cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 80 results. Next

A099972 Write 1/sqrt(2) as a binary fraction; read this from left to right and whenever a 1 appears, note the integer formed by reading leftwards from that 1.

Original entry on oeis.org

1, 5, 13, 45, 173, 8365, 73901, 204973, 467117, 991405, 5185709, 13574317, 80683181, 214900909, 1288642733, 3436126381, 7731093677, 16321028269, 33500897453, 67860635821, 136580112557, 686335926445, 1785847554221
Offset: 0

Views

Author

N. J. A. Sloane, Nov 13 2004, based on correspondence from Artur Jasinski, Mar 25 2003

Keywords

Examples

			1/sqrt(2) = 0.7071067811865475244008443621048490392848359376885... = 0.10110101000001001111001100110011111110011101111001100100100001000101100101111101100010011011 in binary.
		

Crossrefs

Programs

  • Mathematica
    d = 100; l = First[RealDigits[N[1/Sqrt[2], d], 2]]; Do[m = Take[l, n]; k = Length[m]; If[m[[k]] == 1, Print[FromDigits[Reverse[m], 2]]], {n, 1, d}] (* Ryan Propper, Aug 18 2005 *)
    Module[{rd=RealDigits[1/Sqrt[2],2,50][[1]],pos},pos=Flatten[Position[rd,1]];Table[ FromDigits[ Reverse[Take[rd,n]],2],{n,pos}]] (* Harvey P. Dale, Jul 29 2013 *)

Extensions

More terms from Ryan Propper, Aug 18 2005

A179296 Decimal expansion of circumradius of a regular dodecahedron with edge length 1.

Original entry on oeis.org

1, 4, 0, 1, 2, 5, 8, 5, 3, 8, 4, 4, 4, 0, 7, 3, 5, 4, 4, 6, 7, 6, 6, 7, 7, 9, 3, 5, 3, 2, 2, 0, 6, 7, 9, 9, 4, 4, 4, 3, 9, 3, 1, 7, 3, 9, 7, 7, 5, 4, 9, 2, 8, 6, 3, 6, 6, 0, 8, 4, 5, 1, 8, 6, 3, 9, 1, 3, 5, 4, 0, 2, 7, 2, 1, 1, 4, 4, 4, 7, 6, 7, 6, 5, 0, 1, 0, 8, 3, 9, 0, 9, 0, 3, 9, 8, 0, 5, 2, 3, 3, 9, 7, 9, 8
Offset: 1

Views

Author

Keywords

Comments

Dodecahedron: A three-dimensional figure with 12 faces, 20 vertices, and 30 edges.
Appears as a coordinate in a degree-7 quadrature formula on 12 points over the unit circle [Stroud & Secrest]. - R. J. Mathar, Oct 12 2011

Examples

			1.40125853844407354467667793532206799444393173977549286366084518639135...
		

References

  • Jan Gullberg, Mathematics from the Birth of Numbers, W. W. Norton & Co., NY & London, 1997, §12.4 Theorems and Formulas (Solid Geometry), p. 451.

Crossrefs

Cf. Platonic solids circumradii: A010503 (octahedron), A010527 (cube), A019881 (icosahedron), A187110 (tetrahedron). - Stanislav Sykora, Feb 10 2014

Programs

  • Mathematica
    RealDigits[(Sqrt[3]+Sqrt[15])/4, 10, 175][[1]]
  • PARI
    (1+sqrt(5))*sqrt(3)/4 \\ Stefano Spezia, Jan 27 2025

Formula

Equals (sqrt(3) + sqrt(15))/4 = sqrt((9 + 3*sqrt(5))/8).
The minimal polynomial is 16*x^4 - 36*x^2 + 9. - Joerg Arndt, Feb 05 2014
Equals (sqrt(3)/2) * phi = A010527 * A001622. - Amiram Eldar, Jun 02 2023

A268682 Decimal expansion of 1 - 1/sqrt(2).

Original entry on oeis.org

2, 9, 2, 8, 9, 3, 2, 1, 8, 8, 1, 3, 4, 5, 2, 4, 7, 5, 5, 9, 9, 1, 5, 5, 6, 3, 7, 8, 9, 5, 1, 5, 0, 9, 6, 0, 7, 1, 5, 1, 6, 4, 0, 6, 2, 3, 1, 1, 5, 2, 5, 9, 6, 3, 4, 1, 1, 6, 6, 0, 1, 3, 1, 0, 0, 4, 6, 3, 3, 7, 6, 0, 7, 6, 8, 9, 4, 6, 4, 8, 0, 5, 7, 4, 8, 0, 6
Offset: 0

Views

Author

Keywords

Comments

This is the maximum fraction of mass-energy of a black hole which can come from angular momentum, and hence the maximum energy which can be extracted from the black hole via the Penrose process.
Differs from A157215 only in one or two leading digits. - R. J. Mathar, Feb 24 2016
This is the probability that a randomly selected vertex in a random Schroeder tree is a leaf as the number of leaves goes to infinity. See Corollary 2.1.2. of Van Duzer. - Michel Marcus, Apr 12 2019

Examples

			0.29289321881345247559915563789515096071516406231152596341166013100463376...
		

References

  • Charles D. Dermer and Govind Menon, High Energy Radiation from Black Holes: Gamma Rays, Cosmic Rays, and Neutrinos (2009). See pp. 400-402.

Crossrefs

Programs

Formula

Equals 1 - A010503.
a(n) = 9 - A010503(n). - Philippe Deléham, Feb 21 2016
Equals Integral_{x=0..Pi/4} sin(x) dx. - Amiram Eldar, Jun 29 2020

Extensions

More digits from Jon E. Schoenfield, Mar 15 2018

A020763 Decimal expansion of 1/sqrt(6).

Original entry on oeis.org

4, 0, 8, 2, 4, 8, 2, 9, 0, 4, 6, 3, 8, 6, 3, 0, 1, 6, 3, 6, 6, 2, 1, 4, 0, 1, 2, 4, 5, 0, 9, 8, 1, 8, 9, 8, 6, 6, 0, 9, 9, 1, 2, 4, 6, 7, 7, 6, 1, 1, 1, 6, 8, 8, 0, 7, 2, 1, 1, 5, 4, 2, 7, 8, 7, 5, 1, 6, 0, 0, 6, 2, 9, 0, 9, 5, 5, 2, 5, 0, 4, 4, 2, 3, 3, 0, 9, 9, 0, 5, 5, 1, 7, 4, 4, 0, 0, 3, 9
Offset: 0

Views

Author

Keywords

Comments

Radius of the inscribed sphere (tangent to all faces) in a regular octahedron with unit edge. - Stanislav Sykora, Nov 21 2013

Examples

			0.408248290463863016366214012450981898660991246776111688072115427875...
		

References

  • Jan Gullberg, Mathematics from the Birth of Numbers, W. W. Norton & Co., NY & London, 1997, §12.4 Theorems and Formulas (Solid Geometry), p. 450.

Crossrefs

Cf. Platonic solids in radii: A020781 (tetrahedron), A179294 (icosahedron), A237603 (dodecahedron). - Stanislav Sykora, Feb 25 2014

Programs

Formula

From Michal Paulovic, Dec 09 2022: (Start)
Equals A157697/2 = A010503 * A020760 = 1/A010464.
Equals [0, 2; 2, 4] (periodic continued fraction expansion). (End)

A073084 Decimal expansion of -x, where x is the negative solution to the equation 2^x = x^2.

Original entry on oeis.org

7, 6, 6, 6, 6, 4, 6, 9, 5, 9, 6, 2, 1, 2, 3, 0, 9, 3, 1, 1, 1, 2, 0, 4, 4, 2, 2, 5, 1, 0, 3, 1, 4, 8, 4, 8, 0, 0, 6, 6, 7, 5, 3, 4, 6, 6, 6, 9, 8, 3, 2, 0, 5, 8, 4, 6, 0, 8, 8, 4, 3, 7, 6, 9, 3, 5, 5, 5, 2, 7, 9, 5, 7, 2, 4, 8, 7, 2, 4, 2, 2, 8, 5, 3, 0, 2, 9, 2, 0, 9, 6, 9, 7, 9, 0, 2, 5, 3, 0, 5, 6, 5, 4, 7, 9
Offset: 0

Views

Author

Robert G. Wilson v, Aug 17 2002

Keywords

Comments

The equation has three solutions, x = 2, 4 and -0.76666469596....
-x is the power tower (tetration) of 1/sqrt(2) (A010503), also equal to LambertW(log(sqrt(2)))/log(sqrt(2)). - Stanislav Sykora, Nov 04 2013
x is transcendental by the Gelfond-Schneider theorem. Proof: If we accept that x is not an integer, then we can see that x is not rational. For if it were, x^2 would be as well, whereas 2^x would not be (because 2 is not a perfect power). Thus we would have a contradiction (since x^2 = 2^x). Similarly, if x were irrational algebraic, x^2 would be as well, while 2^x would be transcendental (by the Gelfond-Schneider theorem). Thus the only conclusion is that x is transcendental. - Chayim Lowen, Aug 13 2015
From Robert G. Wilson v, May 18 2021: (Start)
Let W be the Lambert power log function,
f(x) = e^(-W_x(-log(sqrt(2)))) and g(x) = -e^(-W_x(log(sqrt(2)))).
Then f(0)=2, f(-1)= 4 and g(0) = c. Except for these three illustrated examples, all integer arguments x yield a complex solution which satisfies the equation. (End)
x is also the negative solution to 4^x = x^4, which reduces to 2^x = x^2 upon taking the square root of both sides. - Jason Bard, Aug 16 2025

Examples

			0.76666469596212309311120442251031484800...
		

References

  • Steven R. Finch, Mathematical Constants, Encyclopedia of Mathematics and its Applications, vol. 94, Cambridge University Press, 2003, Section 6.11, p. 449.

Crossrefs

Cf. non-integer solutions to a^x = x^a: A166928 (a = 3), A341328 (a = 5).

Programs

  • Maple
    evalf((f-> LambertW(f)/f)(log(2)/2), 145);  # Alois P. Heinz, Aug 03 2023
  • Mathematica
    RealDigits[NSolve[2^x == x^2, x, WorkingPrecision -> 150][[1, 1]][[2]]][[1]]
    c = -Exp[-LambertW[Log[2]/2]]; RealDigits[c, 10, 111][[1]] (* Robert G. Wilson v, May 18 2021 *)
    (* To view the two curves: *) Plot[{2^x, x^2}, {x, -4.5, 4.5}] (* Robert G. Wilson v, May 18 2021 *)
    RealDigits[-x/.FindRoot[2^x==x^2,{x,-1},WorkingPrecision->120],10,120][[1]] (* Harvey P. Dale, Jul 15 2023 *)
  • PARI
    lambertw(log(sqrt(2)))/log(sqrt(2)) \\ Stanislav Sykora, Nov 04 2013

Formula

-2*LambertW(log(2)/2)/log(2). - Eric W. Weisstein, Jan 23 2005
Equals 1/A344905. - Hugo Pfoertner, Dec 18 2024

Extensions

Offset corrected by R. J. Mathar, Feb 05 2009

A232736 Decimal expansion of sin(Pi/14), or the imaginary part of (-1)^(1/7).

Original entry on oeis.org

2, 2, 2, 5, 2, 0, 9, 3, 3, 9, 5, 6, 3, 1, 4, 4, 0, 4, 2, 8, 8, 9, 0, 2, 5, 6, 4, 4, 9, 6, 7, 9, 4, 7, 5, 9, 4, 6, 6, 3, 5, 5, 5, 6, 8, 7, 6, 4, 5, 4, 4, 9, 5, 5, 3, 1, 1, 9, 8, 7, 0, 1, 5, 8, 9, 7, 4, 2, 1, 2, 3, 2, 0, 2, 8, 5, 4, 7, 3, 1, 9, 0, 7, 4, 5, 8, 1, 0, 5, 2, 6, 0, 8, 0, 7, 2, 9, 5, 6, 3, 4, 8, 7, 4, 7
Offset: 0

Views

Author

Stanislav Sykora, Nov 29 2013

Keywords

Comments

The corresponding real part is in A232735.
Root of the equation 1 - 4*x - 4*x^2 + 8*x^3 = 0. - Vaclav Kotesovec, Apr 04 2021
The other 2 roots are -A362922 and A073052. - R. J. Mathar, Aug 29 2025

Examples

			0.222520933956314404288902564496794759466355568764544955311987...
		

Crossrefs

Cf. A232735 (real part), A010503 (imag(I^(1/2))), A182168 (imag(I^(1/4))), A019827 (imag(I^(1/5))), A019824 (imag(I^(1/6))), A232738 (imag(I^(1/8))), A019819 (imag(I^(1/9))), A019818 (imag(I^(1/10))).
See also A323601.

Programs

Formula

Equals cos(3*Pi/7). - G. C. Greubel, Sep 04 2022
Equals 4*A073052^3 -3*A073052. - R. J. Mathar, Aug 29 2025
This^2 + A232735^2 = 1. - R. J. Mathar, Aug 31 2025
Equals A323601/(2*A232735). - R. J. Mathar, Sep 05 2025

A023365 a(n) = 2^(3^(n-1)).

Original entry on oeis.org

2, 8, 512, 134217728, 2417851639229258349412352, 14134776518227074636666380005943348126619871175004951664972849610340958208
Offset: 1

Views

Author

Keywords

Comments

a(n+1) = a(n) converted to base 8 from base 2 (written in base 10).
Number of disjunctive-normal forms of n-1 variables (either with x, or x-negated or without x). - Labos Elemer, Jul 24 2003
a(n)*Psi(3^n,x), with the (monic) minimal polynomial Psi(3^n,x) of cos(2*Pi/3^n), becomes an integer polynomial with coefficient 1 of x^0.
E.g., 8*Psi(9,x)=8*(x^3 - (3/4)*x + 1/8) = 8*x^3 - 6*x + 1.
See A181875/A181876, A181877 and the W. Lang link under A181875. - Wolfdieter Lang, Feb 24 2011
The next term (a(7)) has 220 digits. - Harvey P. Dale, Aug 10 2014
These seem to be the reduced denominators of Newton's iteration for 1/sqrt(2), starting with 1/2. - Steven Finch, Oct 08 2024

Crossrefs

Programs

Formula

a(n) = a(n-1)^3.
a(n) = A000079(A000244(n-1)).
a(n+1) is conjectured to be the reduced denominator of b(n) = b(n-1)*(3/2 - b(n-1)^2); b(0) = 1/2. - Steven Finch, Oct 08 2024
Limit_{n -> oo} A376867(n-1)/a(n) = 1/sqrt(2) = A010503. - Steven Finch, Oct 08 2024

A187110 Decimal expansion of sqrt(3/8).

Original entry on oeis.org

6, 1, 2, 3, 7, 2, 4, 3, 5, 6, 9, 5, 7, 9, 4, 5, 2, 4, 5, 4, 9, 3, 2, 1, 0, 1, 8, 6, 7, 6, 4, 7, 2, 8, 4, 7, 9, 9, 1, 4, 8, 6, 8, 7, 0, 1, 6, 4, 1, 6, 7, 5, 3, 2, 1, 0, 8, 1, 7, 3, 1, 4, 1, 8, 1, 2, 7, 4, 0, 0, 9, 4, 3, 6, 4, 3, 2, 8, 7, 5, 6, 6, 3, 4, 9, 6, 4, 8, 5, 8
Offset: 0

Views

Author

Keywords

Comments

Apart from leading digits, the same as A174925.
Radius of the circumscribed sphere (congruent with vertices) for a regular tetrahedron with unit edges. - Stanislav Sykora, Nov 20 2013

Examples

			sqrt(3/8)=0.61237243569579452454932101867647284799148687016417..
		

References

  • Jan Gullberg, Mathematics from the Birth of Numbers, W. W. Norton & Co., NY & London, 1997, §12.4 Theorems and Formulas (Solid Geometry), p. 450.

Crossrefs

Cf. Platonic solids circumradii: A010503 (octahedron), A010527 (cube), A019881 (icosahedron), A179296 (dodecahedron). - Stanislav Sykora, Feb 10 2014

Programs

Formula

Equals A010464/4. - Stefano Spezia, Jan 26 2025
Equals 3*A020781 = A115754/2 = sqrt(A301755). - Hugo Pfoertner, Jan 26 2025

A040042 Continued fraction for sqrt(50) = 5*sqrt(2).

Original entry on oeis.org

7, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14
Offset: 0

Views

Author

Keywords

Examples

			7.07106781186547524400844... = 7 + 1/(14 + 1/(14 + 1/(14 + 1/(14 + ...)))). - _Harry J. Smith_, Jun 01 2009
		

References

  • James J. Tattersall, Elementary Number Theory in Nine Chapters, Cambridge University Press, 1999, page 276.

Crossrefs

Cf. A010503 (decimal expansion), A041084/A041085 (convergents), A248275 (Egyptian fraction).
Cf. A040000.

Programs

  • Maple
    Digits := 100: convert(evalf(sqrt(N)),confrac,90,'cvgts'):
  • Mathematica
    ContinuedFraction[Sqrt[50],300] (* Vladimir Joseph Stephan Orlovsky, Mar 07 2011 *)
  • PARI
    { allocatemem(932245000); default(realprecision, 47000); x=contfrac(sqrt(50)); for (n=0, 20000, write("b040042.txt", n, " ", x[n+1])); } \\ Harry J. Smith, Jun 01 2009

Formula

From Elmo R. Oliveira, Feb 07 2024: (Start)
a(n) = 14 = A010853(n) for n >= 1.
G.f.: 7*(1+x)/(1-x).
E.g.f.: 14*exp(x) - 7.
a(n) = 7*A040000(n). (End)

A157214 Decimal expansion of 18 + 5*sqrt(2).

Original entry on oeis.org

2, 5, 0, 7, 1, 0, 6, 7, 8, 1, 1, 8, 6, 5, 4, 7, 5, 2, 4, 4, 0, 0, 8, 4, 4, 3, 6, 2, 1, 0, 4, 8, 4, 9, 0, 3, 9, 2, 8, 4, 8, 3, 5, 9, 3, 7, 6, 8, 8, 4, 7, 4, 0, 3, 6, 5, 8, 8, 3, 3, 9, 8, 6, 8, 9, 9, 5, 3, 6, 6, 2, 3, 9, 2, 3, 1, 0, 5, 3, 5, 1, 9, 4, 2, 5, 1, 9, 3, 7, 6, 7, 1, 6, 3, 8, 2, 0, 7, 8, 6, 3, 6, 7, 5, 0
Offset: 2

Views

Author

Klaus Brockhaus, Feb 25 2009

Keywords

Comments

lim_{n -> infinity} b(n)/b(n-1) = (18+5*sqrt(2))/(18-5*sqrt(2)) for n mod 3 = {1, 2}, b = A129544.
lim_{n -> infinity} b(n)/b(n-1) = (18+5*sqrt(2))/(18-5*sqrt(2)) for n mod 3 = {0, 2}, b = A157213.

Examples

			18+5*sqrt(2) = 25.07106781186547524400...
		

Crossrefs

Cf. A129544, A157213, A157215 (decimal expansion of 18-5*sqrt(2)), A157216 (decimal expansion of (18-5*sqrt(2))/(18+5*sqrt(2))).

Programs

Formula

Equals 18 + 10*A010503. - R. J. Mathar, Feb 27 2009
Previous Showing 21-30 of 80 results. Next