A181543
Triangle of cubed binomial coefficients, T(n,k) = C(n,k)^3, read by rows.
Original entry on oeis.org
1, 1, 1, 1, 8, 1, 1, 27, 27, 1, 1, 64, 216, 64, 1, 1, 125, 1000, 1000, 125, 1, 1, 216, 3375, 8000, 3375, 216, 1, 1, 343, 9261, 42875, 42875, 9261, 343, 1, 1, 512, 21952, 175616, 343000, 175616, 21952, 512, 1, 1, 729, 46656, 592704, 2000376, 2000376, 592704, 46656, 729, 1
Offset: 0
Triangle begins:
1;
1, 1;
1, 8, 1;
1, 27, 27, 1;
1, 64, 216, 64, 1;
1, 125, 1000, 1000, 125, 1;
1, 216, 3375, 8000, 3375, 216, 1;
1, 343, 9261, 42875, 42875, 9261, 343, 1;
1, 512, 21952, 175616, 343000, 175616, 21952, 512, 1;
1, 729, 46656, 592704, 2000376, 2000376, 592704, 46656, 729, 1;
...
-
T:= (n, k)-> binomial(n, k)^3:
seq(seq(T(n, k), k=0..n), n=0..10); # Alois P. Heinz, Jan 06 2021
-
Flatten[Table[Binomial[n,k]^3,{n,0,10},{k,0,n}]] (* Harvey P. Dale, May 23 2011 *)
-
T(n,k)=binomial(n,k)^3
for(n=0,10,for(k=0,n,print1(T(n,k),", "));print())
-
T(n,k)=polcoeff(polcoeff(sum(m=0,n,(3*m)!/m!^3*x^(2*m)*y^m/(1-x-x*y+x*O(x^n))^(3*m+1)),n,x),k,y)
for(n=0,10,for(k=0,n,print1(T(n,k),", "));print()) \\ Paul D. Hanna, Nov 04 2010
-
diag(expr, N=22, var=variables(expr)) = {
my(a = vector(N));
for (k = 1, #var, expr = taylor(expr, var[#var - k + 1], N));
for (n = 1, N, a[n] = expr;
for (k = 1, #var, a[n] = polcoeff(a[n], n-1)));
return(a);
};
x='x; y='y; z='z; t='t;
concat(apply(Vec, diag(1/(1 + y + z + x*y + y*z + t*x*z + (t+1)*x*y*z), 10, [x, y, z]))) \\ Gheorghe Coserea, Jul 01 2018
A132813
Triangle read by rows: A001263 * A127648 as infinite lower triangular matrices.
Original entry on oeis.org
1, 1, 2, 1, 6, 3, 1, 12, 18, 4, 1, 20, 60, 40, 5, 1, 30, 150, 200, 75, 6, 1, 42, 315, 700, 525, 126, 7, 1, 56, 588, 1960, 2450, 1176, 196, 8, 1, 72, 1008, 4704, 8820, 7056, 2352, 288, 9, 1, 90, 1620, 10080, 26460, 31752, 17640, 4320, 405, 10
Offset: 0
First few rows of the triangle are:
1;
1, 2;
1, 6, 3;
1, 12, 18, 4;
1, 20, 60, 40, 5;
1, 30, 150, 200, 75, 6;
1, 42, 315, 700, 525, 126, 7;
...
- Reinhard Zumkeller, Rows n = 0..125 of table, flattened
- N. Alexeev and A. Tikhomirov, Singular Values Distribution of Squares of Elliptic Random Matrices and type-B Narayana Polynomials, arXiv preprint arXiv:1501.04615 [math.PR], 2015.
- C. Athanasiadis and C. Savvidou, The local h-vector of the cluster subdivision of a simplex, arXiv preprint arXiv:1204.0362 [math.CO], 2012.
- Robert. A. Sulanke, Counting Lattice Paths by Narayana Polynomials Electronic J. Combinatorics 7, No. 1, R40, 1-9, 2000.
-
Flat(List([0..10],n->List([0..n], k->(k+1)*Binomial(n+1,k+1)*Binomial(n+1,k)/(n+1)))); # Muniru A Asiru, Feb 26 2019
-
a132813 n k = a132813_tabl !! n !! k
a132813_row n = a132813_tabl !! n
a132813_tabl = zipWith (zipWith (*)) a007318_tabl $ tail a007318_tabl
-- Reinhard Zumkeller, Apr 04 2014
-
/* triangle */ [[(k+1)*Binomial(n+1,k+1)*Binomial(n+1,k)/(n+1): k in [0..n]]: n in [0.. 15]]; // Vincenzo Librandi, Oct 19 2014
-
P := (n, x) -> hypergeom([1-n, -n], [1], x): for n from 1 to 9 do PolynomialTools:-CoefficientList(simplify(P(n,x)),x) od; # Peter Luschny, Nov 26 2014
-
T[n_,k_]=Binomial[n-1,k-1]*Binomial[n,k-1]; Table[Table[T[n,k],{k,1,n}],{n,1,11}]; Flatten[%] (* Roger L. Bagula, Apr 09 2008 *)
P[n_, x_] := HypergeometricPFQ[{1-n, -n}, {1}, x]; Table[CoefficientList[P[n, x], x], {n, 1, 10}] // Flatten (* Jean-François Alcover, Nov 27 2014, after Peter Luschny *)
-
tabl(nn) = {for (n = 1, nn, for (k = 1, n, print1(binomial(n-1, k-1)*binomial(n, k-1) , ", ");););} \\ Michel Marcus, Feb 12 2014
-
def A132813(n,k): return binomial(n,k)*binomial(n+1,k)
print(flatten([[A132813(n,k) for k in range(n+1)] for n in range(13)])) # G. C. Greubel, Mar 12 2025
A145905
Square array read by antidiagonals: Hilbert transform of triangle A060187.
Original entry on oeis.org
1, 1, 1, 1, 3, 1, 1, 9, 5, 1, 1, 27, 25, 7, 1, 1, 81, 125, 49, 9, 1, 1, 243, 625, 343, 81, 11, 1, 1, 729, 3125, 2401, 729, 121, 13, 1, 1, 2187, 15625, 16807, 6561, 1331, 169, 15, 1, 1, 6561, 78125, 117649, 59049, 14641, 2197, 225, 17, 1, 1, 19683, 390625, 823543
Offset: 0
Triangle A060187 (with an offset of 0) begins
1;
1, 1;
1, 6, 1;
so the entries in the first three rows of the Hilbert transform of
A060187 come from the expansions:
Row 0: 1/(1-x) = 1 + x + x^2 + x^3 + ...;
Row 1: (1+x)/(1-x)^2 = 1 + 3*x + 5*x^2 + 7*x^3 + ...;
Row 2: (1+6*x+x^2)/(1-x)^3 = 1 + 9*x + 25*x^2 + 49*x^3 + ...;
The array begins
n\k|..0....1.....2.....3......4
================================
0..|..1....1.....1.....1......1
1..|..1....3.....5.....7......9
2..|..1....9....25....49.....81
3..|..1...27...125...343....729
4..|..1...81...625..2401...6561
5..|..1..243..3125.16807..59049
...
- Ghislain R. Franssens, On a Number Pyramid Related to the Binomial, Deleham, Eulerian, MacMahon and Stirling number triangles, Journal of Integer Sequences, Vol. 9 (2006), Article 06.4.1.
- S. Parker, The Combinatorics of Functional Composition and Inversion, Ph.D. Dissertation, Brandeis Univ. (1993) [From _Tom Copeland_, Nov 09 2008]
-
T:=(n,k) -> (2*k + 1)^n: seq(seq(T(n-k,k),k = 0..n),n = 0..10);
A192721
The number of pairs of permutations in the product group S_n X S_n with k common descents, n >= 1 and 0 <= k <= n-1.
Original entry on oeis.org
1, 3, 1, 19, 16, 1, 211, 299, 65, 1, 3651, 7346, 3156, 246, 1, 90921, 237517, 160322, 28722, 917, 1, 3081513, 9903776, 9302567, 2864912, 245407, 3424, 1, 136407699, 520507423, 632274183, 288196659, 46261609, 2041965, 12861, 1
Offset: 1
The triangle begins
n/k|.....0.......1.......2......3....4.....5
============================================
..1|.....1
..2|.....3.......1
..3|....19......16.......1
..4|...211.....299......65......1
..5|..3651....7346....3156....246....1
..6|.90921..237517..160322..28722..917.....1
..
Row 3 entries T(3,0) = 19, T(3,1) = 16 and T(3,2) = 1 can be read from the following table:
============================================
Number of common descents in S_3 x S_3
============================================
.
...|.123...132...213...231...312...321
======================================
123|..0.....0.....0.....0.....0.....0
132|..0.....1.....0.....1.....0.....1
213|..0.....0.....1.....0.....1.....1
231|..0.....1.....0.....1.....0.....1
312|..0.....0.....1.....0.....1.....1
321|..0.....1.....1.....1.....1.....2
Matrix identity A192721 * A007318 = row reverse of A192722:
/...1................\ /..1..............\
|...3.....1...........||..1....1..........|
|..19....16.....1.....||..1....2....1.....|
|.211...299....65....1||..1....3....3....1|
|.....................||..................|
=
/...1...................\
|...4......1.............|
|..36.....18......1......|
|.576....432.....68.....1|
|........................|
- Alois P. Heinz, Rows n = 1..45, flattened
- L. Carlitz, R. Scoville and T. Vaughan, Enumeration of pairs of permutations and sequences, Bull. Amer. Math. Soc., 80 (1974), 881-884.
- L. Carlitz, R. Scoville, T. Vaughan, Enumeration of pairs of permutations, Discrete Math. 14, (1976) 215-239.
- J-Marc Fedou and D. Rawlings, More statistics on permutation pairs, The Electronic Journal of Combinatorics, 1 (1994) #R11.
- M. V. Koutras, Eulerian numbers associated with sequences of polynomials, Fibonacci Quart. 32 (1994) 44-57.
- T. Mendes, J. Remmel, A. Riehl, A Generalization of the Generating Functions for Descent Statistic.
- R. P. Stanley, Binomial posets, Möbius inversion and permutation enumeration, J. Combinat. Theory, A 20 (1976), 336-356.
-
#A192721
#J = sum {n>=0} z^n/n!^2
J := unapply(BesselJ(0, 2*I*sqrt(z)),z):
G := (1-x)/(-x + J(z*(x-1))):
Gser := simplify(series(G, z = 0, 12)):
for n from 1 to 10 do
P[n] := n!^2*sort(coeff(Gser, z, n)) od:
for n from 1 to 10 do seq(coeff(P[n],x,k), k = 0..n-1) od;
# gives sequence in triangular form
-
max = 9; j[z_] := BesselJ[0, 2 I*Sqrt[z]]; g = (1 - x)/(-x + j[z*(x - 1)]); gser = Series[g, {z, 0, max}]; p[n_] := n!^2 Coefficient[ gser, z, n]; a[n_, k_] := Coefficient[ p[n], x, k]; Flatten[ Table[ a[n, k], {n, 1, max-1}, {k, 0, n-1}]] (* Jean-François Alcover, Dec 13 2011, after Maple *)
A059797
Second in a series of arrays counting standard tableaux by partition type.
Original entry on oeis.org
2, 5, 5, 9, 16, 9, 14, 35, 35, 14, 20, 64, 90, 64, 20, 27, 105, 189, 189, 105, 27, 35, 160, 350, 448, 350, 160, 35, 44, 231, 594, 924, 924, 594, 231, 44, 54, 320, 945, 1728, 2100, 1728, 945, 320, 54, 65, 429, 1430, 3003, 4290, 4290, 3003, 1430, 429, 65
Offset: 0
a(5) = 16 because we can write T(2,2) = T(1,2) + T(1,1) + A007318(4,2) = 5 + 5 + 6.
2;
5, 5;
9, 16, 9;
14, 35, 35, 14;
20, 64, 90, 64, 20;
27, 105, 189, 189, 105, 27;
T(n,k) as a grid for the first few lattice points. Where T(0,0)=2 since there are two ways to get to (0,0) with "0+0+2" steps under the move restrictions.
k = 0 1 2 3 4 5
T(0,k) = 2 5 9 14 20 27
T(1,k) = 5 16 35 64 105 160
T(2,k) = 9 35 90 189 350 594
T(3,k) = 14 64 189 448 924 1728
T(4,k) = 20 105 350 924 2100 4290
T(5,k) = 27 160 594 1728 4290 9504
- _Juan Luis Vargas-Molina_, Mar 03 2014
- Stanton and White, Constructive Combinatorics, 1986, pp. 84, 91.
-
A059797 := proc(n,k) option remember; if n <0 or k<0 or k>n then 0; else procname(n-1,k-1)+procname(n-1,k)+binomial(n+2,k+1) ; end if; end proc:
seq(seq( A059797(n,k),k=0..n),n=0..15) ; # R. J. Mathar, Jan 27 2011
-
t[n_, k_] /; (n < 0 || k < 0 || k > n) = 0; t[n_, k_] := t[n, k] = t[n - 1, k - 1] + t[n - 1, k] + Binomial[n + 2, k + 1]; Flatten[ Table[ t[n, k], {n, 0, 9}, {k, 0, n}]] (* Jean-François Alcover, Dec 20 2011, after R. J. Mathar *)
T[n_, k_] := (k + 1)(n + k +4) FactorialPower[k + n + 2, n]/(n! + (n + 1)!)
MatrixForm[Table[T[n, k], {n, 0, 10}, {k, 0, 10}]] (* Juan Luis Vargas-Molina, Mar 03 2014 *)
A108558
Symmetric triangle, read by rows, where row n equals the (n+1)-th differences of the crystal ball sequence for D_n lattice, for n>=0.
Original entry on oeis.org
1, 1, 1, 1, 2, 1, 1, 9, 9, 1, 1, 20, 54, 20, 1, 1, 35, 180, 180, 35, 1, 1, 54, 447, 852, 447, 54, 1, 1, 77, 931, 2863, 2863, 931, 77, 1, 1, 104, 1724, 7768, 12550, 7768, 1724, 104, 1, 1, 135, 2934, 18186, 43128, 43128, 18186, 2934, 135, 1, 1, 170, 4685, 38200, 124850, 183356, 124850, 38200, 4685, 170, 1
Offset: 0
G.f.s of initial rows of square array A108553 are:
(1)/(1-x),
(1 + x)/(1-x)^2,
(1 + 2*x + x^2)/(1-x)^3,
(1 + 9*x + 9*x^2 + x^3)/(1-x)^4,
(1 + 20*x + 54*x^2 + 20*x^3 + x^4)/(1-x)^5,
(1 + 35*x + 180*x^2 + 180*x^3 + 35*x^4 + x^5)/(1-x)^6.
Triangle begins:
1;
1, 1;
1, 2, 1;
1, 9, 9, 1;
1, 20, 54, 20, 1;
1, 35, 180, 180, 35, 1;
1, 54, 447, 852, 447, 54, 1;
1, 77, 931, 2863, 2863, 931, 77, 1;
1, 104, 1724, 7768, 12550, 7768, 1724, 104, 1;
1, 135, 2934, 18186, 43128, 43128, 18186, 2934, 135, 1;
1, 170, 4685, 38200, 124850, 183356, 124850, 38200, 4685, 170, 1;
...
- Seiichi Manyama, Rows n = 0..139, flattened
- F. Ardila, M. Beck, S. Hosten, J. Pfeifle and K. Seashore, Root polytopes and growth series of root lattices, arXiv:0809.5123 [math.CO], 2008.
- J. H. Conway and N. J. A. Sloane, Low-dimensional lattices. VII Coordination sequences, Proc. R. Soc. Lond. A (1997) 453, 2369-2389.
Cf.
A108553,
A008353,
A108558,
A008459,
A086645,
A108556. Row n equals (n+1)-th differences of:
A001844 (row 2),
A005902 (row 3),
A007204 (row 4),
A008356 (row 5),
A008358 (row 6),
A008360 (row 7),
A008362 (row 8),
A008377 (row 9),
A008379 (row 10).
-
T[1, 0] = T[1, 1]=1; T[n_, k_] := Binomial[2n, 2k] - 2n Binomial[n-2, k-1];
Table[T[n, k], {n, 0, 10}, {k, 0, n}] // Flatten (* Jean-François Alcover, Jul 25 2018 *)
-
T(n,k)=if(n
A169714
The function W_5(2n) (see Borwein et al. reference for definition).
Original entry on oeis.org
1, 5, 45, 545, 7885, 127905, 2241225, 41467725, 798562125, 15855173825, 322466645545, 6687295253325, 140927922498025, 3010302779775725, 65046639827565525, 1419565970145097545, 31249959913055650125, 693192670456484513025
Offset: 0
- Vincenzo Librandi, Table of n, a(n) for n = 0..200
- J. M. Borwein, A short walk can be beautiful, 2015.
- Jonathan M. Borwein, Dirk Nuyens, Armin Straub and James Wan, Random Walk Integrals, 2010.
- Jonathan M. Borwein and Armin Straub, Mahler measures, short walks and log-sine integrals (2012)
- Armin Straub, Arithmetic aspects of random walks and methods in definite integration, Ph. D. Dissertation, School Of Science And Engineering, Tulane University, 2012. - From _N. J. A. Sloane_, Dec 16 2012
-
A169714 := proc(n)
W(5,2*n) ;
end proc: # with W() from A169715, R. J. Mathar, Mar 27 2012
-
a[n_] := SeriesCoefficient[BesselI[0, 2*Sqrt[x]]^5, {x, 0, n}]*n!^2; Table[a[n], {n, 0, 17}] (* Jean-François Alcover, Dec 30 2013, after Peter Bala *)
max = 17; Total /@ MatrixPower[Table[Binomial[n, k]^2, {n, 0, max}, {k, 0, max}], 4] (* Jean-François Alcover, Mar 24 2015, after Peter Bala *)
A169715
The function W_6(2n) (see Borwein et al. reference for definition).
Original entry on oeis.org
1, 6, 66, 996, 18306, 384156, 8848236, 218040696, 5651108226, 152254667436, 4229523740916, 120430899525096, 3499628148747756, 103446306284890536, 3102500089343886696, 94219208840385966096, 2892652835496484004226, 89662253086458906345036
Offset: 0
- Vincenzo Librandi, Table of n, a(n) for n = 0..200
- D. Bernstein and T. Lange, Two grumpy giants and a baby, in ANTS X, Proc. Tenth Algorithmic Number Theory Symposium, 2013.
- J. M. Borwein, A short walk can be beautiful, preprint, Journal of Humanistic Mathematics, Volume 6 Issue 1 (January 2016), pages 86-109.
- Jonathan M. Borwein, Dirk Nuyens, Armin Straub and James Wan, Some Arithmetic Properties of Short Random Walk Integrals, FPSAC 2010, San Francisco, USA.
- Jonathan M. Borwein and Armin Straub, Mahler measures, short walks and log-sine integrals, preprint, Theoretical Computer Science, Volume 479, 1 April 2013, Pages 4-21.
- Armin Straub, Arithmetic aspects of random walks and methods in definite integration, Ph. D. Dissertation, School Of Science And Engineering, Tulane University, 2012. - From _N. J. A. Sloane_, Dec 16 2012
-
W := proc(n,s)
local a,ai ;
if s = 0 then
return 1;
end if;
a := 0 ;
for ai in combinat[partition](s/2) do
if nops(ai) <= n then
af := [op(ai),seq(0,i=1+nops(ai)..n)] ;
a := a+combinat[numbperm](af)*(combinat[multinomial](s/2,op(ai)))^2 ;
end if ;
end do;
a ;
end proc:
A169715 := proc(n)
W(6,2*n) ;
end proc: # R. J. Mathar, Mar 27 2012
-
a[n_] := SeriesCoefficient[BesselI[0, 2*Sqrt[x]]^6, {x, 0, n}]*n!^2; Table[a[n], {n, 0, 17}] (* Jean-François Alcover, Dec 30 2013, after Peter Bala *)
max = 17; Total /@ MatrixPower[Table[Binomial[n, k]^2, {n, 0, max}, {k, 0, max}], 5] (* Jean-François Alcover, Mar 24 2015, after Peter Bala *)
A067804
Triangle read by rows: T(n,k) is the number of walks (each step +-1) of length 2n which have a cumulative value of 0 last at step 2k.
Original entry on oeis.org
1, 2, 2, 6, 4, 6, 20, 12, 12, 20, 70, 40, 36, 40, 70, 252, 140, 120, 120, 140, 252, 924, 504, 420, 400, 420, 504, 924, 3432, 1848, 1512, 1400, 1400, 1512, 1848, 3432, 12870, 6864, 5544, 5040, 4900, 5040, 5544, 6864, 12870, 48620, 25740, 20592, 18480
Offset: 0
Triangle begins:
1;
2, 2;
6, 4, 6;
20, 12, 12, 20;
70, 40, 36, 40, 70;
252, 140, 120, 120, 140, 252;
...
For a walk of length 4 (=2*2), 6 are only ever 0 at step 0, 4 are zero at step 2 but not step 4 and 6 are 0 at step 4.
For n=3,k=2, T(3,2)=12 since there are 12 monotonic paths from (0,0) to (2,2) and then on to (3,3). Using E for eastward steps and N for northward steps, the 12 paths are given by EENNNE, ENENNE, ENNENE, NNEENE, NENENE, NEENNE, EENNEN, ENENEN, ENNEEN, NNEEEN, NENEEN, NEENEN. - _Dennis P. Walsh_, Mar 23 2012
- A. T. Benjamin and J. J. Quinn, Proofs that really count: the art of combinatorial proof, M.A.A. 2003, p. 79, ex. 3f.
- G. C. Greubel, Table of n, a(n) for the first 50 rows, flattened
- B. C. Carlson, Power series for inverse Jacobian elliptic functions, Math. Comp., 77 (2008), 1615-1621, see p. 1617, equation (2.20).
- C. M. Grinstead and J. L. Snell, Introduction to Probability p. 482.
- R. P. Kelisky, Inverse elliptic functions and Legendre polynomials, Amer. Math. Monthly 66 (1959), pp. 480-483. MR0103993 (21 #2755).
- Michael Z. Spivey, A Combinatorial Proof for the Alternating Convolution of the Central Binomial Coefficients, The American Mathematical Monthly 121.6 (2014): 537-540. [Suggested by _Roger L. Bagula_, Jun 21 2014]
-
/* As triangle */ [[Binomial(2*k, k)*Binomial(2*n-2*k, n-k): k in [0..n]]: n in [0.. 15]]; // Vincenzo Librandi, Jul 19 2015
-
Table[Table[Binomial[2k,k]Binomial[2(n-k),n-k],{k,0,n}],{n,0,10}]//Grid (* Geoffrey Critzer, Jun 30 2013 *)
T[ n_, k_] := SeriesCoefficient[ D[ InverseJacobiSN[2 x, m] / 2, x], {x, 0, 2 n}, {m, 0, k}]; (* Michael Somos, May 06 2017 *)
-
T(n, k) = binomial(2*k, k) * binomial(2*n-2*k, n-k) /* Michael Somos, Aug 20 2005 */
A110608
Number triangle T(n,k) = binomial(n,k)*binomial(2n,n-k).
Original entry on oeis.org
1, 2, 1, 6, 8, 1, 20, 45, 18, 1, 70, 224, 168, 32, 1, 252, 1050, 1200, 450, 50, 1, 924, 4752, 7425, 4400, 990, 72, 1, 3432, 21021, 42042, 35035, 12740, 1911, 98, 1, 12870, 91520, 224224, 244608, 127400, 31360, 3360, 128, 1, 48620, 393822, 1145664, 1559376
Offset: 0
Triangle begin
n\k| 0 1 2 3 4 5
---------------------------------
0 | 1
1 | 2 1
2 | 6 8 1
3 | 20 45 18 1
4 | 70 224 168 32 1
5 | 252 1050 1200 450 50 1
...
-
Flatten[Table[Table[Binomial[n,k]Binomial[2n,n-k],{k,0,n}],{n,0,10}]] (* Harvey P. Dale, Aug 10 2011 *)
-
B(x,y):=(sqrt(-x*(4*x^2*y^3+(-12*x^2-8*x)*y^2+(12*x^2-20*x+4)*y-4*x^2+x))/(2*3^(3/2))-(x*(18*y+9)-2)/54)^(1/3);
C(x,y):=-B(x,y)-(x*(3*y-3)+1)/(9*B(x,y))-1/3;
A(x,y):=x*diff(C(x,y),x)*(-1/C(x,y)+1/(1+C(x,y)));
taylor(A(x,y),x,0,7,y,0,7); /* Vladimir Kruchinin, Sep 24 2018 */
-
for(n=0,10, for(k=0,n, print1(binomial(n,k)*binomial(2*n,n-k), ", "))) \\ G. C. Greubel, Sep 01 2017
Comments