A004130
Numerators in expansion of (1-x)^{-1/4}.
Original entry on oeis.org
1, 1, 5, 15, 195, 663, 4641, 16575, 480675, 1762475, 13042315, 48612265, 729183975, 2748462675, 20809788825, 79077197535, 4823709049635, 18443593425075, 141400882925575, 543277076503525, 8366466978154285, 32270658344309385
Offset: 0
-
Table[Numerator[Binomial[-1/4, n] (-1)^n], {n, 0, 20}]
-
{a(n) = if( n<0, 0, numerator( polcoeff( (1 - x +x*O(x^n))^(-1/4), n ) ) ) } /* Michael Somos, Aug 23 2007 */
A034975
One seventh of octo-factorial numbers.
Original entry on oeis.org
1, 15, 345, 10695, 417105, 19603935, 1078216425, 67927634775, 4822862069025, 381006103452975, 33147531000408825, 3149015445038838375, 324348590839000352625, 36002693583129039141375, 4284320536392355657823625, 544108708121829168543600375, 73454675596446937753386050625
Offset: 1
-
[n le 1 select 1 else (8*n-1)*Self(n-1): n in [1..40]]; // G. C. Greubel, Oct 21 2022
-
Table[8^n*Pochhammer[7/8, n]/7, {n, 40}] (* G. C. Greubel, Oct 21 2022 *)
-
[8^n*rising_factorial(7/8,n)/7 for n in range(1,40)] # G. C. Greubel, Oct 21 2022
A113131
a(0) = a(1) = 1, a(2) = x, a(3) = 2x^2, a(n) = x*(n-1)*a(n-1) + Sum_{j=2..n-2} (j-1)*a(j)*a(n-j), n>=4 and for x = 4.
Original entry on oeis.org
1, 1, 4, 32, 400, 6784, 144128, 3658752, 107686656, 3599697920, 134617038848, 5567255822336, 252278661832704, 12431395516383232, 661885541595873280, 37869659304097218560, 2317293119684500193280, 151022143036329696952320
Offset: 0
a(2) = 4.
a(3) = 2*4^2 = 32.
a(4) = 4*3*32 + 1*4*4 = 400.
a(5) = 4*4*400 + 1*4*32 + 2*32*4 = 6784.
a(6) = 4*5*6784 + 1*4*400 + 2*32*32 + 3*400*4 = 144128.
G.f.: A(x) = 1 + x + 4*x^2 + 32*x^3 + 400*x^4 + 6784*x^5 +...
= x/series_reversion(x + x^2 + 5*x^3 + 45*x^4 + 585*x^5 +...).
-
x=4;a[0]=a[1]=1;a[2]=x;a[3]=2x^2;a[n_]:=a[n]=x*(n-1)*a[n-1]+Sum[(j-1)*a[j ]*a[n-j], {j, 2, n-2}];Table[a[n], {n, 0, 18}](Robert G. Wilson v)
-
a(n)=Vec(x/serreverse(x*Ser(vector(n+1,k,if(k==1,1, prod(j=0,k-2,4*j+1))))))[n+1]
-
a(n,x=4)=if(n<0,0,if(n==0 || n==1,1,if(n==2,x,if(n==3,2*x^2,x*(n-1)*a(n-1)+sum(j=2,n-2,(j-1)*a(j)*a(n-j))))))
A264781
Number T(n,k) of permutations of [n] with exactly k (possibly overlapping) occurrences of the consecutive pattern 45321; triangle T(n,k), n >= 0, 0 <= k <= max(0, floor((n-1)/4)), read by rows.
Original entry on oeis.org
1, 1, 2, 6, 24, 119, 1, 708, 12, 4914, 126, 38976, 1344, 347765, 15110, 5, 3447712, 180736, 352, 37598286, 2308548, 9966, 447294144, 31481472, 225984, 5764747515, 457520055, 4753185, 45, 80011430240, 7068885600, 97954080, 21280, 1189835682714, 115808906178
Offset: 0
T(5,1) = 1: 45321.
T(6,1) = 12: 156432, 256431, 356421, 453216, 456321, 463215, 546321, 563214, 564213, 564312, 564321, 645321.
T(9,2) = 5: 786549321, 796548321, 896547321, 897546321, 897645321.
Triangle T(n,k) begins:
00 : 1;
01 : 1;
02 : 2;
03 : 6;
04 : 24;
05 : 119, 1;
06 : 708, 12;
07 : 4914, 126;
08 : 38976, 1344;
09 : 347765, 15110, 5;
10 : 3447712, 180736, 352;
11 : 37598286, 2308548, 9966;
12 : 447294144, 31481472, 225984;
13 : 5764747515, 457520055, 4753185, 45;
14 : 80011430240, 7068885600, 97954080, 21280;
- Alois P. Heinz, Rows n = 0..170, flattened
- A. Baxter, B. Nakamura, and D. Zeilberger, Automatic generation of theorems and proofs on enumerating consecutive Wilf-classes, 2011.
- Sergi Elizalde and Marc Noy, Consecutive patterns in permutations, Adv. Appl. Math. 30 (2003), 110-125; see Theorem 3.2 (p. 116) with m = a = 3.
- Petros Hadjicostas, Maple program for a recurrence.
-
b:= proc(u, o, t) option remember; `if`(u+o=0, 1, add(
b(u+j-1, o-j, `if`(u+j-30, -1, `if`(t=-1, -2, 0)))), j=1..u)))
end:
T:= n-> (p-> seq(coeff(p, x, i), i=0..degree(p)))(b(n, 0$2)):
seq(T(n), n=0..17);
-
b[u_, o_, t_] := b[u, o, t] = If[u+o == 0, 1, Sum[
b[u+j-1, o-j, If[u+j-3 < j, 0, j]], {j, 1, o}] + Expand[
If[t == -2, x, 1]*Sum[b[u-j, o+j-1, If[j < t || t == -2, 0,
If[t > 0, -1, If[t == -1, -2, 0]]]], {j, 1, u}]]];
T[n_] := CoefficientList[b[n, 0, 0], x];
T /@ Range[0, 17] // Flatten (* Jean-François Alcover, Feb 19 2021, after Alois P. Heinz *)
A347016
Expansion of e.g.f. 1 / (1 + 4 * log(1 - x))^(1/4).
Original entry on oeis.org
1, 1, 6, 62, 916, 17644, 419360, 11859840, 388965600, 14514046560, 607165485120, 28143329181120, 1431690475207680, 79302863940387840, 4751108622148907520, 306118435580577146880, 21107196651940518551040, 1550773243761690603179520, 120947288498720390755353600
Offset: 0
-
g:= proc(n) option remember; `if`(n<2, 1, (4*n-3)*g(n-1)) end:
a:= n-> add(abs(Stirling1(n, k))*g(k), k=0..n):
seq(a(n), n=0..18); # Alois P. Heinz, Aug 10 2021
-
nmax = 18; CoefficientList[Series[1/(1 + 4 Log[1 - x])^(1/4), {x, 0, nmax}], x] Range[0, nmax]!
Table[Sum[Abs[StirlingS1[n, k]] 4^k Pochhammer[1/4, k], {k, 0, n}], {n, 0, 18}]
A352073
Expansion of e.g.f. 1/(1 - log(1 + 4*x))^(1/4).
Original entry on oeis.org
1, 1, 1, 17, 1, 1889, -12415, 631665, -11224575, 461864385, -13754112255, 596055636945, -24148300842495, 1181210529292065, -59009709972278655, 3297137505670374705, -193318225258785780735, 12263541239089421903745, -820804950905249837195775
Offset: 0
-
m = 18; Range[0, m]! * CoefficientList[Series[(1 - Log[1 + 4*x])^(-1/4), {x, 0, m}], x] (* Amiram Eldar, Mar 05 2022 *)
-
my(N=20, x='x+O('x^N)); Vec(serlaplace(1/(1-log(1+4*x))^(1/4)))
-
a(n) = sum(k=0, n, 4^(n-k)*prod(j=0, k-1, 4*j+1)*stirling(n, k, 1));
A051620
a(n) = (4*n+8)(!^4)/8(!^4), related to A034177(n+1) ((4*n+4)(!^4) quartic, or 4-factorials).
Original entry on oeis.org
1, 12, 192, 3840, 92160, 2580480, 82575360, 2972712960, 118908518400, 5231974809600, 251134790860800, 13059009124761600, 731304510986649600, 43878270659198976000, 2808209322188734464000, 190958233908833943552000
Offset: 0
-
m:=30; R:=PowerSeriesRing(Rationals(), m); b:=Coefficients(R!(1/(1-4*x)^(12/4))); [Factorial(n-1)*b[n]: n in [1..m]]; // G. C. Greubel, Aug 15 2018
-
G(x):=(1-4*x)^(n-4): f[0]:=G(x): for n from 1 to 29 do f[n]:=diff(f[n-1],x) od:x:=0:seq(f[n],n=0..15); # Zerinvary Lajos, Apr 04 2009
-
s=1;lst={s};Do[s+=n*s;AppendTo[lst, s], {n, 11, 5!, 4}];lst (* Vladimir Joseph Stephan Orlovsky, Nov 08 2008 *)
With[{nn=20},CoefficientList[Series[1/(1-4*x)^3,{x,0,nn}],x] Range[0,nn]!] (* Harvey P. Dale, Mar 10 2017 *)
-
x='x+O('x^30); Vec(serlaplace(1/(1-4*x)^(12/4))) \\ G. C. Greubel, Aug 15 2018
A134275
Triangle of numbers obtained from the partition array A134274.
Original entry on oeis.org
1, 5, 1, 45, 5, 1, 585, 70, 5, 1, 9945, 810, 70, 5, 1, 208845, 14895, 935, 70, 5, 1, 5221125, 284895, 16020, 935, 70, 5, 1, 151412625, 7055100, 309645, 16645, 935, 70, 5, 1, 4996616625, 192734100, 7526475, 315270, 16645, 935, 70, 5, 1, 184874815125
Offset: 1
Triangle begins:
[1];
[5,1];
[45,5,1];
[585,70,5,1];
[9945,810,70,5,1];
...
A024382
a(n) = n-th elementary symmetric function of the first n+1 positive integers congruent to 1 mod 4.
Original entry on oeis.org
1, 6, 59, 812, 14389, 312114, 8011695, 237560280, 7990901865, 300659985630, 12511934225955, 570616907588100, 28301322505722525, 1516683700464669450, 87336792132539066775, 5378036128829898836400, 352652348707389385916625, 24533212082483855129037750
Offset: 0
For n = 1 we have a(1) = 1*5*(1/1 + 1/5) = 6.
For n = 2 we have a(2) = 1*5*9*(1/1 + 1/5 + 1/9) = 59.
For n = 3 we have a(3) = 1*5*9*13*(1/1 + 1/5 + 1/9 + 1/13) = 812. - _Gheorghe Coserea_, Dec 24 2015
-
I:=[1,6]; [n le 2 select I[n] else (8*n-10)*Self(n-1)-(4*n-7)^2*Self(n-2): n in [1..20]]; // Vincenzo Librandi, Dec 26 2015
-
a:= proc(n) option remember; `if`(n<3, [1, 6, 59][n+1],
(8*n-2)*a(n-1) -(4*n-3)^2*a(n-2))
end;
seq(a(n), n=0..20); # Alois P. Heinz, Feb 25 2015
-
Table[Det[Array[KroneckerDelta[#1,#2]((4*#1+2)-1)+1&,{k, k}]],{k,1,10}] (* John M. Campbell, May 23 2011 *)
RecurrenceTable[{a[0] == 1, a[1] == 6, a[n] == (8 n - 2) a[n - 1] - (4 n - 3)^2 a[n - 2]}, a, {n, 0, 20}] (* Vincenzo Librandi, Dec 26 2015 *)
-
x = 'x + O('x^33); Vec(serlaplace((4-log(1-4*x))/(4*(1-4*x)^(5/4)))) \\ Gheorghe Coserea, Dec 24 2015
A051619
a(n) = (4*n+7)(!^4)/7(!^4), related to A034176(n+1) ((4*n+3)(!^4) quartic, or 4-factorials).
Original entry on oeis.org
1, 11, 165, 3135, 72105, 1946835, 60351885, 2112315975, 82380323025, 3542353890075, 166490632833525, 8491022274509775, 467006225098037625, 27553367280784219875, 1735862138689405852125, 116302763292190192092375
Offset: 0
-
m:=30; R:=PowerSeriesRing(Rationals(), m); b:=Coefficients(R!(1/(1-4*x)^(11/4))); [Factorial(n-1)*b[n]: n in [1..m]]; // G. C. Greubel, Aug 15 2018
-
s=1;lst={s};Do[s+=n*s;AppendTo[lst, s], {n, 10, 5!, 4}];lst (* Vladimir Joseph Stephan Orlovsky, Nov 08 2008 *)
With[{nn = 30}, CoefficientList[Series[1/(1 - 4*x)^(11/4), {x, 0, nn}], x]*Range[0, nn]!] (* G. C. Greubel, Aug 15 2018 *)
-
x='x+O('x^30); Vec(serlaplace(1/(1-4*x)^(11/4))) \\ G. C. Greubel, Aug 15 2018
Comments