x^5). - Maksym Voznyy (voznyy(AT)mail.ru), Aug 11 2009; corrected by R. J. Mathar, Sep 16 2009

Extensions

More terms from Joseph Myers, Dec 23 2008

A123720 a(n) = 2^n + 2^(n-1) - n.

Original entry on oeis.org

2, 4, 9, 20, 43, 90, 185, 376, 759, 1526, 3061, 6132, 12275, 24562, 49137, 98288, 196591, 393198, 786413, 1572844, 3145707, 6291434, 12582889, 25165800, 50331623, 100663270, 201326565, 402653156, 805306339, 1610612706, 3221225441, 6442450912, 12884901855
Offset: 1

Views

Author

Klaus Brockhaus, Oct 09 2006

Keywords

Crossrefs

Cf. A007283.

Programs

  • Magma
    [2^n + 2^(n-1) - n: n in [1..40] ]; // Vincenzo Librandi, May 18 2011
  • Mathematica
    Table[2^n + 2^(n-1) - n, {n,1,50}] (* G. C. Greubel, Oct 26 2017 *)
  • PARI
    for(n=1,31,print1(2^n+2^(n-1)-n,","))
    

Formula

a(n) = A007283(n-1) - n.
O.g.f.: x(2 - 4x + 3x^2)/((1-x)^2*(1-2x)). - R. J. Mathar, Jun 08 2008
E.g.f.: (1/2)*(-3 - 2*x*exp(x) + 3*exp(2*x)). - G. C. Greubel, Oct 26 2017

A010704 Period 2: repeat (3,6).

Original entry on oeis.org

3, 6, 3, 6, 3, 6, 3, 6, 3, 6, 3, 6, 3, 6, 3, 6, 3, 6, 3, 6, 3, 6, 3, 6, 3, 6, 3, 6, 3, 6, 3, 6, 3, 6, 3, 6, 3, 6, 3, 6, 3, 6, 3, 6, 3, 6, 3, 6, 3, 6, 3, 6, 3, 6, 3, 6, 3, 6, 3, 6, 3, 6, 3, 6, 3, 6, 3, 6, 3, 6, 3, 6, 3, 6, 3, 6, 3, 6, 3, 6, 3
Offset: 0

Views

Author

Keywords

Comments

Continued fraction expansion of A176105. - R. J. Mathar, Mar 08 2012
Digital roots of A007283. - Bruno Berselli, Nov 22 2018
Decimal expansion of 4/11. - Franklin T. Adams-Watters, Nov 28 2018

Crossrefs

Programs

Formula

G.f. 3*(1 + 2*x)/((1 - x)*(1 + x)). - R. J. Mathar, Nov 21 2011
From Reinhard Zumkeller, Jul 03 2012: (Start)
a(n) = 3*A000034(n).
a(n) = A213999(n,2). (End)
a(n + 1) = 9 - a(n). - David A. Corneth, Nov 29 2018
a(n) = 2 + 2^(1 - (-1)^n). - Vincenzo Librandi, Feb 28 2020
a(n) = 3*(3-(-1)^n)/2. - Aaron J Grech, Aug 02 2024

A047264 Numbers that are congruent to 0 or 5 mod 6.

Original entry on oeis.org

0, 5, 6, 11, 12, 17, 18, 23, 24, 29, 30, 35, 36, 41, 42, 47, 48, 53, 54, 59, 60, 65, 66, 71, 72, 77, 78, 83, 84, 89, 90, 95, 96, 101, 102, 107, 108, 113, 114, 119, 120, 125, 126, 131, 132, 137, 138, 143, 144, 149, 150, 155, 156, 161, 162, 167, 168, 173, 174
Offset: 1

Views

Author

Keywords

Comments

Values of n for which Sum_{k=1..n} k*Fibonacci(k) is even (n > 0). Example: 5 is in the sequence because Sum_{k=1..5} k*Fibonacci(k) = 1*1 + 2*1 + 3*2 + 4*3 + 5*5 = 46. - Emeric Deutsch, Mar 28 2005
For a(n) is the n-th Tower of Hanoi move, the smallest disc (#1) is on peg A. If n == (1,2) mod 6, the disc is on peg C; and if n == (3,4) mod 6, the disc is on peg B. Disc #1 rotates C,B,A,C,B,A,C,B,A,... All discs start at "0" on peg A. Disc #1 is on peg A again for moves (5,6), (11,12), (17,18), ... - Gary W. Adamson, Jun 23 2012

Examples

			From _Vincenzo Librandi_, Aug 05 2010: (Start)
a(2) = 6*2 - 0 - 7 = 5;
a(3) = 6*3 - 5 - 7 = 6;
a(4) = 6*4 - 6 - 7 = 11. (End)
		

Crossrefs

Complement of A047227.

Programs

  • Maple
    c:=proc(n) if n mod 6 = 0 or n mod 6 = 5 then n else fi end: seq(c(n),n=0..149); # Emeric Deutsch, Mar 28 2005
  • Mathematica
    Select[Range[0, 149], MemberQ[{0, 5}, Mod[#, 6]] &] (* or *)
    Fold[Append[#1, 6 #2 - Last@ #1 - 7] &, {0}, Range[2, 50]] (* or *)
    Rest@ CoefficientList[Series[x^2*(5 + x)/((1 + x) (x - 1)^2), {x, 0, 50}], x] (* Michael De Vlieger, Jan 12 2018 *)
  • PARI
    forstep(n=0,200,[5,1],print1(n", ")) \\ Charles R Greathouse IV, Oct 17 2011
    
  • PARI
    a(n) = 3*n - 2 + (-1)^n \\ David Lovler, Aug 04 2022

Formula

a(n) = 3*n + (-1)^n - 2.
a(n) = 6*n - a(n-1) - 7 (with a(1)=0). - Vincenzo Librandi, Aug 05 2010
G.f.: x^2*(5+x) / ( (1+x)*(x-1)^2 ). - R. J. Mathar, Oct 08 2011
Let b(1)=0, b(2)=1 and b(k+2) = b(k+1) - b(k) + k^2; then a(n) is the sequence of integers such that b(a(n)) is a square = (a(n) + 1)^2. - Benoit Cloitre, Sep 04 2002
a(n+1) = Sum_{k>=0} A030308(n,k)*b(k) with b(0)=5 and b(k)=A007283(k) for k > 0. - Philippe Deléham, Oct 17 2011
Sum_{n>=2} (-1)^n/a(n) = log(2)/3 + log(3)/4 - sqrt(3)*Pi/12. - Amiram Eldar, Dec 13 2021
E.g.f.: 1 + (3*x - 2)*exp(x) + exp(-x). - David Lovler, Aug 08 2022

A058764 Smallest number x such that cototient(x) = 2^n.

Original entry on oeis.org

2, 4, 6, 12, 24, 48, 96, 192, 384, 768, 1536, 3072, 6144, 12288, 24576, 49152, 98304, 196608, 393216, 786432, 1572864, 3145728, 6291456, 12582912, 25165824, 50331648, 100663296, 201326592, 402653184, 805306368, 1610612736, 3221225472
Offset: 0

Views

Author

Labos Elemer, Jan 02 2001

Keywords

Comments

Since the cototient of 3*2^n is 2^(n+1), upper bounds are given by A007283(n-1). - R. J. Mathar, Oct 13 2008
A058764(n+1) is the number of different walks with n steps in the graph G = ({1,2,3,4}, {{1,2}, {2,3}, {3,4}}). - Aldo González Lorenzo, Feb 27 2012

Examples

			a(5) = 48, cototient(48) = 48-Phi(48) = 48-16 = 32. For n>2, a(n) = 3*2^(n-1); largest solutions = 2^(n+1). Prime factors of solutions: 2 and Mersenne-primes were found only.
		

Crossrefs

Cf. A042950. - R. J. Mathar, Jan 30 2009
Cf. A007283.

Programs

  • Mathematica
    Function[s, Flatten@ Map[First@ Position[s, #] &, 2^Range[0, Floor@ Log2@ Max@ s]]]@ Table[n - EulerPhi@ n, {n, 10^7}] (* Michael De Vlieger, Dec 17 2016 *)
  • PARI
    a(n) = {x = 1; while(x - eulerphi(x) != 2^n, x++); x;} \\ Michel Marcus, Dec 11 2013
    
  • PARI
    a(n) = if(n>1,3,4)<<(n-1) \\ M. F. Hasler, Nov 10 2016

Formula

a(n) = min { x | A051953(x) = 2^n }.
a(n) = (if n>1 then 3 else 4)*2^(n-1) = A007283(n-1) for n>1. (Conjectured.) - M. F. Hasler, Nov 10 2016

Extensions

Edited by M. F. Hasler, Nov 10 2016
a(27)-a(31) from Jud McCranie, Jul 13 2017

A063759 Spherical growth series for modular group.

Original entry on oeis.org

1, 3, 4, 6, 8, 12, 16, 24, 32, 48, 64, 96, 128, 192, 256, 384, 512, 768, 1024, 1536, 2048, 3072, 4096, 6144, 8192, 12288, 16384, 24576, 32768, 49152, 65536, 98304, 131072, 196608, 262144, 393216, 524288, 786432, 1048576, 1572864, 2097152
Offset: 0

Views

Author

N. J. A. Sloane, Aug 14 2001

Keywords

Comments

Also number of sequences S of length n with entries in {1,..,q} where q = 3, satisfying the condition that adjacent terms differ in absolute value by exactly 1, see examples. - W. Edwin Clark, Oct 17 2008

Examples

			For n = 2 the a(2) = 4 sequences are (1,2),(2,1),(2,3),(3,2). - _W. Edwin Clark_, Oct 17 2008
From _Joerg Arndt_, Nov 23 2012: (Start)
There are a(6) = 16 such words of length 6:
[ 1]   [ 1 2 1 2 1 2 ]
[ 2]   [ 1 2 1 2 3 2 ]
[ 3]   [ 1 2 3 2 1 2 ]
[ 4]   [ 1 2 3 2 3 2 ]
[ 5]   [ 2 1 2 1 2 1 ]
[ 6]   [ 2 1 2 1 2 3 ]
[ 7]   [ 2 1 2 3 2 1 ]
[ 8]   [ 2 1 2 3 2 3 ]
[ 9]   [ 2 3 2 1 2 1 ]
[10]   [ 2 3 2 1 2 3 ]
[11]   [ 2 3 2 3 2 1 ]
[12]   [ 2 3 2 3 2 3 ]
[13]   [ 3 2 1 2 1 2 ]
[14]   [ 3 2 1 2 3 2 ]
[15]   [ 3 2 3 2 1 2 ]
[16]   [ 3 2 3 2 3 2 ]
(End)
		

References

  • P. de la Harpe, Topics in Geometric Group Theory, Univ. Chicago Press, 2000, p. 156.

Crossrefs

The sequence (ternary strings) seems to be related to A029744 and A090989.

Programs

  • Haskell
    import Data.List (transpose)
    a063759 n = a063759_list !! n
    a063759_list = concat $ transpose [a151821_list, a007283_list]
    -- Reinhard Zumkeller, Dec 16 2013
    
  • Mathematica
    CoefficientList[Series[(1+3*x+2*x^2)/(1-2*x^2),{x,0,40}],x](* Jean-François Alcover, Mar 21 2011 *)
    Join[{1},Transpose[NestList[{Last[#],2First[#]}&,{3,4},40]][[1]]] (* Harvey P. Dale, Oct 22 2011 *)
  • PARI
    a(n)=([0,1; 2,0]^n*[1;3])[1,1] \\ Charles R Greathouse IV, Feb 09 2017

Formula

G.f.: (1+3*x+2*x^2)/(1-2*x^2).
a(n) = 2*a(n-2), n>2. - Harvey P. Dale, Oct 22 2011
a(2*n) = A151821(n+1); a(2*n+1) = A007283(n). - Reinhard Zumkeller, Dec 16 2013

Extensions

Information from A145751 included by Joerg Arndt, Dec 03 2012

A070813 Fermat primes minus 3.

Original entry on oeis.org

0, 2, 14, 254, 65534
Offset: 1

Views

Author

Labos Elemer, May 09 2002

Keywords

Comments

Even numbers 2m such that phi(gpf(x)) - gpf(phi(x)) = 2m for some x, where gpf(m) is the largest prime divisor of m and phi(m) = totient(m).
Solutions to A070812(x) = 0 are in A007283, for A070812(x) = 2 are in A070004.

Crossrefs

Programs

  • Mathematica
    pf[x_] := Part[Reverse[Flatten[FactorInteger[x]]], 2];
    allS = Reap[Do[s=EulerPhi[pf[n]]-pf[EulerPhi[n]]; If[ !OddQ[s]&&Greater[s, 2], Sow[s]], {n, 3, 10^5}]][[-1, 1]]; (* Only 14, 254 and 65534 appear in printout of s. *)
    Union[{0, 2}, allS]
  • PARI
    for(n=0,4,if(ispseudoprime(t=2^(2^n)+1),print1(t-3", "))) \\ Charles R Greathouse IV, Apr 26 2012

Formula

a(n) = A019434(n) - 3. [corrected by Jason Yuen, Jun 22 2025]

A110164 Expansion of (1-x^2)/(1+2x).

Original entry on oeis.org

1, -2, 3, -6, 12, -24, 48, -96, 192, -384, 768, -1536, 3072, -6144, 12288, -24576, 49152, -98304, 196608, -393216, 786432, -1572864, 3145728, -6291456, 12582912, -25165824, 50331648, -100663296, 201326592, -402653184, 805306368, -1610612736, 3221225472
Offset: 0

Views

Author

Paul Barry, Jul 14 2005

Keywords

Comments

Diagonal sums of Riordan array ((1-x)/(1+x),x/(1+x)^2), A110162.
The positive sequence with g.f. (1-x^2)/(1-2x) gives the row sums of the Riordan array (1+x,x/(1-x)). - Paul Barry, Jul 18 2005
The inverse g.f. is (1 + 2*x + x^2 + 2*x^3 + x^4 + 2*x^5 + x^6 + ...). - Gary W. Adamson, Jan 07 2011
In absolute value, essentially the same as A007283(n) = A003945(n+1) = A042950(n+1) = A082505(n+1) = A087009(n+3) = A091629(n) = A098011(n+4) = A111286(n+2). - M. F. Hasler, Apr 19 2015

Crossrefs

Programs

Formula

a(n) = 3*(-2)^(n-2) = 3*A122803(n-2) for n >= 2. a(n) = -2 a(n-1) for n >= 3. - M. F. Hasler, Apr 19 2015
E.g.f.: (1/4) - (x/2) + (3/4)*exp(-2*x). - Alejandro J. Becerra Jr., Jan 29 2021
Previous Showing 101-110 of 246 results. Next