cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 47 results. Next

A000094 Number of trees of diameter 4.

Original entry on oeis.org

0, 0, 0, 0, 1, 2, 5, 8, 14, 21, 32, 45, 65, 88, 121, 161, 215, 280, 367, 471, 607, 771, 980, 1232, 1551, 1933, 2410, 2983, 3690, 4536, 5574, 6811, 8317, 10110, 12276, 14848, 17941, 21600, 25977, 31146, 37298, 44542, 53132, 63218, 75131, 89089
Offset: 1

Views

Author

Keywords

Comments

Number of partitions of n-1 with at least two parts of size 2 or larger. - Franklin T. Adams-Watters, Jan 13 2006
Also equal to the number of partitions p of n-1 such that max(p)-min(p) > 1. Example: a(7)=5 because we have [5,1],[4,2],[4,1,1],[3,2,1] and [3,1,1,1]. - Giovanni Resta, Feb 06 2006
Also number of partitions of n-1 with at least two parts that are smaller than the largest part. Example: a(7)=5 because we have [4,1,1],[3,2,1],[3,1,1,1],[2,2,1,1,1] and [2,1,1,1,1]. - Emeric Deutsch, May 01 2006
Also number of regions of n-1 that do not contain 1 as a part, n >= 2 (cf. A186114, A206437). - Omar E. Pol, Dec 01 2011
Also rank of the last region of n-1 multiplied by -1, n >= 2 (cf. A194447). - Omar E. Pol, Feb 11 2012
Also sum of ranks of the regions of n-1 that contain emergent parts, n >= 2 (cf. A182699). For the definition of "regions of n" see A206437. - Omar E. Pol, Feb 21 2012

Examples

			From _Gus Wiseman_, Apr 12 2019: (Start)
The a(5) = 1 through a(9) = 14 partitions of n-1 with at least two parts of size 2 or larger, or non-hooks, are the following. The Heinz numbers of these partitions are given by A105441.
  (22)  (32)   (33)    (43)     (44)
        (221)  (42)    (52)     (53)
               (222)   (322)    (62)
               (321)   (331)    (332)
               (2211)  (421)    (422)
                       (2221)   (431)
                       (3211)   (521)
                       (22111)  (2222)
                                (3221)
                                (3311)
                                (4211)
                                (22211)
                                (32111)
                                (221111)
The a(5) = 1 through a(9) = 14 partitions of n-1 whose maximum part minus minimum part is at least 2 are the following. The Heinz numbers of these partitions are given by A307516.
  (31)  (41)   (42)    (52)     (53)
        (311)  (51)    (61)     (62)
               (321)   (331)    (71)
               (411)   (421)    (422)
               (3111)  (511)    (431)
                       (3211)   (521)
                       (4111)   (611)
                       (31111)  (3221)
                                (3311)
                                (4211)
                                (5111)
                                (32111)
                                (41111)
                                (311111)
The a(5) = 1 through a(9) = 14 partitions of n-1 with at least two parts that are smaller than the largest part are the following. The Heinz numbers of these partitions are given by A307517.
  (211)  (311)   (321)    (322)     (422)
         (2111)  (411)    (421)     (431)
                 (2211)   (511)     (521)
                 (3111)   (3211)    (611)
                 (21111)  (4111)    (3221)
                          (22111)   (3311)
                          (31111)   (4211)
                          (211111)  (5111)
                                    (22211)
                                    (32111)
                                    (41111)
                                    (221111)
                                    (311111)
                                    (2111111)
(End)
		

References

  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Maple
    g:=x/product(1-x^j,j=1..70)-x-x^2/(1-x)^2: gser:=series(g,x=0,48): seq(coeff(gser,x,n),n=1..46); # Emeric Deutsch, May 01 2006
    A000094 := proc(n)
        combinat[numbpart](n-1)-n+1 ;
    end proc: # R. J. Mathar, May 17 2016
  • Mathematica
    t=Table[PartitionsP[n]-n,{n,0,45}];
    ReplacePart[t,0,1]
    (* Clark Kimberling, Mar 05 2012 *)
    CoefficientList[1/QPochhammer[x]-x/(1-x)^2-1+O[x]^50, x] (* Jean-François Alcover, Feb 04 2016 *)

Formula

a(n+1) = A000041(n)-n for n>0. - John W. Layman
G.f.: x/product(1-x^j,j=1..infinity)-x-x^2/(1-x)^2. - Emeric Deutsch, May 01 2006
G.f.: sum(sum(x^(i+j+1)/product(1-x^k, k=i..j), i=1..j-2), j=3..infinity). - Emeric Deutsch, May 01 2006
a(n+1) = Sum_{m=1..n} A083751(m). - Gregory Gerard Wojnar, Oct 13 2020

Extensions

More terms from Franklin T. Adams-Watters, Jan 13 2006

A006442 Expansion of 1/sqrt(1 - 10*x + x^2).

Original entry on oeis.org

1, 5, 37, 305, 2641, 23525, 213445, 1961825, 18205345, 170195525, 1600472677, 15122515985, 143457011569, 1365435096485, 13033485491077, 124715953657025, 1195966908404545, 11490534389896325, 110584004488276645, 1065853221648055025
Offset: 0

Views

Author

Keywords

Comments

Number of Delannoy paths from (0,0) to (n,n) with steps U(0,1), H(1,0) and D(1,1) where H can choose from two colors. - Paul Barry, May 25 2005
Number of lattice paths from (0,0) to (n,n) using steps (0,1), (1,1), and two kinds of steps (1,0). - Joerg Arndt, Jul 01 2011
The Gauss congruences a(n*p^k) == a(n*p^(k-1)) (mod p^k) hold for prime p and positive integers n and k. - Peter Bala, Jan 09 2022

Crossrefs

Column k=2 of A335333.
Sequences of the form LegendreP(n, 2*m+1): A000012 (m=0), A001850 (m=1), this sequence (m=2), A084768 (m=3), A084769 (m=4).
Cf. A098270, A243943 (a(n)^2).

Programs

  • Magma
    [Evaluate(LegendrePolynomial(n), 5): n in [0..40]]; // G. C. Greubel, May 21 2023
    
  • Maple
    seq(orthopoly[P](n,5), n = 0 .. 20); # Robert Israel, Aug 18 2014
  • Mathematica
    Table[LegendreP[n, 5], {n, 0, 19}] (* Arkadiusz Wesolowski, Aug 13 2012 *)
    CoefficientList[Series[1 / Sqrt[1 - 10 x + x^2], {x, 0, 20}], x] (* Vincenzo Librandi, Nov 23 2014 *)
  • PARI
    a(n)=subst(pollegendre(n),x,5)
    
  • PARI
    /* as lattice paths: same as in A092566 but use */
    steps=[[1,0], [1,0], [0,1], [1,1]]; /* note the double [1,0] */
    /* Joerg Arndt, Jul 01 2011 */
    
  • PARI
    {a(n)=sum(k=0,n,binomial(n,k)^2*2^k*3^(n-k))} /* Paul D. Hanna */
    
  • PARI
    {a(n) = sum(k=0, n, 2^k * binomial(2*k, k) * binomial(n+k, n-k) )}
    for(n=0, 25, print1(a(n), ", ")) \\ Paul D. Hanna, Aug 17 2014
    
  • SageMath
    [gen_legendre_P(n,0,5) for n in range(41)] # G. C. Greubel, May 21 2023

Formula

Legendre polynomial evaluated at 5. - Michael Somos, Dec 04 2001
G.f.: 1/sqrt(1 - 10*x + x^2).
a(n) equals the central coefficient of (1 + 5*x + 6*x^2)^n. - Paul D. Hanna, Jun 03 2003
a(n) equals the (n+1)-th term of the binomial transform of 1/(1-2x)^(n+1). - Paul D. Hanna, Sep 29 2003
a(n) = Sum_{k=0..n} 2^k*binomial(n, k)*binomial(n+k, k). - Benoit Cloitre, Apr 13 2004
a(n) = Sum_{k=0..n} binomial(n,k)^2 * 2^k * 3^(n-k). - Paul D. Hanna, Feb 04 2012
E.g.f.: exp(5*x) * Bessel_I(0, 2*sqrt(6)*x). - Paul Barry, May 25 2005
D-finite with recurrence: n*a(n) - 5*(2n-1)*a(n-1) + (n-1)*a(n-2) = 0 [Eq (4) in the T. D. Noe article]. R. J. Mathar, Jun 26 2012
a(n) ~ (5 + 2*sqrt(6))^n/(2*sqrt(Pi*n)*sqrt(5*sqrt(6) - 12)). - Vaclav Kotesovec, Oct 05 2012
a(n) = hypergeom([-n, n+1], [1], -2). - Peter Luschny, May 23 2014
a(n) = Sum_{k=0..n} 2^k * C(2*k, k) * C(n+k, n-k). - Paul D. Hanna, Aug 17 2014
a(n) = Sum_{k=0..n} (k+1) * 3^k * (-1)^(n-k) * binomial(n,k) * binomial(n+k+1,n) / (n+k+1). - Vladimir Kruchinin, Nov 23 2014
From Peter Bala, Nov 28 2021: (Start)
a(n) = (1/3)*(1/2)^n*Sum_{k >= n} binomial(k,n)^2*(2/3)^k.
a(n) = (1/3)^(n+1)*hypergeom([n+1, n+1], [1], 2/3).
a(n) = (2^n)*hypergeom([-n, -n], [1], 3/2).
a(n) = [x^n] ((x - 1)*(3 - 2*x))^n
a(n) = (1/2)^n*A098270(n). (End)
a(n) = (-1)^n * Sum_{k=0..n} (1/10)^(n-2*k) * binomial(-1/2,k) * binomial(k,n-k). - Seiichi Manyama, Aug 28 2025
a(n) = Sum_{k=0..floor(n/2)} 6^k * 5^(n-2*k) * binomial(n,2*k) * binomial(2*k,k). - Seiichi Manyama, Aug 30 2025

A006295 Number of genus 1 rooted maps with 2 faces with n vertices.

Original entry on oeis.org

10, 167, 1720, 14065, 100156, 649950, 3944928, 22764165, 126264820, 678405090, 3550829360, 18182708362, 91392185080, 452077562620, 2205359390592, 10627956019245, 50668344988068, 239250231713210, 1120028580999440, 5202779260636958, 23998704563581000, 109991785264412452
Offset: 3

Views

Author

Keywords

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • T. R. S. Walsh, Combinatorial Enumeration of Non-Planar Maps. Ph.D. Dissertation, Univ. of Toronto, 1971.

Crossrefs

Rooted maps of genus 1 with n edges and f faces for 1<=f<=10: A002802(with offset 2) f=1, this sequence, A006296 f=3, A288071 f=4, A288072 f=5, A287046 f=6, A287047 f=7, A287048 f=8, A288073 f=9, A288074 f=10.
Column 2 of A269921, column 1 of A270406.

Programs

  • Mathematica
    Rest[CoefficientList[Series[(1 - Sqrt[1 - 4 x]) (11 + 12 x + 9 Sqrt[1 - 4 x]) / (4 (4 x - 1)^4), {x, 0, 40}], x]] (* Vincenzo Librandi, Jun 06 2017 *)
  • PARI
    A000108_ser(N) = my(x='x+O('x^(N+1))); (1 - sqrt(1-4*x))/(2*x);
    A006295_ser(N) = {
      my(y = A000108_ser(N+1));  y*(y-1)^3*(y^2 + 15*y - 6)/(y-2)^8;
    };
    Vec(A006295_ser(31)) \\ Gheorghe Coserea, Jun 04 2017
    
  • PARI
    my(x = 'x + O('x^60)); Vec(x*(1-sqrt(1-4*x))*(11+12*x+9*sqrt(1-4*x))/(4*(4*x-1)^4)) \\ Michel Marcus, Jun 05 2017

Formula

G.f.: x*(1-sqrt(1-4*x))*(11+12*x+9*sqrt(1-4*x))/(4*(4*x-1)^4). - Sean A. Irvine, Nov 14 2010

Extensions

More terms from Sean A. Irvine, Nov 14 2010

A006296 Number of genus 1 rooted maps with 3 faces with n vertices.

Original entry on oeis.org

70, 1720, 24164, 256116, 2278660, 17970784, 129726760, 875029804, 5593305476, 34225196720, 201976335288, 1156128848680, 6447533938280, 35155923872640, 187959014565840, 987658610225052, 5110652802256260, 26084524995672080, 131501187454625560, 655590388845975000, 3235463376771463288, 15820770680078552000, 76708503479715247920, 369046200766330733880, 1762793459781859039080, 8364468224596427692896, 39445646133672676352560, 184956513528952419546448, 862615498961026097997392, 4003067488703222112053760, 18489846573354278755829152, 85028133934182275077421180, 389398354121840111751946628, 1776360539933013004774353872, 8073622060225813990245976280, 36567311475673299914222851832
Offset: 4

Views

Author

Keywords

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • T. R. S. Walsh, Combinatorial Enumeration of Non-Planar Maps. Ph.D. Dissertation, Univ. of Toronto, 1971.

Crossrefs

Rooted maps of genus 1 with n edges and f faces for 1<=f<=10: A002802(with offset 2) f=1, A006295 f=2, this sequence, A288071 f=4, A288072 f=5, A287046 f=6, A287047 f=7, A287048 f=8, A288073 f=9, A288074 f=10.
Column 3 of A269921, column g=1 of A270407.

Programs

  • Mathematica
    Rest[CoefficientList[Series[(1 - Sqrt[1 - 4 x]) (45 + 152 x + (25 + 8 x) Sqrt[1 - 4 x]) / (2 (1 - 4 x)^(11 / 2)), {x, 0, 40}], x]] (* Vincenzo Librandi, Jun 06 2017 *)
  • PARI
    A000108_ser(N) = my(x='x+O('x^(N+1))); (1 - sqrt(1-4*x))/(2*x);
    A006296_ser(N) = {
      my(y = A000108_ser(N+1));
      -2*y*(y-1)^4*(10*y^3 + 97*y^2 - 64*y - 8)/(y-2)^11;
    };
    Vec(A006296_ser(36)) \\ Gheorghe Coserea, Jun 04 2017

Formula

G.f.: x(1-sqrt(1-4*x))(45+152*x+(25+8*x)sqrt(1-4*x))/(2(1-4*x)^(11/2)). - Sean A. Irvine, Nov 14 2010

Extensions

More terms from Sean A. Irvine, Nov 14 2010

A000677 Number of bicentered trees with n nodes.

Original entry on oeis.org

0, 0, 1, 0, 1, 1, 3, 4, 11, 20, 51, 108, 267, 619, 1541, 3762, 9497, 23907, 61216, 157211, 407919, 1063398, 2792026, 7365532, 19535887, 52037837, 139213244, 373820978, 1007420841, 2723783122, 7387129661, 20091790330, 54793762295, 149808274055, 410553630946
Offset: 0

Views

Author

Keywords

Comments

See A000676 for more information.
On the bottom of first page 266 of article Cayley (1881) is a table of A000676 and A000677 for n = 1..13. - Michael Somos, Aug 20 2018

Examples

			G.f. = x^2 + x^4 + x^5 + 3*x^6 + 4*x^7 + 11*x^8 + 20*x^9 + 51*x^10 + ... - _Michael Somos_, Aug 20 2018
		

References

  • N. L. Biggs et al., Graph Theory 1736-1936, Oxford, 1976, p. 49.
  • A. Cayley, On the analytical forms called trees, with application to the theory of chemical combinations, Reports British Assoc. Advance. Sci. 45 (1875), 257-305 = Math. Papers, Vol. 9, 427-460 (see p. 438).
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Maple
    # See link for Maple program.
  • Mathematica
    (* See link. *)

Formula

a(n) = A000055(n) - A000676(n).

A006402 Number of sensed 2-connected (nonseparable) planar maps with n edges.

Original entry on oeis.org

1, 2, 3, 6, 16, 42, 151, 596, 2605, 12098, 59166, 297684, 1538590, 8109078, 43476751, 236474942, 1302680941, 7256842362, 40832979283, 231838418310, 1327095781740, 7653155567834, 44434752082990, 259600430870176, 1525366978752096, 9010312253993072, 53485145730576790
Offset: 2

Views

Author

Keywords

Comments

Some people begin this 2,1,2,3,6,..., others begin it 0,1,2,3,6,....
The dual of a nonseparable map is nonseparable, so the class of all nonseparable planar maps is self-dual. The maps considered here are unrooted and sensed and may include loops and parallel edges. - Andrew Howroyd, Mar 29 2021

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • T. R. S. Walsh, personal communication.

Crossrefs

Row sums of A342061.
Cf. A000087 (with distinguished faces), A000139 (rooted), A005645, A006403 (unsensed), A006406 (without loops or parallel edges).

Programs

  • PARI
    \\ here r(n) is A000139(n-1).
    r(n)={4*binomial(3*n,n)/(3*(3*n-2)*(3*n-1))}
    a(n)={(r(n) + sumdiv(n, d, if(dAndrew Howroyd, Mar 29 2021

Extensions

Terms a(23) and beyond from Andrew Howroyd, Mar 29 2021

A034855 Triangle read by rows giving number of rooted labeled trees with n >= 2 nodes and height d >= 1.

Original entry on oeis.org

2, 3, 6, 4, 36, 24, 5, 200, 300, 120, 6, 1170, 3360, 2520, 720, 7, 7392, 38850, 43680, 22680, 5040, 8, 50568, 475776, 757680, 551040, 221760, 40320, 9, 372528, 6231960, 13747104, 12836880, 7136640, 2358720, 362880, 10, 2936070, 87530400, 264181680
Offset: 2

Views

Author

Keywords

Examples

			2;
3,    6;
4,   36,    24;
5,  200,   300,   120;
6, 1170,  3360,  2520,   720;
7, 7392, 38850, 43680, 22680, 5040;
		

Crossrefs

Programs

  • Maple
    gf:= proc(k) gf(k):= `if`(k=0, x, x*exp(gf(k-1))) end:
    A:= proc(n, k) A(n, k):= n!*coeff(series(gf(k), x, n+1), x, n) end:
    T:= (n, d)-> A(n, d) -A(n, d-1):
    seq(seq(T(n, d), d=1..n-1), n=2..12);  # Alois P. Heinz, Sep 21 2012
  • Mathematica
    gf[k_] := gf[k] = If[k == 0, x, x*E^gf[k - 1]]; a[n_, k_] := n!*Coefficient[ Series[gf[k], {x, 0, n + 1}], x, n]; t[n_, d_] := a[n, d] - a[n, d - 1]; Table[t[n, d], {n, 2, 12}, {d, 1, n - 1}] // Flatten (* Jean-François Alcover, Jan 15 2013, translated from Alois P. Heinz's Maple program *)

Formula

Riordan reference gives recurrence.

Extensions

More terms from Pab Ter (pabrlos(AT)yahoo.com), May 27 2004

A001854 Total height of all rooted trees on n labeled nodes.

Original entry on oeis.org

0, 2, 15, 148, 1785, 26106, 449701, 8927192, 200847681, 5053782070, 140679853941, 4293235236324, 142553671807729, 5116962926162738, 197459475792232725, 8152354312656732976, 358585728464893234305, 16741214317684425260142, 826842457727306803110997, 43073414675338753123113980
Offset: 1

Views

Author

Keywords

Comments

Take any one of the n^(n-1) rooted trees on n labeled nodes, compute its height (maximal edge distance to root), sum over all trees.
Theorem [Renyi-Szekeres, (4,7)]. The average height if the tree is chosen at random is sqrt(2*n*Pi). - David desJardins, Jan 20 2017

References

  • Rényi, A., and G. Szekeres. "On the height of trees." Journal of the Australian Mathematical Society 7.04 (1967): 497-507. See (4.7).
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Also A234953(n) = a(n)/n.

Programs

  • Mathematica
    nn=20;a=NestList[ x Exp[#]&,x,nn];f[list_]:=Sum[list[[i]]*i,{i,1,Length[list]}];Drop[Map[f,Transpose[Table[Range[0,nn]!CoefficientList[Series[a[[i+1]]-a[[i]],{x,0,nn}],x],{i,1,nn-1}]]],1]  (* Geoffrey Critzer, Mar 14 2013 *)

Formula

a(n) = Sum_{k=1..n-1} A034855(n,k)*k. - Geoffrey Critzer, Mar 14 2013
A000435(n)/a(n) ~ 1/2 (see A000435 and the Renyi-Szekeres result mentioned in the Comments). - David desJardins, Jan 20 2017

Extensions

More terms from Geoffrey Critzer, Mar 14 2013

A034853 Triangle giving number of trees with n >= 3 nodes and diameter d >= 2.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 2, 5, 2, 1, 1, 3, 8, 7, 3, 1, 1, 3, 14, 14, 11, 3, 1, 1, 4, 21, 32, 29, 14, 4, 1, 1, 4, 32, 58, 74, 42, 19, 4, 1, 1, 5, 45, 110, 167, 128, 66, 23, 5, 1
Offset: 3

Views

Author

Keywords

Examples

			   1
   1    1
   1    1    1
   1    2    2    1
   1    2    5    2    1
   1    3    8    7    3    1
   1    3   14   14   11    3    1
   1    4   21   32   29   14    4    1
   1    4   32   58   74   42   19    4    1
   1    5   45  110  167  128   66   23    5    1
   1    5   65  187  367  334  219   88   29    5    1
   1    6   88  322  755  850  645  328  123   34    6    1
		

Crossrefs

Cf. A000055 (row sums), A283826, A000094 (diameter 4), A000147 (diameter 5), A000251 (diameter 6), A000550 (diameter 7), A000306 (diameter 8).

Formula

Reference gives recurrence.

A277741 Array read by antidiagonals: A(n,k) is the number of unsensed planar maps with n vertices and k faces, n >= 1, k >= 1.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 2, 5, 5, 2, 3, 13, 20, 13, 3, 6, 35, 83, 83, 35, 6, 12, 104, 340, 504, 340, 104, 12, 27, 315, 1401, 2843, 2843, 1401, 315, 27, 65, 1021, 5809, 15578, 21420, 15578, 5809, 1021, 65, 175, 3407, 24299, 82546, 149007, 149007, 82546, 24299, 3407, 175
Offset: 1

Views

Author

N. J. A. Sloane, Nov 07 2016

Keywords

Comments

A(n,k) is also the number of multiquadrangulations of the sphere with n stable equilibria and k unstable equilibria.
From Andrew Howroyd, Jan 13 2025: (Start)
The planar maps considered are connected and may contain loops and parallel edges.
The number of edges is n + k - 2. (End)

Examples

			The array begins:
   1,    1,    1,     2,     3,     6,   12,   27, 65, ...
   1,    2,    5,    13,    35,   104,  315, 1021, ...
   1,    5,   20,    83,   340,  1401, 5809, ...
   2,   13,   83,   504,  2843, 15578, ...
   3,   35,  340,  2843, 21420, ...
   6,  104, 1401, 15578, ...
  12,  315, 5809, ...
  27, 1021, ...
  65, ...
  ...
As a triangle, rows give the number of edges (first row is 0 edges):
   1;
   1,    1;
   1,    2,    1;
   2,    5,    5,     2;
   3,   13,   20,    13,     3;
   6,   35,   83,    83,    35,    6;
  12,  104,  340,   504,   340,   104,   12;
  27,  315, 1401,  2843,  2843,  1401,  315,   27;
  65, 1021, 5809, 15578, 21420, 15578, 5809, 1021, 65;
  ...
		

References

  • Miklos Bona, editor, Handbook of Enumerative Combinatorics, CRC Press, 2015, chapter 5.

Crossrefs

Antidiagonal sums are A006385.
Rows 1..2 (equally, columns 1..2) are A006082, A380239.
Cf. A269920 (rooted), A379430 (sensed), A379431 (achiral), A379432 (2-connected), A384963 (simple).

Formula

A(n,k) = A(k,n).
A(n,k) = (A379430(n,k) + A379431(n,k))/2. - Andrew Howroyd, Jan 14 2025

Extensions

Missing terms inserted and definition edited by Andrew Howroyd, Jan 13 2025
Previous Showing 11-20 of 47 results. Next