A065440
a(n) = (n-1)^n.
Original entry on oeis.org
1, 0, 1, 8, 81, 1024, 15625, 279936, 5764801, 134217728, 3486784401, 100000000000, 3138428376721, 106993205379072, 3937376385699289, 155568095557812224, 6568408355712890625, 295147905179352825856, 14063084452067724991009, 708235345355337676357632
Offset: 0
Essentially the same as
A007778 - note T(x) = -W(-x).
A007925
a(n) = n^(n+1) - (n+1)^n.
Original entry on oeis.org
-1, -1, -1, 17, 399, 7849, 162287, 3667649, 91171007, 2486784401, 74062575399, 2395420006033, 83695120256591, 3143661612445145, 126375169532421599, 5415486851106043649, 246486713303685957375, 11877172892329028459041, 604107995057426434824791
Offset: 0
Dennis S. Kluk (mathemagician(AT)ameritech.net)
a(2) = 1^2 - 2^1 = -1,
a(4) = 3^4 - 4^3 = 17.
- G. Everest, A. van der Poorten, I. Shparlinski and T. Ward, Recurrence Sequences, Amer. Math. Soc., 2003; see esp. p. 255.
-
A007925:=n->n^(n+1)-(n+1)^n: seq(A007925(n), n=0..25); # Wesley Ivan Hurt, Jan 10 2017
-
lst={};Do[AppendTo[lst, (n^(n+1)-((n+1)^n))], {n, 0, 4!}];lst (* Vladimir Joseph Stephan Orlovsky, Sep 19 2008 *)
#^(#+1)-(#+1)^#&/@Range[0,20] (* Harvey P. Dale, Oct 22 2011 *)
-
A007925[n]:=n^(n+1)-(n+1)^n$ makelist(A007925[n],n,0,30); /* Martin Ettl, Oct 29 2012 */
-
a(n)=n^(n+1)-(n+1)^n \\ Charles R Greathouse IV, Feb 06 2017
A031973
a(n) = Sum_{k=0..n} n^k.
Original entry on oeis.org
1, 2, 7, 40, 341, 3906, 55987, 960800, 19173961, 435848050, 11111111111, 313842837672, 9726655034461, 328114698808274, 11966776581370171, 469172025408063616, 19676527011956855057, 878942778254232811938, 41660902667961039785743, 2088331858752553232964200
Offset: 0
a(3) = 3^0 + 3^1 + 3^2 + 3^3 = 40.
Cf.
A000042 (unary representations),
A000225 (2^n-1: binary repunits shown in decimal),
A003462 ((3^n-1)/2: ternary repunits shown in decimal),
A002275 ((10^n-1)/9: decimal repunits).
-
[&+[n^k: k in [0..n]]: n in [0..30]]; // Vincenzo Librandi, Apr 18 2011
-
a:= proc(n) local c, i; c:=1; for i to n do c:= c*n+1 od; c end:
seq(a(n), n=0..20); # Alois P. Heinz, Aug 15 2013
-
Join[{1},Table[Total[n^Range[0,n]],{n,20}]] (* Harvey P. Dale, Nov 13 2011 *)
-
a(n)=(n^(n+1)-1)/(n-1) \\ Charles R Greathouse IV, Mar 26 2014
-
[lucas_number1(n,n,n-1) for n in range(1, 19)] # Zerinvary Lajos, May 16 2009
A008785
a(n) = (n+4)^n.
Original entry on oeis.org
1, 5, 36, 343, 4096, 59049, 1000000, 19487171, 429981696, 10604499373, 289254654976, 8649755859375, 281474976710656, 9904578032905937, 374813367582081024, 15181127029874798299, 655360000000000000000, 30041942495081691894741, 1457498964228107529355264
Offset: 0
Cf.
A000169,
A000272,
A000312,
A007778,
A007830,
A008786,
A008787,
A008788,
A008789,
A008790,
A008791.
-
List([0..20], n-> (n+4)^n); # G. C. Greubel, Sep 11 2019
-
[(n+4)^n: n in [0..20]]; // Vincenzo Librandi, Jun 11 2013
-
Table[(n+4)^n,{n,0,20}] (* Vladimir Joseph Stephan Orlovsky, Dec 26 2010 *)
-
vector(20, n, (n+3)^(n-1)) \\ G. C. Greubel, Nov 09 2017
-
[(n+4)^n for n in (0..20)] # G. C. Greubel, Sep 11 2019
A008788
a(n) = n^(n+2).
Original entry on oeis.org
0, 1, 16, 243, 4096, 78125, 1679616, 40353607, 1073741824, 31381059609, 1000000000000, 34522712143931, 1283918464548864, 51185893014090757, 2177953337809371136, 98526125335693359375, 4722366482869645213696
Offset: 0
G.f. = x + 16*x^2 + 243*x^3 + 4096*x^4 + 78125*x^5 + 1679616*x^6 + ...
Cf.
A000169,
A000272,
A000312,
A007778,
A007830,
A008785,
A008786,
A008787,
A008789,
A008790,
A008791.
-
List([0..20], n-> n^(n+2)); # G. C. Greubel, Sep 11 2019
-
[n^(n+2): n in [0..20]]; // Vincenzo Librandi, Jun 11 2013
-
Table[n^(n+2), {n,0,20}] (* Vladimir Joseph Stephan Orlovsky, Dec 26 2010 *)
CoefficientList[Series[LambertW[-x] * (2*LambertW[-x]-1) / (1 + LambertW[-x])^5, {x, 0, 20}], x] * Range[0, 20]! (* Vaclav Kotesovec, Dec 20 2014 *)
-
vector(20, n, (n-1)^(n+1)) \\ G. C. Greubel, Nov 14 2017
-
[n^(n+2) for n in (0..20)] # G. C. Greubel, Sep 11 2019
A008791
a(n) = n^(n+5).
Original entry on oeis.org
0, 1, 128, 6561, 262144, 9765625, 362797056, 13841287201, 549755813888, 22876792454961, 1000000000000000, 45949729863572161, 2218611106740436992, 112455406951957393129, 5976303958948914397184, 332525673007965087890625
Offset: 0
Cf.
A000169,
A000272,
A000312,
A007778,
A007830,
A008785,
A008786,
A008787,
A008788,
A008789,
A008790.
-
List([0..20], n-> n^(n+5)); # G. C. Greubel, Sep 11 2019
-
[n^(n+5): n in [0..20]]; // Vincenzo Librandi, Jun 11 2013
-
a:=n->mul( n, k=-4..n): seq(a(n), n=0..20); # Zerinvary Lajos, Jan 26 2008
-
Table[n^(n+5),{n,0,20}] (* Vladimir Joseph Stephan Orlovsky, Dec 26 2010 *)
-
vector(20, n, (n-1)^(n+4)) \\ G. C. Greubel, Sep 11 2019
-
[n^(n+5) for n in (0..20)] # G. C. Greubel, Sep 11 2019
A051442
a(n) = n^(n+1)+(n+1)^n.
Original entry on oeis.org
1, 3, 17, 145, 1649, 23401, 397585, 7861953, 177264449, 4486784401, 125937424601, 3881436747409, 130291290501553, 4731091158953433, 184761021583202849, 7721329860319737601, 343809097055019694337, 16248996011806421522977
Offset: 0
-
[n^(n+1)+(n+1)^n: n in [0..20]]; // Vincenzo Librandi, Jan 12 2012
-
Table[n^(n+1)+(n+1)^n,{n,0,20}] (* Harvey P. Dale, Oct 02 2018 *)
-
A051442[n]:=n^(n+1)+(n+1)^n$ makelist(A051442[n],n,0,30); /* Martin Ettl, Oct 29 2012 */
-
a(n)=(n+1)^n+n^(n+1) \\ Charles R Greathouse IV, Jan 12 2012
A008789
a(n) = n^(n+3).
Original entry on oeis.org
0, 1, 32, 729, 16384, 390625, 10077696, 282475249, 8589934592, 282429536481, 10000000000000, 379749833583241, 15407021574586368, 665416609183179841, 30491346729331195904, 1477891880035400390625, 75557863725914323419136
Offset: 0
Cf.
A000169,
A000272,
A000312,
A007778,
A007830,
A008785,
A008786,
A008787,
A008788,
A008790,
A008791.
-
List([0..20], n-> n^(n+3)); # G. C. Greubel, Sep 11 2019
-
[n^(n+3): n in [0..20]]; // Vincenzo Librandi, Jun 11 2013
-
printlevel := -1; a := [0]; T := x->-LambertW(-x); f := series((T(x)*(1+8*T(x)+6*(T(x))^2)/(1-T(x))^7),x,24); for m from 1 to 23 do a := [op(a),op(2*m-1,f)*m! ] od; print(a); # Len Smiley, Nov 19 2001
-
Table[n^(n+3),{n,0,20}](* Vladimir Joseph Stephan Orlovsky, Dec 26 2010 *)
-
vector(20, n, (n-1)^(n+2)) \\ G. C. Greubel, Sep 11 2019
-
[n^(n+3) for n in (0..20)] # G. C. Greubel, Sep 11 2019
A302583
a(n) = ((n + 1)^n - (n - 1)^n)/2.
Original entry on oeis.org
0, 1, 4, 28, 272, 3376, 51012, 908608, 18640960, 432891136, 11225320100, 321504185344, 10079828372880, 343360783937536, 12627774819845668, 498676704524517376, 21046391759976988928, 945381827279671853056, 45032132922921758270916, 2267322327322331161821184
Offset: 0
Cf.
A000169,
A065440,
A007778,
A062024,
A115416,
A274278,
A293022,
A302584,
A302585,
A302586,
A302587.
-
Table[((n + 1)^n - (n - 1)^n)/2, {n, 0, 19}]
nmax = 19; CoefficientList[Series[(x^2 - LambertW[-x]^2)/(2 x LambertW[-x] (1 + LambertW[-x])), {x, 0, nmax}], x] Range[0, nmax]!
Table[n! SeriesCoefficient[Exp[n x] Sinh[x], {x, 0, n}], {n, 0, 19}]
A008786
a(n) = (n+5)^n.
Original entry on oeis.org
1, 6, 49, 512, 6561, 100000, 1771561, 35831808, 815730721, 20661046784, 576650390625, 17592186044416, 582622237229761, 20822964865671168, 799006685782884121, 32768000000000000000, 1430568690241985328321, 66249952919459433152512, 3244150909895248285300369
Offset: 0
Cf.
A000169,
A000272,
A000312,
A007778,
A007830,
A008785, this sequence,
A008787,
A008788,
A008789,
A008790,
A008791.
-
List([0..20], n-> (n+5)^n); # G. C. Greubel, Sep 11 2019
-
[(n+5)^n: n in [0..20]]; // Vincenzo Librandi, Jun 11 2013
-
Table[(n+5)^n,{n,0,20}] (* Vladimir Joseph Stephan Orlovsky, Dec 26 2010 *)
-
vector(20, n, (n+4)^(n-1)) \\ G. C. Greubel, Sep 11 2019
-
[(n+5)^n for n in (0..20)] # G. C. Greubel, Sep 11 2019
Comments