cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 41-50 of 84 results. Next

A004130 Numerators in expansion of (1-x)^{-1/4}.

Original entry on oeis.org

1, 1, 5, 15, 195, 663, 4641, 16575, 480675, 1762475, 13042315, 48612265, 729183975, 2748462675, 20809788825, 79077197535, 4823709049635, 18443593425075, 141400882925575, 543277076503525, 8366466978154285, 32270658344309385
Offset: 0

Views

Author

Keywords

Comments

Numerators in expansion of sqrt(1/sqrt(1-4x)). - Paul Barry, Jul 12 2005
Denominators are in A088802. - Michael Somos, Aug 23 2007

Crossrefs

Programs

  • Mathematica
    Table[Numerator[Binomial[-1/4, n] (-1)^n], {n, 0, 20}]
  • PARI
    {a(n) = if( n<0, 0, numerator( polcoeff( (1 - x +x*O(x^n))^(-1/4), n ) ) ) } /* Michael Somos, Aug 23 2007 */

Formula

a(n) = prod(k=1, n, (4k-3)/k * 2^A007814(k)), proved by Mitch Harris, following a conjecture by Ralf Stephan.
a(n) = 2^(e_2((2n)!)-n)/n! Product[4k+1,{k,0,n-1}], where e_2((2n)!) is the highest power of 2 that divides (2n)! (sequence A005187). - Emanuele Munarini, Jan 25 2011
Numerators in (1-4t)^(-1/4) = 1 + t + (5/2)t^2 + (15/2)t^3 + (195/8)t^4 + (663/8)t^5 + (4641/16)t^6 + (16575/16)t^7 + ... = 1 + t + 5*t^2/2! + 45*t^3/3! + 585*t^4/4! + ... = e.g.f. for the quartic factorials A007696 (cf. A094638). - Tom Copeland, Dec 04 2013

A034975 One seventh of octo-factorial numbers.

Original entry on oeis.org

1, 15, 345, 10695, 417105, 19603935, 1078216425, 67927634775, 4822862069025, 381006103452975, 33147531000408825, 3149015445038838375, 324348590839000352625, 36002693583129039141375, 4284320536392355657823625, 544108708121829168543600375, 73454675596446937753386050625
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Magma
    [n le 1 select 1 else (8*n-1)*Self(n-1): n in [1..40]]; // G. C. Greubel, Oct 21 2022
    
  • Mathematica
    Table[8^n*Pochhammer[7/8, n]/7, {n, 40}] (* G. C. Greubel, Oct 21 2022 *)
  • SageMath
    [8^n*rising_factorial(7/8,n)/7 for n in range(1,40)] # G. C. Greubel, Oct 21 2022

Formula

7*a(n) = (8*n-1)!^8 = Product_{j=1..n} (8*j-1) = (8*n)!/((2*n)!*2^(6*n)*3^2*5 * A045755(n)*A007696(n)*A034909(n)*A034911(n)*A034176(n)).
E.g.f.: (-1+(1-8*x)^(-7/8))/7.
G.f.: x/(1-15*x/(1-8*x/(1-23*x/(1-16*x/(1-31*x/(1-24*x/(1-39*x/(1-32*x/(1-... (continued fraction). - Philippe Deléham, Jan 07 2012
a(n) = (1/7) * 8^n * Pochhammer(n, 7/8). - G. C. Greubel, Oct 21 2022
From Amiram Eldar, Dec 20 2022: (Start)
a(n) = A049210(n)/7.
Sum_{n>=1} 1/a(n) = 7*(e/8)^(1/8)*(Gamma(7/8) - Gamma(7/8, 1/8)). (End)

A113131 a(0) = a(1) = 1, a(2) = x, a(3) = 2x^2, a(n) = x*(n-1)*a(n-1) + Sum_{j=2..n-2} (j-1)*a(j)*a(n-j), n>=4 and for x = 4.

Original entry on oeis.org

1, 1, 4, 32, 400, 6784, 144128, 3658752, 107686656, 3599697920, 134617038848, 5567255822336, 252278661832704, 12431395516383232, 661885541595873280, 37869659304097218560, 2317293119684500193280, 151022143036329696952320
Offset: 0

Views

Author

Philippe Deléham and Paul D. Hanna, Oct 28 2005

Keywords

Examples

			a(2) = 4.
a(3) = 2*4^2 = 32.
a(4) = 4*3*32 + 1*4*4 = 400.
a(5) = 4*4*400 + 1*4*32 + 2*32*4 = 6784.
a(6) = 4*5*6784 + 1*4*400 + 2*32*32 + 3*400*4 = 144128.
G.f.: A(x) = 1 + x + 4*x^2 + 32*x^3 + 400*x^4 + 6784*x^5 +...
= x/series_reversion(x + x^2 + 5*x^3 + 45*x^4 + 585*x^5 +...).
		

Crossrefs

Cf. A007696, A075834(x=1), A111088(x=2), A113130(x=3), A113132(x=5), A113133(x=6), A113134(x=7), A113135(x=8).

Programs

  • Mathematica
    x=4;a[0]=a[1]=1;a[2]=x;a[3]=2x^2;a[n_]:=a[n]=x*(n-1)*a[n-1]+Sum[(j-1)*a[j ]*a[n-j], {j, 2, n-2}];Table[a[n], {n, 0, 18}](Robert G. Wilson v)
  • PARI
    a(n)=Vec(x/serreverse(x*Ser(vector(n+1,k,if(k==1,1, prod(j=0,k-2,4*j+1))))))[n+1]
    
  • PARI
    a(n,x=4)=if(n<0,0,if(n==0 || n==1,1,if(n==2,x,if(n==3,2*x^2,x*(n-1)*a(n-1)+sum(j=2,n-2,(j-1)*a(j)*a(n-j))))))

Formula

a(n+1) = Sum{k, 0<=k<=n} 4^k*A113129(n, k).
G.f.: A(x) = x/series_reversion(x*G(x)) where G(x) = g.f. of quartic factorials (A007696).
G.f. satisfies: A(x*G(x)) = G(x) = g.f. of triple factorials (A007696).

A264781 Number T(n,k) of permutations of [n] with exactly k (possibly overlapping) occurrences of the consecutive pattern 45321; triangle T(n,k), n >= 0, 0 <= k <= max(0, floor((n-1)/4)), read by rows.

Original entry on oeis.org

1, 1, 2, 6, 24, 119, 1, 708, 12, 4914, 126, 38976, 1344, 347765, 15110, 5, 3447712, 180736, 352, 37598286, 2308548, 9966, 447294144, 31481472, 225984, 5764747515, 457520055, 4753185, 45, 80011430240, 7068885600, 97954080, 21280, 1189835682714, 115808906178
Offset: 0

Views

Author

Alois P. Heinz, Nov 24 2015

Keywords

Comments

Consecutive patterns 12354, 21345, 54312 give the same triangle.
The attached Maple program gives a recurrence for the o.g.f. of each row in terms of u. Using that recurrence we may get any row or column from this irregular triangular array T(n,k). The recurrence follows from manipulation of the bivariate o.g.f./e.g.f. 1/W(u,z) = Sum_{n, k >= 0} T(n, k)*u^k*z^n/n!, whose reciprocal W(u,z) is the solution of the o.d.e. in Theorem 3.2 in Elizalde and Noy (2003) (with m = a = 3). - Petros Hadjicostas, Nov 05 2019

Examples

			T(5,1) = 1: 45321.
T(6,1) = 12: 156432, 256431, 356421, 453216, 456321, 463215, 546321, 563214, 564213, 564312, 564321, 645321.
T(9,2) = 5: 786549321, 796548321, 896547321, 897546321, 897645321.
Triangle T(n,k) begins:
00 :           1;
01 :           1;
02 :           2;
03 :           6;
04 :          24;
05 :         119,          1;
06 :         708,         12;
07 :        4914,        126;
08 :       38976,       1344;
09 :      347765,      15110,        5;
10 :     3447712,     180736,      352;
11 :    37598286,    2308548,     9966;
12 :   447294144,   31481472,   225984;
13 :  5764747515,  457520055,  4753185,    45;
14 : 80011430240, 7068885600, 97954080, 21280;
		

Crossrefs

Columns k=0-1 give: A202213, A264896.
Row sums give A000142.
T(4n+1,n) gives A007696.

Programs

  • Maple
    b:= proc(u, o, t) option remember; `if`(u+o=0, 1, add(
           b(u+j-1, o-j, `if`(u+j-30, -1, `if`(t=-1, -2, 0)))), j=1..u)))
        end:
    T:= n-> (p-> seq(coeff(p, x, i), i=0..degree(p)))(b(n, 0$2)):
    seq(T(n), n=0..17);
  • Mathematica
    b[u_, o_, t_] := b[u, o, t] = If[u+o == 0, 1, Sum[
         b[u+j-1, o-j, If[u+j-3 < j, 0, j]], {j, 1, o}] + Expand[
         If[t == -2, x, 1]*Sum[b[u-j, o+j-1, If[j < t || t == -2, 0,
         If[t > 0, -1, If[t == -1, -2, 0]]]], {j, 1, u}]]];
    T[n_] := CoefficientList[b[n, 0, 0], x];
    T /@ Range[0, 17] // Flatten (* Jean-François Alcover, Feb 19 2021, after Alois P. Heinz *)

Formula

Sum_{k > 0} k * T(n,k) = A062199(n-5) for n > 4.

A347016 Expansion of e.g.f. 1 / (1 + 4 * log(1 - x))^(1/4).

Original entry on oeis.org

1, 1, 6, 62, 916, 17644, 419360, 11859840, 388965600, 14514046560, 607165485120, 28143329181120, 1431690475207680, 79302863940387840, 4751108622148907520, 306118435580577146880, 21107196651940518551040, 1550773243761690603179520, 120947288498720390755353600
Offset: 0

Views

Author

Ilya Gutkovskiy, Aug 10 2021

Keywords

Crossrefs

Programs

  • Maple
    g:= proc(n) option remember; `if`(n<2, 1, (4*n-3)*g(n-1)) end:
    a:= n-> add(abs(Stirling1(n, k))*g(k), k=0..n):
    seq(a(n), n=0..18);  # Alois P. Heinz, Aug 10 2021
  • Mathematica
    nmax = 18; CoefficientList[Series[1/(1 + 4 Log[1 - x])^(1/4), {x, 0, nmax}], x] Range[0, nmax]!
    Table[Sum[Abs[StirlingS1[n, k]] 4^k Pochhammer[1/4, k], {k, 0, n}], {n, 0, 18}]

Formula

a(n) = Sum_{k=0..n} |Stirling1(n,k)| * A007696(k).
a(n) ~ n! * exp(n/4) / (Gamma(1/4) * 2^(1/2) * n^(3/4) * (exp(1/4) - 1)^(n + 1/4)). - Vaclav Kotesovec, Aug 14 2021
a(0) = 1; a(n) = Sum_{k=1..n} (4 - 3*k/n) * (k-1)! * binomial(n,k) * a(n-k). - Seiichi Manyama, Sep 09 2023

A352073 Expansion of e.g.f. 1/(1 - log(1 + 4*x))^(1/4).

Original entry on oeis.org

1, 1, 1, 17, 1, 1889, -12415, 631665, -11224575, 461864385, -13754112255, 596055636945, -24148300842495, 1181210529292065, -59009709972278655, 3297137505670374705, -193318225258785780735, 12263541239089421903745, -820804950905249837195775
Offset: 0

Views

Author

Seiichi Manyama, Mar 05 2022

Keywords

Crossrefs

Programs

  • Mathematica
    m = 18; Range[0, m]! * CoefficientList[Series[(1 - Log[1 + 4*x])^(-1/4), {x, 0, m}], x] (* Amiram Eldar, Mar 05 2022 *)
  • PARI
    my(N=20, x='x+O('x^N)); Vec(serlaplace(1/(1-log(1+4*x))^(1/4)))
    
  • PARI
    a(n) = sum(k=0, n, 4^(n-k)*prod(j=0, k-1, 4*j+1)*stirling(n, k, 1));

Formula

a(n) = Sum_{k=0..n} 4^(n-k) * (Product_{j=0..k-1} (4*j+1)) * Stirling1(n,k).
a(0) = 1; a(n) = Sum_{k=1..n} (-4)^k * (3/4 * k/n - 1) * (k-1)! * binomial(n,k) * a(n-k). - Seiichi Manyama, Nov 18 2023

A051620 a(n) = (4*n+8)(!^4)/8(!^4), related to A034177(n+1) ((4*n+4)(!^4) quartic, or 4-factorials).

Original entry on oeis.org

1, 12, 192, 3840, 92160, 2580480, 82575360, 2972712960, 118908518400, 5231974809600, 251134790860800, 13059009124761600, 731304510986649600, 43878270659198976000, 2808209322188734464000, 190958233908833943552000
Offset: 0

Views

Author

Keywords

Comments

Row m=8 of the array A(5; m,n) := ((4*n+m)(!^4))/m(!^4), m >= 0, n >= 0.

Crossrefs

Cf. A047053, A007696(n+1), A000407, A034176(n+1), A034177(n+1), A051617-A051622 (rows m=0..10).

Programs

  • Magma
    m:=30; R:=PowerSeriesRing(Rationals(), m); b:=Coefficients(R!(1/(1-4*x)^(12/4))); [Factorial(n-1)*b[n]: n in [1..m]]; // G. C. Greubel, Aug 15 2018
  • Maple
    G(x):=(1-4*x)^(n-4): f[0]:=G(x): for n from 1 to 29 do f[n]:=diff(f[n-1],x) od:x:=0:seq(f[n],n=0..15); # Zerinvary Lajos, Apr 04 2009
  • Mathematica
    s=1;lst={s};Do[s+=n*s;AppendTo[lst, s], {n, 11, 5!, 4}];lst (* Vladimir Joseph Stephan Orlovsky, Nov 08 2008 *)
    With[{nn=20},CoefficientList[Series[1/(1-4*x)^3,{x,0,nn}],x] Range[0,nn]!] (* Harvey P. Dale, Mar 10 2017 *)
  • PARI
    x='x+O('x^30); Vec(serlaplace(1/(1-4*x)^(12/4))) \\ G. C. Greubel, Aug 15 2018
    

Formula

a(n) = ((4*n+8)(!^4))/8(!^4) = A034177(n+2)/8.
E.g.f.: 1/(1-4*x)^3.
G.f.: G(0)/2, where G(k)= 1 + 1/(1 - 2*x/(2*x + 1/(2*k+6)/G(k+1))); (continued fraction). - Sergei N. Gladkovskii, Jun 02 2013

A134275 Triangle of numbers obtained from the partition array A134274.

Original entry on oeis.org

1, 5, 1, 45, 5, 1, 585, 70, 5, 1, 9945, 810, 70, 5, 1, 208845, 14895, 935, 70, 5, 1, 5221125, 284895, 16020, 935, 70, 5, 1, 151412625, 7055100, 309645, 16645, 935, 70, 5, 1, 4996616625, 192734100, 7526475, 315270, 16645, 935, 70, 5, 1, 184874815125
Offset: 1

Views

Author

Wolfdieter Lang, Nov 13 2007

Keywords

Comments

This triangle is named S2(5)'.
In the same manner the unsigned Lah triangle A008297 is obtained from the partition array A130561.

Examples

			Triangle begins:
  [1];
  [5,1];
  [45,5,1];
  [585,70,5,1];
  [9945,810,70,5,1];
  ...
		

Crossrefs

Cf. A134276 (row sums). A134277 (alternating row sums).
Cf. A134151 (S2(4)').

Formula

a(n,m) = sum(product(S2(5;j,1)^e(n,m,q,j),j=1..n),q=1..p(n,m)) if n>=m>=1, else 0. Here p(n,m)=A008284(n,m), the number of m parts partitions of n and e(n,m,q,j) is the exponent of j in the q-th m part partition of n. S2(5;j,1)= A007696(j) = A049029(j,1) = (4*j-3)(!^4), (quadruple- or 4-factorials).

A024382 a(n) = n-th elementary symmetric function of the first n+1 positive integers congruent to 1 mod 4.

Original entry on oeis.org

1, 6, 59, 812, 14389, 312114, 8011695, 237560280, 7990901865, 300659985630, 12511934225955, 570616907588100, 28301322505722525, 1516683700464669450, 87336792132539066775, 5378036128829898836400, 352652348707389385916625, 24533212082483855129037750
Offset: 0

Views

Author

Keywords

Comments

a(n) is equal to the determinant of the n X n matrix whose (i,j)-entry is KroneckerDelta[i,j]((4*i+2)-1)+1. - John M. Campbell, May 23 2011
From R. J. Mathar, Oct 01 2016: (Start)
The k-th elementary symmetric functions of the integers 1+4*j, j=1..n, form a triangle T(n,k), 0<=k<=n, n>=0:
1
1 1
1 6 5
1 15 59 45
1 28 254 812 585
1 45 730 5130 14389 9945
1 66 1675 20460 122119 312114 208845
1 91 3325 62335 633619 3365089 8011695 5221125
1 120 5964 158760 2441334 21740040 105599276 237560280 151412625
This here is the first subdiagonal. The diagonal seems to be A007696. The 2nd column is A000384, the 3rd A024378, the 4th A024379. (End)

Examples

			For n = 1 we have a(1) = 1*5*(1/1 + 1/5) = 6.
For n = 2 we have a(2) = 1*5*9*(1/1 + 1/5 + 1/9) = 59.
For n = 3 we have a(3) = 1*5*9*13*(1/1 + 1/5 + 1/9 + 1/13) = 812. - _Gheorghe Coserea_, Dec 24 2015
		

Crossrefs

Cf. A024216.

Programs

  • Magma
    I:=[1,6]; [n le 2 select I[n] else (8*n-10)*Self(n-1)-(4*n-7)^2*Self(n-2): n in [1..20]]; // Vincenzo Librandi, Dec 26 2015
  • Maple
    a:= proc(n) option remember; `if`(n<3, [1, 6, 59][n+1],
          (8*n-2)*a(n-1) -(4*n-3)^2*a(n-2))
        end;
    seq(a(n), n=0..20);  # Alois P. Heinz, Feb 25 2015
  • Mathematica
    Table[Det[Array[KroneckerDelta[#1,#2]((4*#1+2)-1)+1&,{k, k}]],{k,1,10}] (* John M. Campbell, May 23 2011 *)
    RecurrenceTable[{a[0] == 1, a[1] == 6, a[n] == (8 n - 2) a[n - 1] - (4 n - 3)^2 a[n - 2]}, a, {n, 0, 20}] (* Vincenzo Librandi, Dec 26 2015 *)
  • PARI
    x = 'x + O('x^33); Vec(serlaplace((4-log(1-4*x))/(4*(1-4*x)^(5/4)))) \\ Gheorghe Coserea, Dec 24 2015
    

Formula

a(n) = (8*n-2)*a(n-1) - (4*n-3)^2*a(n-2) for n>1. - Alois P. Heinz, Feb 25 2015
E.g.f.: (4-log(1-4*x))/(4*(1-4*x)^(5/4)). - Gheorghe Coserea, Dec 24 2015

Extensions

More terms from Alois P. Heinz, Feb 25 2015

A051619 a(n) = (4*n+7)(!^4)/7(!^4), related to A034176(n+1) ((4*n+3)(!^4) quartic, or 4-factorials).

Original entry on oeis.org

1, 11, 165, 3135, 72105, 1946835, 60351885, 2112315975, 82380323025, 3542353890075, 166490632833525, 8491022274509775, 467006225098037625, 27553367280784219875, 1735862138689405852125, 116302763292190192092375
Offset: 0

Views

Author

Keywords

Comments

Row m=7 of the array A(5; m,n) := ((4*n+m)(!^4))/m(!^4), m >= 0, n >= 0.

Crossrefs

Cf. A047053, A007696(n+1), A000407, A034176(n+1), A034177(n+1), A051617-A051622 (rows m=0..10).

Programs

  • Magma
    m:=30; R:=PowerSeriesRing(Rationals(), m); b:=Coefficients(R!(1/(1-4*x)^(11/4))); [Factorial(n-1)*b[n]: n in [1..m]]; // G. C. Greubel, Aug 15 2018
  • Mathematica
    s=1;lst={s};Do[s+=n*s;AppendTo[lst, s], {n, 10, 5!, 4}];lst (* Vladimir Joseph Stephan Orlovsky, Nov 08 2008 *)
    With[{nn = 30}, CoefficientList[Series[1/(1 - 4*x)^(11/4), {x, 0, nn}], x]*Range[0, nn]!] (* G. C. Greubel, Aug 15 2018 *)
  • PARI
    x='x+O('x^30); Vec(serlaplace(1/(1-4*x)^(11/4))) \\ G. C. Greubel, Aug 15 2018
    

Formula

a(n) = ((4*n+7)(!^4))/7(!^4) = A034176(n+2)/7.
E.g.f.: 1/(1-4*x)^(11/4).
Previous Showing 41-50 of 84 results. Next