cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-40 of 315 results. Next

A248039 Numbers n such that n*A007954(n) contains the same distinct digits as n.

Original entry on oeis.org

0, 1, 11, 111, 792, 1111, 1376, 2174, 2841, 11111, 11628, 12168, 12763, 12841, 14213, 14228, 14663, 19842, 24314, 24679, 24738, 24786, 26439, 26731, 26938, 29126, 39117, 39228, 49326, 64113, 76983, 79328, 83694, 83712, 83764, 86429, 87164, 89174, 92387, 92476, 93711, 94831, 98174
Offset: 1

Views

Author

Derek Orr, Sep 30 2014

Keywords

Comments

A002275 is a subsequence, thus this sequence is infinite.

Crossrefs

Cf. A002275 (repunits), A007954 (digit product).
Cf. A247887 (similar, with n + digit sum), A247888 (similar, with n + digit product).

Programs

  • Magma
    [n: n in [0..10^5] | Set(Intseq(n*&*Intseq(n))) eq Set(Intseq(n))]; // Bruno Berselli, Oct 09 2014
  • PARI
    for(n=0, 10^6, d=digits(n); p=prod(i=1, #d, d[i]); if(vecsort(digits(n), , 8)==vecsort(digits(n*p), , 8), print1(n, ", ")))
    

A270393 Another variant of narcissistic numbers: integers n equal the product of squared digits of n divided by the sum of digits of n, i.e., n = A007954(n)^2/A007953(n).

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 36, 735
Offset: 1

Views

Author

Keywords

Comments

No other terms below 10^300. - Max Alekseyev, May 31 2018

Examples

			36 is a term because 36 = (3^2*6^2)/(3+6).
735 is a term because 735 = (7^2*3^2*5^2)/(7+3+5).
		

Crossrefs

Subsequence of A128606.

Programs

  • Mathematica
    Select[Range[10^6], Function[k, k == Apply[Times, #^2]/(Total@ #) &@ IntegerDigits@ k]@ # &] (* Michael De Vlieger, Mar 16 2016 *)
  • PARI
    { is_A270393(n) = my(d = digits(n)); n == vecprod(d)^2/vecsum(d); } \\ Michel Marcus, Mar 17 2016

A369529 a(n) = gcd(A007953(n), A007954(n)).

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 4, 1, 2, 1, 4, 1, 2, 1, 3, 1, 1, 3, 1, 1, 9, 1, 1, 3, 4, 1, 2, 1, 8, 1, 2, 1, 4, 1, 5, 1, 1, 1, 1, 5, 1, 1, 1, 1, 6, 1, 4, 9, 2, 1, 12, 1, 2, 3, 7, 1, 1, 1, 1, 1, 1, 7, 1, 1, 8, 1, 2, 1, 4, 1, 2, 1, 16, 1, 9, 1, 1, 3
Offset: 1

Views

Author

Ctibor O. Zizka, Jan 25 2024

Keywords

Examples

			a(15) = gcd(A007953(15), A007954(15)) = gcd(6,5) = 1.
		

Crossrefs

Programs

  • Mathematica
    a[n_] := GCD @@ Apply[{Plus @@ #, Times @@ #} &, {IntegerDigits[n]}]; Array[a, 100] (* Amiram Eldar, Jan 26 2024 *)

A007953 Digital sum (i.e., sum of digits) of n; also called digsum(n).

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 8, 9, 10, 11, 12, 13, 14, 15
Offset: 0

Views

Author

R. Muller

Keywords

Comments

Do not confuse with the digital root of n, A010888 (first term that differs is a(19)).
Also the fixed point of the morphism 0 -> {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}, 1 -> {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}, 2 -> {2, 3, 4, 5, 6, 7, 8, 9, 10, 11}, etc. - Robert G. Wilson v, Jul 27 2006
For n < 100 equal to (floor(n/10) + n mod 10) = A076314(n). - Hieronymus Fischer, Jun 17 2007
It appears that a(n) is the position of 10*n in the ordered set of numbers obtained by inserting/placing one digit anywhere in the digits of n (except a zero before 1st digit). For instance, for n=2, the resulting set is (12, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 32, 42, 52, 62, 72, 82, 92) where 20 is at position 2, so a(2) = 2. - Michel Marcus, Aug 01 2022
Also the total number of beads required to represent n on a Russian abacus (schoty). - P. Christopher Staecker, Mar 31 2023
a(n) / a(2n) <= 5 with equality iff n is in A169964, while a(n) / a(3n) is unbounded, since if n = (10^k + 2)/3, then a(n) = 3*k+1, a(3n) = 3, so a(n) / a(3n) = k + 1/3 -> oo when k->oo (see Diophante link). - Bernard Schott, Apr 29 2023
Also the number of symbols needed to write number n in Egyptian numerals for n < 10^7. - Wojciech Graj, Jul 10 2025

Examples

			a(123) = 1 + 2 + 3 = 6, a(9875) = 9 + 8 + 7 + 5 = 29.
		

Crossrefs

Programs

  • Haskell
    a007953 n | n < 10 = n
              | otherwise = a007953 n' + r where (n',r) = divMod n 10
    -- Reinhard Zumkeller, Nov 04 2011, Mar 19 2011
    
  • Magma
    [ &+Intseq(n): n in [0..87] ];  // Bruno Berselli, May 26 2011
    
  • Maple
    A007953 := proc(n) add(d,d=convert(n,base,10)) ; end proc: # R. J. Mathar, Mar 17 2011
  • Mathematica
    Table[Sum[DigitCount[n][[i]] * i, {i, 9}], {n, 50}] (* Stefan Steinerberger, Mar 24 2006 *)
    Table[Plus @@ IntegerDigits @ n, {n, 0, 87}] (* or *)
    Nest[Flatten[# /. a_Integer -> Array[a + # &, 10, 0]] &, {0}, 2] (* Robert G. Wilson v, Jul 27 2006 *)
    Total/@IntegerDigits[Range[0,90]] (* Harvey P. Dale, May 10 2016 *)
    DigitSum[Range[0, 100]] (* Requires v. 14 *) (* Paolo Xausa, May 17 2024 *)
  • PARI
    a(n)=if(n<1, 0, if(n%10, a(n-1)+1, a(n/10))) \\ Recursive, very inefficient. A more efficient recursive variant: a(n)=if(n>9, n=divrem(n, 10); n[2]+a(n[1]), n)
    
  • PARI
    a(n, b=10)={my(s=(n=divrem(n, b))[2]); while(n[1]>=b, s+=(n=divrem(n[1], b))[2]); s+n[1]} \\ M. F. Hasler, Mar 22 2011
    
  • PARI
    a(n)=sum(i=1, #n=digits(n), n[i]) \\ Twice as fast. Not so nice but faster:
    
  • PARI
    a(n)=sum(i=1,#n=Vecsmall(Str(n)),n[i])-48*#n \\ M. F. Hasler, May 10 2015
    /* Since PARI 2.7, one can also use: a(n)=vecsum(digits(n)), or better: A007953=sumdigits. [Edited and commented by M. F. Hasler, Nov 09 2018] */
    
  • PARI
    a(n) = sumdigits(n); \\ Altug Alkan, Apr 19 2018
    
  • Python
    def A007953(n):
        return sum(int(d) for d in str(n)) # Chai Wah Wu, Sep 03 2014
    
  • Python
    def a(n): return sum(map(int, str(n))) # Michael S. Branicky, May 22 2021
    
  • Scala
    (0 to 99).map(.toString.map(.toInt - 48).sum) // Alonso del Arte, Sep 15 2019
    
  • Smalltalk
    "Recursive version for general bases. Set base = 10 for this sequence."
    digitalSum: base
    | s |
    base = 1 ifTrue: [^self].
    (s := self // base) > 0
      ifTrue: [^(s digitalSum: base) + self - (s * base)]
      ifFalse: [^self]
    "by Hieronymus Fischer, Mar 24 2014"
    
  • Swift
    A007953(n): String(n).compactMap{$0.wholeNumberValue}.reduce(0, +) // Egor Khmara, Jun 15 2021

Formula

a(A051885(n)) = n.
a(n) <= 9(log_10(n)+1). - Stefan Steinerberger, Mar 24 2006
From Benoit Cloitre, Dec 19 2002: (Start)
a(0) = 0, a(10n+i) = a(n) + i for 0 <= i <= 9.
a(n) = n - 9*(Sum_{k > 0} floor(n/10^k)) = n - 9*A054899(n). (End)
From Hieronymus Fischer, Jun 17 2007: (Start)
G.f. g(x) = Sum_{k > 0, (x^k - x^(k+10^k) - 9x^(10^k))/(1-x^(10^k))}/(1-x).
a(n) = n - 9*Sum_{10 <= k <= n} Sum_{j|k, j >= 10} floor(log_10(j)) - floor(log_10(j-1)). (End)
From Hieronymus Fischer, Jun 25 2007: (Start)
The g.f. can be expressed in terms of a Lambert series, in that g(x) = (x/(1-x) - 9*L[b(k)](x))/(1-x) where L[b(k)](x) = sum{k >= 0, b(k)*x^k/(1-x^k)} is a Lambert series with b(k) = 1, if k > 1 is a power of 10, else b(k) = 0.
G.f.: g(x) = (Sum_{k > 0} (1 - 9*c(k))*x^k)/(1-x), where c(k) = Sum_{j > 1, j|k} floor(log_10(j)) - floor(log_10(j-1)).
a(n) = n - 9*Sum_{0 < k <= floor(log_10(n))} a(floor(n/10^k))*10^(k-1). (End)
From Hieronymus Fischer, Oct 06 2007: (Start)
a(n) <= 9*(1 + floor(log_10(n))), equality holds for n = 10^m - 1, m > 0.
lim sup (a(n) - 9*log_10(n)) = 0 for n -> oo.
lim inf (a(n+1) - a(n) + 9*log_10(n)) = 1 for n -> oo. (End)
a(n) = A138530(n, 10) for n > 9. - Reinhard Zumkeller, Mar 26 2008
a(A058369(n)) = A004159(A058369(n)); a(A000290(n)) = A004159(n). - Reinhard Zumkeller, Apr 25 2009
a(n) mod 2 = A179081(n). - Reinhard Zumkeller, Jun 28 2010
a(n) <= 9*log_10(n+1). - Vladimir Shevelev, Jun 01 2011
a(n) = a(n-1) + a(n-10) - a(n-11), for n < 100. - Alexander R. Povolotsky, Oct 09 2011
a(n) = Sum_{k >= 0} A031298(n, k). - Philippe Deléham, Oct 21 2011
a(n) = a(n mod b^k) + a(floor(n/b^k)), for all k >= 0. - Hieronymus Fischer, Mar 24 2014
Sum_{n>=1} a(n)/(n*(n+1)) = 10*log(10)/9 (Shallit, 1984). - Amiram Eldar, Jun 03 2021

Extensions

More terms from Hieronymus Fischer, Jun 17 2007
Edited by Michel Marcus, Nov 11 2013

A010888 Digital root of n (repeatedly add the digits of n until a single digit is reached).

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 1, 2, 3, 4, 5, 6, 7, 8, 9, 1, 2, 3, 4, 5, 6, 7, 8, 9, 1, 2, 3, 4, 5, 6, 7, 8, 9, 1, 2, 3, 4, 5, 6, 7, 8, 9, 1, 2, 3, 4, 5, 6, 7, 8, 9, 1, 2, 3, 4, 5, 6, 7, 8, 9, 1, 2, 3, 4, 5, 6, 7, 8, 9, 1, 2, 3, 4, 5, 6, 7, 8, 9, 1, 2, 3, 4, 5, 6, 7, 8, 9, 1, 2, 3, 4, 5, 6, 7, 8, 9, 1, 2, 3, 4, 5
Offset: 0

Views

Author

Keywords

Comments

This is sometimes also called the additive digital root of n.
n mod 9 (A010878) is a very similar sequence.
Partial sums are given by A130487(n-1) + n (for n > 0). - Hieronymus Fischer, Jun 08 2007
Decimal expansion of 13717421/111111111 is 0.123456789123456789123456789... with period 9. - Eric Desbiaux, May 19 2008
Decimal expansion of 13717421 / 1111111110 = 0.0[123456789] (periodic) - Daniel Forgues, Feb 27 2017
a(A005117(n)) < 9. - Reinhard Zumkeller, Mar 30 2010
My friend Jahangeer Kholdi has found that 19 is the smallest prime p such that for each number n, a(p*n) = a(n). In fact we have: a(m*n) = a(a(m)*a(n)) so all numbers with digital root 1 (numbers of the form 9k + 1) have this property. See comment lines of A017173. Also we have a(m+n) = a(a(m) + a(n)). - Farideh Firoozbakht, Jul 23 2010

Examples

			The digits of 37 are 3 and 7, and 3 + 7 = 10. And the digits of 10 are 1 and 0, and 1 + 0 = 1, so a(37) = 1.
		

References

  • Martin Gardner, Mathematics, Magic and Mystery, 1956.

Crossrefs

Cf. A007953, A007954, A031347, A113217, A113218, A010878 (n mod 9), A010872, A010873, A010874, A010875, A010876, A010877, A010879, A004526, A002264, A002265, A002266, A017173, A031286 (additive persistence of n), (multiplicative digital root of n), A031346 (multiplicative persistence of n).

Programs

Formula

If n = 0 then a(n) = 0; otherwise a(n) = (n reduced mod 9), but if the answer is 0 change it to 9.
Equivalently, if n = 0 then a(n) = 0, otherwise a(n) = (n - 1 reduced mod 9) + 1.
If the initial 0 term is ignored, the sequence is periodic with period 9.
From Hieronymus Fischer, Jun 08 2007: (Start)
a(n) = A010878(n-1) + 1 (for n > 0).
G.f.: g(x) = x*(Sum_{k = 0..8}(k+1)*x^k)/(1 - x^9). Also: g(x) = x(9x^10 - 10x^9 + 1)/((1 - x^9)(1 - x)^2). (End)
a(n) = n - 9*floor((n-1)/9), for n > 0. - José de Jesús Camacho Medina, Nov 10 2014

A011540 Numbers that contain a digit 0.

Original entry on oeis.org

0, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 120, 130, 140, 150, 160, 170, 180, 190, 200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 210, 220, 230, 240, 250, 260, 270, 280, 290, 300, 301, 302
Offset: 1

Views

Author

Keywords

Comments

Complement of A052382.
A168046(a(n)) = 0; A054054(a(n)) = 0; A055640(a(n)) = 0 for n = 1 and A055640(a(n)) > 0 for n > 1; A055641(a(n)) > 0; subsequence of A188643. - Reinhard Zumkeller, Apr 25 2012, Apr 07 2011; corrected by Hieronymus Fischer, Jan 13 2013
A067898(a(n)) > 0. - Reinhard Zumkeller, May 04 2012; corrected by Hieronymus Fischer, Jan 13 2013
From Hieronymus Fischer, Jan 13 2013, May 28 2014; edited by M. F. Hasler; edited by Hieronymus Fischer, Dec 27 2018: (Start)
Zerofree floor: The greatest zerofree number < a(n) is A052382(a(n) + 1 - n).
The greatest zero-containing number (i.e., non-zerofree number, or term of this sequence) less than a given zerofree number A052382(n) is a(A052382(n) + 1 - n).
The ratio n/(a(n) + 1) indicates the relative proportion of zero-containing numbers less than or equal to a(n) compared to all numbers less than or equal to a(n). Since Lim_{n -> infinity} a(n)/n = 1, this can be expressed as "Almost all numbers contain a 0" (in a slightly informal manner).
As an example, for n = 10^100, n/(a(n) + 1) = 0.9999701184..., i.e., 99.997...% of all numbers between 0 and 10^100 contain a zero digit. Only the tiny proportion of 0.0000298816... (less than 0.003%) contain no zero digit. This is in contrast to the behavior for small indices, where the relative portion of numbers that contain no zero digit is significant: for n = 10^3 and even n = 10^7, the proportion of numbers less than or equal to n that contain no zero digit exceeds 81% and 53%, respectively.
Inversion: Given a number z that contains a zero digit, the index n for which a(n) = z is n = (z+1)*probability that a randomly chosen number k from the range 0..z contains a zero digit.
Example 1: z = 10; the probability that a randomly chosen number less than or equal to 10 contains no zero digit is 9/11. The probability that it contains a zero digit is p = 2/11. Thus, n = (z+1)*p = 2 and a(2) = 10.
Example 2: z = 10^6; the probability that a randomly chosen number with m > 1 digits contains no zero digit is (9/10)^(m-1). For m = 1 the probability is 9/10. The probability that a randomly chosen number with 1..m digits contains no zero digit is q = (9/10)*10/(10^m+1) + Sum_{i = 2..m} (9/10)^(i-1)*(10^i - 10^(i-1))/(10^m+1) = (72 + 81*(9^(m-1) - 1))/(8*(10^m+1)). Hence, the probability that the chosen number with 1..m digits contains a zero digit is p = 1 - q = (8*10^m - 9*9^m + 17)/(8*(10^m + 1)). Thus, p = 402131/1000001 (for z = 10^6) and so n = (z+1)*p = 402131, which implies a(402131) = 10^6.
The number of terms z such that k*10^m <= z < (k+1)*10^m is 10^m - 9^m, where 1 <= k < 10 and m >= 0.
The number of terms z such that 10^m <= z < 10^(m+1) is 9*(10^m - 9^m), where m >= 0.
The number of terms z <= 10^m is (8*10^m - 9*9^m + 17)/8 where m>=1 (cf. A217094).
Infinitely many terms are primes, and most primes are zero-containing numbers. Sketch of a proof: The number of zero-containing numbers less than or equal to a(n) is n. Hence there are a(n) + 1 - n zerofree numbers less than or equal to a(n). From the asymptotic behavior of a(n) (see formula section) it follows a(n) + 1 - n < (5/4)*n^log_10(9) for sufficiently large n. By the prime number theorem we have for each fixed d > 0 the relation pi(n) [number of primes less than or equal to n] > (1 - d/4)*(n/log(n)) for sufficiently large n. Thus, for the number of primes less than or equal to a(n) which contain a zero digit [hereafter denoted as P_0(a(n))] we have P_0(a(n)) > pi(a(n)) - (a(n) + 1 - n) > (1 - d/4)*a(n)/log(a(n)) - (5/4)*n^log_10(9) > (1-d/4)*n/log(n) - (5/4)*n^log_10(9) = (1-d/4)*n/log(n) * (1 - (5/4)*(1/(1-d/4))*(1/n) * n^(log_10(9))*log(n)) > (1-d/2)*n/log(n) for sufficiently large n. Because of a(n) = n + o(n) this also implies P_0(a(n)) > (1 - d)*a(n)/log(a(n)) for sufficiently large n. Thus, the proportion of primes less than or equal to a(n) which contain a zero digit compared to the total number of primes less than or equal to a(n) is arbitrarily near to 1 for sufficiently large n.
Sequence inversion:
Given a term m > 0, the index n such that a(n) = m can be calculated with the following procedure: Define k := floor(log_10(m)) and i := digit position of the leftmost '0' in m counted from the right (starting with 0), then:
A011540_inverse(m) = 2 + m mod 10^i + Sum_{j = 1..k} floor((m - 1 - m mod 10^i)/10^j)*9^(j-1) [see PROG section for an implementation in Smalltalk].
Example: m = 905, k = 2, i = 1, A011540_inverse(905) = 2 + 905 mod 10 + floor((905 - 1 - 905 mod 10)/10)*1 + floor((905 - 1 - 905 mod 10)/100)*9 = 2 + 5 + floor(899/10)*1 + floor(899/100)*9 = 2 + 5 + 89*1 + 8*9 = 168.
(End)
For the number of k-digit numbers containing the digit '0', see A229127. - Jon E. Schoenfield, Sep 14 2013
The above "sketch of proof" only compares the relative densities, and since the density of this sequence is 1, the result is "obvious". But the nontrivial part is that there is no correlation between the absence of a digit '0' and primality of the number (cf. A038618). Indeed, consider the set S defined to be the set of primes with all digits '0' replaced by the smallest possible nonzero digit while avoiding duplicates. Having exactly the same density as the set of primes, the argument of the proof applies in the same way and leads to the same conclusion for the number of zero-containing terms; however, there is none in the set S. - M. F. Hasler, Oct 11 2015, example added Feb 11 2019

Examples

			a(10)      = 90.
a(100)     = 540.
a(10^3)    = 4005.
a(10^4)    = 30501.
a(10^5)    = 253503.
a(10^6)    = 2165031.
a(10^7)    = 20163807
a(10^8)    = 182915091.
a(10^9)    = 1688534028.
a(10^10)   = 15749319096.
a(10^20)   = 114131439770460123393.
a(10^50)   = 10057979971082351274741...89870962249 = 1.0057979971082...*10^50
a(10^100)  = 10000298815737485...786424499 = 1.0000298815737...*10^100.
a(10^1000) = 1...(45 zeros)...196635515818798306...4244999 (1001 digits), using recursive calculation. - _Hieronymus Fischer_, Jan 13 2013
		

Crossrefs

Programs

  • Haskell
    a011540 n = a011540_list !! (n-1)
    a011540_list = filter ((== 0) . a168046) [0..]
    -- Reinhard Zumkeller, Apr 07 2011
    
  • Magma
    [0] cat [ n: n in [0..350] | 0 in Intseq(n) ]; // Vincenzo Librandi, Oct 12 2015
    
  • Mathematica
    Select[Range[0, 299], DigitCount[#, 10, 0] > 0 &] (* Alonso del Arte, Mar 10 2011 *)
    Select[Range[0, 299], Times@@IntegerDigits[#] == 0 &] (* Alonso del Arte, Aug 29 2014 *)
  • PARI
    is(n)=!n||!vecmin(digits(n)) \\ M. F. Hasler, Feb 28 2018, replacing an earlier version from Charles R Greathouse IV, Aug 09 2011
    
  • PARI
    A011540(n)=my(m=log(n+.5)\log(10)+1, f(m)=n-10^m+(9*9^m-17)/8, j=(sign(f(m)+1)+1)\2+m-1, c=[f(j)], k=1); while(c[k]>0,c=concat(c,c[k] % (10^(j-k+1) - 9^(j-k+1)) - 10^(j-k));k++); k>1&&k--||n>1||return(0); c[k]%(10^(j-k+1) - 9^(j-k+1)) + sum(i=1,k, (c[i]\(10^(j-i+1) - 9^(j-i+1)) + 1)*10^(j-i+1)) \\ Uses the "Direct calculation" formula given by H. Fischer. - M. F. Hasler, Oct 11 2015
    
  • Python
    A011540_list = [n for n in range(10**3) if '0' in str(n)] # Chai Wah Wu, Mar 26 2021
  • Smalltalk
    A011540
    "Calculates the n-th number with zero digits recursively - not optimized"
    | n j m b d p r |
    n := self.
    n < 2 ifTrue: [^r := 0].
    m := (n integerFloorLog: 10) + 1.
    j := (n + 1 - ((10 raisedToInteger: m) - (((9 raisedToInteger: (m + 1)) - 17) // 8))) sign + 1 // 2 + m - 1.
    d := (10 raisedToInteger: j) - (9 raisedToInteger: j).
    b := ((10 raisedToInteger: j) - (((9 raisedToInteger: (j + 1)) - 17) // 8)).
    (((n - b) \\ d > (10 raisedToInteger: (j - 1))) and: [n >= 19])
    ifTrue:
    [p := (((n - b) \\ d + b - d) A011540)].
    (n - b) \\ d > (10 raisedToInteger: (j - 1))
    ifFalse: [p := (n - b) \\ d].
    r := (((n - b) // d + 1) * (10 raisedToInteger: j)) + p.
    ^r "Hieronymus Fischer, Jan 13 2013"
    
  • Smalltalk
    A011540_inverse
    "Version 1: Answers the index n such that A011540(n) = m, where m is the receiver.
    Usage: m A011540_inverse
    Answer: n"
    | m p q s r d |
    m := self.
    m < 10 ifTrue: [^1].
    p := q := 1.
    [p < m] whileTrue:
    [d := m // p \\ 10.
    d = 0 ifTrue: [q := p].
    p := 10 * p].
    r := m \\ q.
    s := r + 2.
    p := 10.
    q := 1.
    m := m - r - 1.
    [p < m] whileTrue:
    [s := m // p * q + s.
    p := 10 * p.
    q := 9 * q].
    ^s
    "Hieronymus Fischer, May 28 2014"
    
  • Smalltalk
    A011540_inverse
    "Version 2: Answers the index n such that A011540(n) = m, where m is the receiver.
    Uses A052382_inverse from A052382.
    Usage: m A011540_inverse
    Answer: n"
    | m p q d |
    m := self.
    m < 10 ifTrue: [^1].
    p := q := 1.
    [p < m] whileTrue:
    [d := m // p \\ 10.
    d = 0 ifTrue: [q := p].
    p := 10 * p].
    ^m + 1 - (m - 1 - (m \\ q)) A052382_inverse
    "Hieronymus Fischer, May 28 2014"
    

Formula

From Hieronymus Fischer, Jan 13 2013: (Start)
Inequalities:
a(n) <= 10*(n - 1), equality holds for 1 <= n <= 11.
a(n) <= 9*n, for n <> 11.
a(n) < n + 10 * n^log_10(9).
a(n) < n + 2 * n^log_10(9), for n > 6*10^8.
a(n) > n + 9^log_10(9)/8 * n^log_10(9).
a(n) < A043489(n), for n > 10.
Iterative calculation:
a(n+1) = a(n) + 1 + 9*sign(A007954(a(n)+1)).
Recursive calculation (for n > 1):
Set m := floor(log_10(n)) + 1), j := floor(sign(n+1 - (8*10^m - 9*9^m + 17)/8) + 1)/2) + m - 1, d := 10^j - 9^j, b := (8*10^j - 9*9^j + 17)/8, and determine r(n) as follows:
Case 1: r(n) = a(b - d + (n - b) mod d), if (n - b) mod d > 10^(j-1) and n >= 19
Case 2: r(n) = (n - b) mod d, if (n - b) mod d <= 10^(j-1).
Then a(n) = (floor((n - b)/d) + 1)*10^j + r(n).
Direct calculation (for n>1):
Set m := floor(log_10(n)) + 1), j := floor((sign(n+1 - (8*10^m - 9*9^m + 17)/8) + 1)/2) + m - 1, and determine k and c(i) as follows:
c(1) = n - (8*10^j - 9*9^j + 17)/8, then define successively for i = 1, 2, ...,
c(i+1) = (c(i) mod (10^(j-i+1) - 9^(j-i+1))) - 10^(j-i) while this value is > 0, and set k := i for the last such index for which c(i) > 0 (in any case k is k<=j).
Then a(n) = c(k) mod (10^(j-k+1) - 9^(j-k+1)) + sum_{i=1..k}(floor(c(i)/(10^(j-i+1) - 9^(j-i+1))) + 1)*10^(j-i+1).
Asymptotic behavior:
a(n) = n + O(n^log_10(9)) = n*(1+ O(1/n^0.04575749056...)).
lim a(n)/n = 1 for n -> infinity.
lim inf (a(n) - n)/n^log_10(9) = 9^log_10(9)/8 = 1.017393081085670008926619124438...
lim sup (a(n) - n)/n^log_10(9) = 9/8 = 1.125.
Sums:
Sum_{n >= 2} (-1)^n/a(n) = 0.0693489578....
Sum_{n >= 2} 1/a(n)^2 = 0.0179656962...
Sum_{n >= 2} 1/a(n) diverges, because of a(n) < 10*n.
Sum_{n >= 1} a(n)/n^2 diverges too.
Sum_{n >= 2} 1/a(n)^2 + Sum_{n >= 1} 1/A052382(n)^2 = Pi^2/6.
Generating function:
g(x) = Sum_{k >= 1} g_k(x), where the terms g_k(x) obey the following recurrence relation:
g_k(x) = 10^k*x^b(k) * (1 - 10x^(9d(k)) + 9x^(10d(k)))/((1-x^d(k))(1-x)) + (x*x^b(k) * (1 - 10^(k-1)*x^(10^(k-1)-1) + (10^(k-1)-1)*x^10^(k-1))/((1-x)^2) + g_(k-1)(x)*x^d(k)) * (1-x^(9d(k)))/(1-x^d(k)),
where b(k) := 2 + 10^k - 9^k - (9^k-1)/8,
d(k) := 10^k - 9^k, and g_0(x) = 0.
Explicit representation of g_k(x):
g_k(x) = (10^k*x^b(k)*(1 - 10x^(9d(k)) + 9x^(10d(k)))/(1-x^d(k)) + sum_{j=1..k-1} ((10^j*x^b(j) * (1 - 10x^(9d(j)) + 9x^(10d(j)))/(1-x^d(j)) + x^(b(j)-10^j+1) * (1 - 10^j*x^(10^j-1) + (10^j-1)*x^10^j)/(1-x)) * Product_{i=j+1..k} x^d(i)*(1-x^(9d(i)))/(1-x^d(i)))/(1-x).
A summation term g_k(x) of the g.f. represents all the sequence terms >= 10^k and < 10^(k+1).
Example 1: g_1(x) = 10*x^2*(1 - 10x^9 + 9x^10)/(1-x)^2 represents the g.f. fragment 10x^2 + 20x^3 + ... + 90x^10 and so generates the terms a(2)=10 ... a(10)=90.
Example 2: g_2(x) = 10^2*x^11*(1 - 10x^(9*19) + 9x^(10*19))/((1-x)(1-x^19)) + 10*x^21 * (1 - 10x^9 + 9x^10)/((1-x)^2) * (1-x^(9*19))/(1-x^19)) + x^11*x * (1 - 10x^9 + 9x^10)/((1-x)^2) * (1-x^(9*19))/(1-x^19) represents the g.f. fragment 100x^11 + 101x^12 + ... + 109x^20 + 110x^21 + 120x^22 + ... + 190x^29 + 200x^30 + 201x^31 + ... + 210x^40 + ... + 990x^181 and so generates the terms a(11) = 100 ... a(181) = 990.
(End)
From Hieronymus Fischer, Feb 12 2019: (Start)
The number C(n) of zero-containing numbers <= n (counting function) is given by C(n) = A011540_inverse(n), if n is a zero-containing number, and C(n) = A011540_inverse(A052382(a(n) + 1 - n)), if n is a zerofree number.
Upper bound:
C(n) <= n+1-((9*n+1)^d-1)/8.
Lower bound:
C(n) > n+1-((10*n+1)^d-1)/8
where d = log_10(9) = 0.95424250943932...
(see A324160).
(End)

Extensions

Edited by M. F. Hasler, Oct 11 2015

A007931 Numbers that contain only 1's and 2's. Nonempty binary strings of length n in lexicographic order.

Original entry on oeis.org

1, 2, 11, 12, 21, 22, 111, 112, 121, 122, 211, 212, 221, 222, 1111, 1112, 1121, 1122, 1211, 1212, 1221, 1222, 2111, 2112, 2121, 2122, 2211, 2212, 2221, 2222, 11111, 11112, 11121, 11122, 11211, 11212, 11221, 11222, 12111, 12112, 12121, 12122
Offset: 1

Views

Author

R. Muller

Keywords

Comments

Numbers written in the dyadic system [Smullyan, Stillwell]. - N. J. A. Sloane, Feb 13 2019
Logic-binary sequence: prefix it by the empty word to have all binary words on the alphabet {1,2}.
The least binary word of length k is a(2^k - 1).
See Mathematica program for logic-binary sequence using (0,1) in place of (1,2); the sequence starts with 0,1,00,01,10. - Clark Kimberling, Feb 09 2012
A007953(a(n)) = A014701(n+1); A007954(a(n)) = A048896(n). - Reinhard Zumkeller, Oct 26 2012
a(n) is n written in base 2 where zeros are not allowed but twos are. The two distinct digits used are 1, 2 instead of 0, 1. To obtain this sequence from the "canonical" base 2 sequence with zeros allowed, just replace any 0 with a 2 and then subtract one from the group of digits situated on the left: (10-->2; 100-->12; 110-->22; 1000-->112; 1010-->122). - Robin Garcia, Jan 31 2014
For numbers made of only two different digits, see also A007088 (digits 0 & 1), A032810 (digits 2 & 3), A032834 (digits 3 & 4), A256290 (digits 4 & 5), A256291 (digits 5 & 6), A256292 (digits 6 & 7), A256340(digits 7 & 8), A256341 (digits 8 & 9), and A032804-A032816 (in other bases). Numbers with exactly two distinct (but unspecified) digits in base 10 are listed in A031955, for other bases in A031948-A031954. - M. F. Hasler, Apr 04 2015
The variant with digits {0, 1} instead of {1, 2} is obtained by deleting all initial digits in sequence A007088 (numbers written in base 2). - M. F. Hasler, Nov 03 2020

Examples

			Positive numbers may not start with 0 in the OEIS, otherwise this sequence would have been written as: 0, 1, 00, 01, 10, 11, 000, 001, 010, 011, 100, 101, 110, 111, 0000, 0001, 0010, 0011, 0100, 0101, 0110, 0111, 1000, 1001, 1010, 1011, 1100, 1101, 1110, 1111, 00000, 00001, 00010, 00011, 00100, 00101, 00110, 00111, 01000, 01001, 01010, 01011, ...
From _Hieronymus Fischer_, Jun 06 2012: (Start)
a(10)   = 122.
a(100)  = 211212.
a(10^3) = 222212112.
a(10^4) = 1122211121112.
a(10^5) = 2111122121211112.
a(10^6) = 2221211112112111112.
a(10^7) = 11221112112122121111112.
a(10^8) = 12222212122221111211111112.
a(10^9) = 22122211221212211212111111112. (End)
		

References

  • J.-P. Allouche and J. Shallit, Automatic Sequences, Cambridge Univ. Press, 2003, p. 2. - From N. J. A. Sloane, Jul 26 2012
  • K. Atanassov, On the 97th, 98th and the 99th Smarandache Problems, Notes on Number Theory and Discrete Mathematics, Sophia, Bulgaria, Vol. 5 (1999), No. 3, 89-93.
  • R. M. Smullyan, Theory of Formal Systems, Princeton, 1961.
  • John Stillwell, Reverse Mathematics, Princeton, 2018. See p. 90.

Crossrefs

Cf. A007932 (digits 1-3), A059893, A045670, A052382 (digits 1-9), A059939, A059941, A059943, A032924, A084544, A084545, A046034 (prime digits 2,3,5,7), A089581, A084984 (no prime digits); A001742, A001743, A001744: loops; A202267 (digits 0, 1 and primes), A202268 (digits 1,4,6,8,9), A014261 (odd digits), A014263 (even digits).
Cf. A007088 (digits 0 & 1), A032810 (digits 2 & 3), A032834 (digits 3 & 4), A256290 (digits 4 & 5), A256291 (digits 5 & 6), A256292 (digits 6 & 7), A256340 (digits 7 & 8), A256341 (digits 8 & 9), and A032804-A032816 (in other bases).
Cf. A020450 (primes).

Programs

  • Haskell
    a007931 n = f (n + 1) where
       f x = if x < 2 then 0 else (10 * f x') + m + 1
         where (x', m) = divMod x 2
    -- Reinhard Zumkeller, Oct 26 2012
    
  • Magma
    [n: n in [1..100000] | Set(Intseq(n)) subset {1,2}]; // Vincenzo Librandi, Aug 19 2016
    
  • Maple
    # Maple program to produce the sequence:
    a:= proc(n) local m, r, d; m, r:= n, 0;
          while m>0 do d:= irem(m, 2, 'm');
            if d=0 then d:=2; m:= m-1 fi;
            r:= d, r
          od; parse(cat(r))/10
        end:
    seq(a(n), n=1..100);  # Alois P. Heinz, Aug 26 2016
    # Maple program to invert this sequence: given a(n), it returns n. - N. J. A. Sloane, Jul 09 2012
    invert7931:=proc(u)
    local t1,t2,i;
    t1:=convert(u,base,10);
    [seq(t1[i]-1,i=1..nops(t1))];
    [op(%),1];
    t2:=convert(%,base,2,10);
    add(t2[i]*10^(i-1),i=1..nops(t2))-1;
    end;
  • Mathematica
    f[n_] := FromDigits[Rest@IntegerDigits[n + 1, 2] + 1]; Array[f, 42] (* Robert G. Wilson v Sep 14 2006 *)
    (* Next, A007931 using (0,1) instead of (1,2) *)
    d[n_] := FromDigits[Rest@IntegerDigits[n + 1, 2] + 1]; Array[FromCharacterCode[ToCharacterCode[ToString[d[#]]] - 1] &, 100] (* Peter J. C. Moses, at request of Clark Kimberling, Feb 09 2012 *)
    Flatten[Table[FromDigits/@Tuples[{1,2},n],{n,5}]] (* Harvey P. Dale, Sep 13 2014 *)
  • PARI
    apply( {A007931(n)=fromdigits([d+1|d<-binary(n+1)[^1]])}, [1..44]) \\ M. F. Hasler, Nov 03 2020, replacing older code from Mar 26 2015
    
  • PARI
    /* inverse function */ apply( {A007931_inv(N)=fromdigits([d-1|d<-digits(N)],2)+2<M. F. Hasler, Nov 09 2020
    
  • Python
    def a(n): return int(bin(n+1)[3:].replace('1', '2').replace('0', '1'))
    print([a(n) for n in range(1, 45)]) # Michael S. Branicky, May 13 2021
    
  • Python
    def A007931(n): return int(s:=bin(n+1)[3:])+(10**(len(s))-1)//9 # Chai Wah Wu, Jun 13 2025

Formula

To get a(n), write n+1 in base 2, remove initial 1, add 1 to all remaining digits: e.g., eleven (11) in base 2 is 1011; remove initial 1 and add 1 to remaining digits: a(10)=122. - Clark Kimberling, Mar 11 2003
Conversely, given a(n), to get n: subtract 1 from all digits, prefix with an initial 1, convert this binary number to base 10, subtract 1. E.g., a(6)=22 -> 11 -> 111 -> 7 -> 6. - N. J. A. Sloane, Jul 09 2012
a(n) = A053645(n+1)+A002275(A000523(n)) = a(n-2^b(n))+10^b(n) where b(n) = A059939(n) = floor(log_2(n+1)-1). - Henry Bottomley, Feb 14 2001
From Hieronymus Fischer, Jun 06 2012 and Jun 08 2012: (Start)
The formulas are designed to calculate base-10 numbers only using the digits 1 and 2.
a(n) = Sum_{j=0..m-1} (1 + b(j) mod 2)*10^j, where m = floor(log_2(n+1)), b(j) = floor((n+1-2^m)/(2^j)).
Special values:
a(k*(2^n-1)) = k*(10^n-1)/9, k= 1,2.
a(3*2^n-2) = (11*10^n-2)/9 = 10^n+2*(10^n-1)/9.
a(2^n-2) = 2*(10^(n-1)-1)/9, n>1.
Inequalities:
a(n) <= (10^log_2(n+1)-1)/9, equality holds for n=2^k-1, k>0.
a(n) > (2/10)*(10^log_2(n+1)-1)/9.
Lower and upper limits:
lim inf a(n)/10^log_2(n) = 1/45, for n --> infinity.
lim sup a(n)/10^log_2(n) = 1/9, for n --> infinity.
G.f.: g(x) = (1/(x(1-x)))*sum_{j=0..infinity} 10^j* x^(2*2^j)*(1 + 2 x^2^j)/(1 + x^2^j).
Also: g(x) = (1/(1-x))*(h_(2,0)(x) + h_(2,1)(x) - 2*h_(2,2)(x)), where h_(2,k)(x) = sum_{j>=0} 10^j*x^(2^(j+1)-1)*x^(k*2^j)/(1-x^2^(j+1)).
Also: g(x) = (1/(1-x)) sum_{j>=0} (1 - 3(x^2^j)^2 + 2(x^2^j)^3)*x^2^j*f_j(x)/(1-x^2^j), where f_j(x) = 10^j*x^(2^j-1)/(1-(x^2^j)^2). The f_j obey the recurrence f_0(x) = 1/(1-x^2), f_(j+1)(x) = 10x*f_j(x^2). (End)

Extensions

Some crossrefs added by Hieronymus Fischer, Jun 06 2012
Edited by M. F. Hasler, Mar 26 2015

A003001 Smallest number of multiplicative persistence n.

Original entry on oeis.org

0, 10, 25, 39, 77, 679, 6788, 68889, 2677889, 26888999, 3778888999, 277777788888899
Offset: 0

Views

Author

Keywords

Comments

Probably finite.
The persistence of a number (A031346) is the number of times you need to multiply the digits together before reaching a single digit.
From David A. Corneth, Sep 23 2016: (Start)
For n > 1, the digit 0 doesn't occur. Therefore the digit 1 doesn't occur and all terms have digits in nondecreasing order.
a(n) consists of at most one three and at most one two but not both. If they contain both, they could be replaced with a single digit 6 giving a lesser number. Two threes can be replaced with a 9. Similarily, there's at most one four and one six but not both. Two sixes can be replaced with 49. A four and a six can be replaced with a three and an eight. For n > 2, an even number and a five don't occur together.
Summarizing, a term a(n) for n > 2 consists of 7's, 8's and 9's with a prefix of one of the following sets of digits: {{}, {2}, {3}, {4}, {6}, {2,6}, {3,5}, {5, 5,...}} [Amended by Kohei Sakai, May 27 2017]
No more up to 10^200. (End)
From Benjamin Chaffin, Sep 29 2016: (Start)
Let p(n) be the product of the digits of n, and P(n) be the multiplicative persistence of n. Any p(n) > 1 must have only prime factors from one of the two sets {2,3,7} or {3,5,7}. The following are true of all p(n) < 10^20000:
The largest p(n) with P(p(n))=10 is 2^4 * 3^20 * 7^5. The only other such p(n) known is p(a(11))=2^19 * 3^4 * 7^6.
The largest p(n) with P(p(n))=9 is 2^33 * 3^3 (12 digits).
The largest p(n) with P(p(n))=8 is 2^9 * 3^5 * 7^8 (12 digits).
The largest p(n) with P(p(n))=7 is 2^24 * 3^18 (16 digits).
The largest p(n) with P(p(n))=6 is 2^24 * 3^6 * 7^6 (16 digits).
The largest p(n) with P(p(n))=5 is 2^35 * 3^2 * 7^6 (17 digits).
The largest p(n) with P(p(n))=4 is 2^59 * 3^5 * 7^2 (22 digits).
The largest p(n) with P(p(n))=3 is 2^4 * 3^17 * 7^38 (42 digits).
The largest p(n) with P(p(n))=2 is 2^25 * 3^227 * 7^28 (140 digits).
All p(n) between 10^140 and 10^20000 have a persistence of 1, meaning they contain a 0 digit. (End)
Benjamin Chaffin's comments imply that there are no more terms up to 10^20585. For every number N between 10^200 with 10^20585 with persistence greater than 1, the product of the digits of N is between 10^140 and 10^20000, and each of these products has a persistence of 1. - David Radcliffe, Mar 22 2019
From A.H.M. Smeets, Nov 16 2018: (Start)
Let p_10(n) be the product of the digits of n in base 10. We can define an equivalence relation DP_10 on n by n DP_10 m if and only if p_10(n) = p_10(m); the name DP_b for the equivalence relation stands for "digits product for representation in base b". A number n is called the class representative number of class n/DP_10 if and only if p_10(n) = p_10(m), m >= n; i.e., if it is the smallest number of that class; it is also called the reduced number.
For any multiplicative persistence, except multiplicative persistence 2, the set of class representative numbers with that multiplicative persistence is conjectured to be finite.
Each class representative number represents an infinite set of numbers with the same multiplicative persistence.
For multiplicative persistence 2, only the set of class representative numbers which end in the digit zero is infinite. The table of numbers of class representative numbers of different multiplicative persistence (mp) is given by:
final digit
mp total 0 1 2 3 4 5 6 7 8 9
====================================================
0 10 1 1 1 1 1 1 1 1 1 1
1 10 1 1 1 1 1 1 1 1 1 1
2 inf inf 0 4 0 1 1 5 0 7 0
3 12199 12161 0 8 0 3 3 8 0 16 0
4 408 342 0 14 0 5 4 19 0 24 0
5 151 88 0 9 0 1 3 37 0 13 0
6 41 24 0 1 0 0 0 14 0 2 0
7 13 9 0 0 0 0 0 4 0 0 0
8 8 7 0 0 0 0 0 1 0 0 0
9 5 5 0 0 0 0 0 0 0 0 0
10 2 2 0 0 0 0 0 0 0 0 0
11 2 2 0 0 0 0 0 0 0 0 0
It is observed from this that for the reduced numbers with multiplicative persistence 1, the primes 11, 13, 17 and 19, will not occur in any trajectory of another (larger) number; i.e., all numbers represented by the reduced numbers 11, 13, 17 and 19 have a prime factor of at least 11 (conjectured from the observations).
Example for numbers represented by the reduced number 19: 91 = 7*13, 133 = 7*19, 313 is prime, 331 is prime, 119 = 7*17, 191 is prime, 911 is prime, 1133 = 11*103, 1313 = 13*101, 1331 = 11^3, 3113 = 11*283, 3131 = 31*101 and 3311 = 7*11*43.
In fact all trajectories can be projected to a trajectory in one of the ten trees with reduced numbers with roots 0..9, and the numbers represented by the reduced number of each leaf have a prime factor of at least 11 (as conjectured from the observations).
Example of the trajectory of 277777788888899 (see A121111) in the tree of reduced numbers (the unreduced numbers are given between brackets): 277777788888899 -> 3778888999 (4996238671872) -> 26888999 (438939648) -> 2677889 (4478976) -> 68889 (338688) -> 6788 (27648) -> 2688 (2688) -> 678 (768) -> 69 (336) -> 45 (54) -> 10 (20) -> 0. (End)
From Tim Peters, Sep 19 2023: (Start)
New lower bound: if a(12) exists, it must be > 2.67*10^30000. It continues to be the case that the digit products for all candidates with at least 20000 digits (roughly where the last long run reported here stopped) contain a zero digit, so the candidates all have persistence 2. More, the digit products all contain at least one zero in their last 306 digits. An extreme is the digit product 2^13802 * 3^16807 * 7^1757. That has 13659 decimal digits, 1335 of which are zeros. It ends with a zero followed by 305 nonzero digits. So to confirm that the large candidates with no more than 30000 digits have persistence 2, it would suffice to compute digit products modulo 10^306.
Note: by "candidate" I mean a digit string matching one of these eight (pairwise disjoint) simple regular expressions. Each such string gives the smallest integer with its digit product (and viewing the empty string as having digit product 1), and their union covers all digit products that don't end with a zero.
7* 8* 9*
2 7* 8* 9*
3 7* 8* 9*
4 7* 8* 9*
5 5* 7* 9*
6 7* 8* 9*
26 7* 8* 9*
35 5* 7* 9*
There are (8*N^2 + 13*N + 6)*(N + 1)/6 such strings with no more than N digits. A long computer run checked N=30000, a bit over 36*10^12 candidates. The smallest candidate with more than 30000 digits is > 2.67*10^30000, which is the smallest remaining possibility for a(12). (End)

Examples

			77 -> 49 -> 36 -> 18 -> 8 has persistence 4.
		

References

  • Alex Bellos, Here's Looking at Euclid: A Surprising Excursion Through the Astonishing World of Math, Free Press, 2010, page 176.
  • M. Gardner, Fractal Music, Hypercards and More, Freeman, NY, 1991, pp. 170, 186.
  • R. K. Guy, Unsolved Problems in Number Theory, Springer, 1st edition, 1981. See section F25.
  • C. A. Pickover, Wonders of Numbers, "Persistence", Chapter 28, Oxford University Press NY 2001.
  • Clifford A. Pickover, A Passion for Mathematics, Wiley, 2005; see p. 66.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • James J. Tattersall, Elementary Number Theory in Nine Chapters, Cambridge University Press, 1999, page 35.
  • David Wells, The Penguin Dictionary of Curious and Interesting Numbers. Penguin Books, NY, 1986, Revised edition 1987. See p. 78.

Crossrefs

Cf. A031346 (persistence), A133500 (powertrain), A133048 (powerback), A006050, A007954, A031286, A031347, A033908, A046511, A121105-A121111.

Programs

  • Mathematica
    lst = {}; n = 0; Do[While[True, k = n; c = 0; While[k > 9, k = Times @@ IntegerDigits[k]; c++]; If[c == l, Break[]]; n++]; AppendTo[lst, n], {l, 0, 7}]; lst (* Arkadiusz Wesolowski, May 01 2012 *)
  • PARI
    persistence(x)={my(y=digits(x),c=0);while(#y>1,y=digits(vecprod(y));c++);return(c)}
    firstTermsA003001(U)={my(ans=vector(U),k=(U>1),z);while(k+1<=U,if(persistence(z)==k,ans[k++]=z);z++);return(ans)}
    \\ Finds the first U terms (is slow); R. J. Cano, Sep 11 2016

A031347 Multiplicative digital root of n (keep multiplying digits of n until reaching a single digit).

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 0, 2, 4, 6, 8, 0, 2, 4, 6, 8, 0, 3, 6, 9, 2, 5, 8, 2, 8, 4, 0, 4, 8, 2, 6, 0, 8, 6, 6, 8, 0, 5, 0, 5, 0, 0, 0, 5, 0, 0, 0, 6, 2, 8, 8, 0, 8, 8, 6, 0, 0, 7, 4, 2, 6, 5, 8, 8, 0, 8, 0, 8, 6, 8, 6, 0, 6
Offset: 0

Views

Author

Keywords

Comments

a(n) = 0 for almost all n. - Charles R Greathouse IV, Oct 02 2013
More precisely, a(n) = 0 asymptotically almost surely, namely, among others, for all numbers n which have a digit '0', and as n has more and more digits, it becomes increasingly less probable that no digit is equal to zero. (The set A011540 has density 1.) Thus the density of numbers for which a(n) > 0 is zero, although this happens for infinitely many numbers, for example all repunits n = (10^k - 1)/9 = A002275(k). - M. F. Hasler, Oct 11 2015

Crossrefs

Cf. A007954, A007953, A003001, A010888 (additive digital root of n), A031286 (additive persistence of n), A031346 (multiplicative persistence of n).
Numbers having multiplicative digital roots 0-9: A034048, A002275, A034049, A034050, A034051, A034052, A034053, A034054, A034055, A034056.

Programs

  • Haskell
    a031347 = until (< 10) a007954
    -- Reinhard Zumkeller, Oct 17 2011, Sep 22 2011
    
  • Maple
    A007954 := proc(n) return mul(d, d=convert(n,base,10)): end: A031347 := proc(n) local m: m:=n: while(length(m)>1)do m:=A007954(m): od: return m: end: seq(A031347(n),n=0..100); # Nathaniel Johnston, May 04 2011
  • Mathematica
    mdr[n_] := NestWhile[Times @@ IntegerDigits@# &, n, UnsameQ, All]; Table[ mdr[n], {n, 0, 104}] (* Robert G. Wilson v, Aug 04 2006 *)
    Table[NestWhile[Times@@IntegerDigits[#] &, n, # > 9 &], {n, 0, 90}] (* Harvey P. Dale, Mar 10 2019 *)
  • PARI
    A031347(n)=local(resul); if(n<10, return(n) ); resul = n % 10; n = (n - n%10)/10; while( n > 0, resul *= n %10; n = (n - n%10)/10; ); return(A031347(resul))
    for(n=1,80, print1(A031347(n),",")) \\ R. J. Mathar, May 23 2006
    
  • PARI
    A031347(n)={while(n>9,n=prod(i=1,#n=digits(n),n[i]));n} \\ M. F. Hasler, Dec 07 2014
    
  • Python
    from operator import mul
    from functools import reduce
    def A031347(n):
        while n > 9:
           n = reduce(mul, (int(d) for d in str(n)))
        return n
    # Chai Wah Wu, Aug 23 2014
    
  • Python
    from math import prod
    def A031347(n):
        while n > 9: n = prod(map(int, str(n)))
        return n
    print([A031347(n) for n in range(100)]) # Michael S. Branicky, Apr 17 2024
    
  • Scala
    def iterDigitProd(n: Int): Int = n.toString.length match {
      case 1 => n
      case  => iterDigitProd(n.toString.toCharArray.map( - 48).scanRight(1)( * ).head)
    }
    (0 to 99).map(iterDigitProd) // Alonso del Arte, Apr 11 2020

Formula

a(n) = d in {1, ..., 9} if (but not only if) n = (10^k - 1)/9 + (d - 1)*10^m = A002275(k) + (d - 1)*A011557(m) for some k > m >= 0. - M. F. Hasler, Oct 11 2015

A031346 Multiplicative persistence: number of iterations of "multiply digits" needed to reach a number < 10.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 1, 1, 1, 1, 2, 2, 2, 2, 2, 3, 1, 1, 1, 2, 2, 2, 2, 3, 2, 3, 1, 1, 2, 2, 2, 3, 2, 3, 2, 3, 1, 1, 2, 2, 2, 2, 3, 2, 3, 3, 1, 1, 2, 2, 3, 3, 2, 4, 3, 3, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3, 1, 1, 2, 3, 3, 3, 3, 3, 3, 2
Offset: 0

Views

Author

Keywords

Examples

			For n = 999: A007954(999) = 729, A007954(729) = 126, A007954(126) = 12 and A007954(12) = 2. The fourth iteration of "multiply digits" yields a single-digit number, so a(999) = 4. - _Felix Fröhlich_, Jul 17 2016
		

References

  • M. Gardner, Fractal Music, Hypercards and More Mathematical Recreations from Scientific American, Persistence of Numbers, pp. 120-1; 186-7, W. H. Freeman NY 1992.
  • James J. Tattersall, Elementary Number Theory in Nine Chapters, Cambridge University Press, 1999, page 35.

Crossrefs

Cf. A007954 (product of decimal digits of n).
Cf. A010888 (additive digital root of n).
Cf. A031286 (additive persistence of n).
Cf. A031347 (multiplicative digital root of n).
Cf. A263131 (ordinal transform).
Cf. A003001.

Programs

  • Magma
    f:=func; a:=[]; for n in [0..100] do s:=0; k:=n; while k ge 10 do s:=s+1; k:=f(k); end while; Append(~a,s); end for; a; // Marius A. Burtea, Jan 12 2020
  • Maple
    A007954 := proc(n) return mul(d, d=convert(n, base, 10)): end: A031346 := proc(n) local k,m: k:=0:m:=n: while(length(m)>1)do m:=A007954(m):k:=k+1: od: return k: end: seq(A031346(n),n=0..100); # Nathaniel Johnston, May 04 2011
  • Mathematica
    Table[Length[NestWhileList[Times@@IntegerDigits[#]&,n,#>=10&]],{n,0,100}]-1 (* Harvey P. Dale, Aug 27 2016 *)
  • PARI
    a007954(n) = my(d=digits(n)); prod(i=1, #d, d[i])
    a(n) = my(k=n, i=0); while(#Str(k) > 1, k=a007954(k); i++); i \\ Felix Fröhlich, Jul 17 2016
    
  • Python
    from operator import mul
    from functools import reduce
    def A031346(n):
        mp = 0
        while n > 9:
            n = reduce(mul, (int(d) for d in str(n)))
            mp += 1
        return mp
    # Chai Wah Wu, Aug 23 2014
    

Formula

Probably bounded, see A003001. - Charles R Greathouse IV, Nov 15 2022
Previous Showing 31-40 of 315 results. Next