cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 58 results. Next

A167591 A triangle related to the a(n) formulas of the rows of the ED4 array A167584.

Original entry on oeis.org

1, 4, -2, 12, -8, 9, 32, -16, 120, -60, 80, 0, 952, -768, 525, 192, 160, 5664, -5008, 12396, -5670, 448, 896, 27888, -20672, 162740, -133128, 72765, 1024, 3584, 120064, -46720, 1537216, -1562464, 2557296, -1081080, 2304, 12288, 467712, 76800
Offset: 1

Views

Author

Johannes W. Meijer, Nov 10 2009

Keywords

Comments

The a(n) formulas given below correspond to the first ten rows of the ED4 array A167584.
The recurrence relations of the a(n) formulas for the left hand triangle columns, see the cross-references below, lead to the sequences A013609, A003148, A081277 and A079628.

Examples

			Row 1: a(n) = 1.
Row 2: a(n) = 4*n - 2.
Row 3: a(n) = 12*n^2 - 8*n + 9.
Row 4: a(n) = 32*n^3 - 16*n^2 + 120*n - 60.
Row 5: a(n) = 80*n^4 + 0*n^3 + 952*n^2 - 768*n + 525.
Row 6: a(n) = 192*n^5 + 160*n^4 + 5664*n^3 - 5008*n^2 + 12396*n - 5670.
Row 7: a(n) = 448*n^6 + 896*n^5 + 27888*n^4 - 20672*n^3 + 162740*n^2 - 133128*n + 72765.
Row 8: a(n) = 1024*n^7 + 3584*n^6 + 120064*n^5 - 46720*n^4 + 1537216*n^3 - 1562464*n^2 + 2557296*n - 1081080.
Row 9: a(n) = 2304*n^8 + 12288*n^7 + 467712*n^6 + 76800*n^5 + 11589216*n^4 - 12058368*n^3 + 47963568*n^2 - 38278080*n + 18243225.
Row 10: a(n) = 5120*n^9 + 38400*n^8 + 1686528*n^7 + 1540608*n^6 + 73898880*n^5 - 66179520*n^4 + 631348672*n^3 - 669559008*n^2 + 869709780*n - 344594250.
		

Crossrefs

A167584 is the ED4 array.
A000012, A016825, A167585, A167586 and A167587 equal the first five rows of the ED4 array.
A001787, A167592, A167593, A168307 and A168308 equal the first five left hand triangle columns.
A001193 equals the first right hand triangle column.
A024199 equals the row sums.

Extensions

Comment and formulas added by Johannes W. Meijer, Nov 23 2009

A126443 a(n) = Sum_{k=0..n-1} C(n-1,k)*a(k)*2^k for n>0, with a(0)=1.

Original entry on oeis.org

1, 1, 3, 17, 179, 3489, 127459, 8873137, 1195313043, 315321098561, 164239990789571, 169810102632595281, 349630019758589841523, 1436268949679165936016097, 11784559509424676876673518499, 193243076262167105764611875139569
Offset: 0

Views

Author

Paul D. Hanna, Jan 01 2007

Keywords

Comments

Generated by a generalization of a recurrence for the Bell numbers (A000110).
Starting with offset 1 = eigensequence of triangle A013609. - Gary W. Adamson, Sep 04 2009

Crossrefs

Cf. A013609. - Gary W. Adamson, Sep 04 2009
Column k=2 of A306245.

Programs

  • PARI
    a(n)=if(n==0,1,sum(k=0,n-1,binomial(n-1,k)*a(k)*2^k))

Formula

a(n) = Sum_{k=0..n*(n-1)/2} A126347(n,k)*2^k.
G.f. A(x) satisfies: A(x) = 1 + x*A(2*x/(1 - x))/(1 - x). - Ilya Gutkovskiy, Sep 02 2019
a(n) ~ c * 2^(n*(n-1)/2), where c = A081845 = 4.7684620580627434482997985... - Vaclav Kotesovec, Sep 16 2019

A167580 A triangle related to the a(n) formulas of the rows of the ED3 array A167572.

Original entry on oeis.org

1, 6, -1, 20, 0, 3, 56, 28, 98, -15, 144, 192, 1080, -48, 105, 352, 880, 7568, 2024, 6534, -945, 832, 3328, 40976, 31616, 132444, -8112, 10395, 1920, 11200, 187488, 274480, 1593960, 286900, 972162, -135135, 4352, 34816, 761600, 1784320, 13962848
Offset: 1

Views

Author

Johannes W. Meijer, Nov 10 2009

Keywords

Comments

The a(n) formulas given below correspond to the first ten rows of the ED3 array A167572.
The recurrence relations of the a(n) formulas for the left hand triangle columns, see the cross-references below, lead to the sequences A013609, A003148, A081277 and A079628.

Examples

			Row 1: a(n) = 1.
Row 2: a(n) = 6*n - 1.
Row 3: a(n) = 20*n^2 + 0*n + 3.
Row 4: a(n) = 56*n^3 + 28*n^2 + 98*n - 15.
Row 5: a(n) = 144*n^4 + 192*n^3 + 1080*n^2 - 48*n + 105.
Row 6: a(n) = 352*n^5 + 880*n^4 + 7568*n^3 + 2024*n^2 + 6534*n - 945.
Row 7: a(n) = 832*n^6 + 3328*n^5 + 40976*n^4 + 31616*n^3 + 132444*n^2 - 8112*n + 10395.
Row 8: a(n) = 1920*n^7 + 11200*n^6 + 187488*n^5 + 274480*n^4 + 1593960*n^3 + 286900*n^2 + 972162*n - 135135.
Row 9: a(n) = 4352*n^8 + 34816*n^7 + 761600*n^6 + 1784320*n^5 + 13962848*n^4 + 7874944*n^3 + 29641200*n^2 - 2080800*n + 2027025.
Row 10: a(n) = 9728*n^9 + 102144*n^8 + 2830848*n^7 + 9645312*n^6 + 98382912*n^5 + 106720416*n^4 + 522283552*n^3 + 69265488*n^2 + 255468870*n - 34459425.
		

Crossrefs

A167572 is the ED3 array.
A000012, A016969, A167573, A167574 and A167575 equal the first five rows of the ED3 array.
A014480, A167581, A167582, A168305 and A168306 equal the first five left hand triangle columns.
A001147 equals the first right hand triangle column.
A167576 equals the row sums.

Extensions

Comment and links added by Johannes W. Meijer, Nov 23 2009

A065109 Triangle T(n,k) of coefficients relating to Bezier curve continuity.

Original entry on oeis.org

1, 2, -1, 4, -4, 1, 8, -12, 6, -1, 16, -32, 24, -8, 1, 32, -80, 80, -40, 10, -1, 64, -192, 240, -160, 60, -12, 1, 128, -448, 672, -560, 280, -84, 14, -1, 256, -1024, 1792, -1792, 1120, -448, 112, -16, 1, 512, -2304, 4608, -5376, 4032, -2016, 672, -144, 18, -1, 1024, -5120, 11520, -15360, 13440
Offset: 0

Views

Author

Peter J. Taylor, Nov 12 2001

Keywords

Comments

Row sums are 1, antidiagonal sums are the natural numbers. - Gerald McGarvey, May 29 2005
Row sums = 1. - Roger L. Bagula, Sep 12 2008
Riordan array (1/(1-2x), -x/(1-2x)). - Philippe Deléham, Nov 27 2009
Triangle T(n,k), read by rows, given by [2,0,0,0,0,0,0,0,...] DELTA [ -1,0,0,0,0,0,0,0,...] where DELTA is the operator defined in A084938. - Philippe Deléham, Dec 15 2009

Examples

			For C-2 continuity between P and Q we require Q_0 = P_n; Q_1 = 2P_n - P_n-1; Q_2 = 4P_n - 4P_n-1 + P_n-2.
Triangle begins:
     1;
     2,     -1;
     4,     -4,     1;
     8,    -12,     6,     -1;
    16,    -32,    24,     -8,     1;
    32,    -80,    80,    -40,    10,     -1;
    64,   -192,   240,   -160,    60,    -12,     1;
   128,   -448,   672,   -560,   280,    -84,    14,    -1;
   256,  -1024,  1792,  -1792,  1120,   -448,   112,   -16,    1;
   512,  -2304,  4608,  -5376,  4032,  -2016,   672,  -144,   18,   -1;
  1024,  -5120, 11520, -15360, 13440,  -8064,  3360,  -960,  180,  -20,  1;
  2048, -11264, 28160, -42240, 42240, -29568, 14784, -5280, 1320, -220, 22, -1;
		

Crossrefs

Cf. A038207, A013609. Apart from signs, same as A038207.

Programs

  • Haskell
    a065109 n k = a065109_tabl !! n !! k
    a065109_row n = a065109_tabl !! n
    a065109_tabl = iterate
       (\row -> zipWith (-) (map (* 2) row ++ [0]) ([0] ++ row)) [1]
    -- Reinhard Zumkeller, Apr 25 2013
    
  • Magma
    /* As triangle: */  [[(-1)^k*2^(n-k)*Binomial(n, k): k in [0..n]]: n in [0..15]]; // Vincenzo Librandi, Apr 26 2015
  • Maple
    seq(seq((-1)^k * 2^(n-k) * binomial(n, k), k= 0 .. n), n = 0 .. 12); # Robert Israel, Apr 26 2015
  • Mathematica
    t[n_, m_, k_] = (-1)^m*Multinomial[n - m - k, m, k]; Table[Table[Sum[t[n, m, k], {k, 0, n}], {m, 0, n}], {n, 0, 11}]; Flatten[%] (* Roger L. Bagula, Sep 12 2008 *)
    Flatten[Table[(-1)^k 2^(n-k) Binomial[n,k],{n,0,10},{k,0,n}]] (* Harvey P. Dale, Mar 13 2013 *)

Formula

T(n, k) = (-1)^k * 2^(n-k) * binomial(n, k).
Sum_{i=0..n} binomial(n,i) * (-1)^i * T(i,r) = (-1)^(n-r) * binomial(n,r).
For n > 0, T(n, k) = 2*T(n-1, k) - T(n-1, k-1). - Gerald McGarvey, May 29 2005
p(n,m,k) = (-1)^m*multinomial(n - m - k, m, k); t(n,m) = Sum_{k=0..n} (-1)^m*multinomial(n - m - k, m, k). - Roger L. Bagula, Sep 12 2008
Sum_{k=0..n} T(n,k)*A000108(k) = A001405(n). - Philippe Deléham, Nov 27 2009
Sum_{k=0..n} T(n,k)*x^k = (2-x)^n. - Philippe Deléham, Dec 15 2009
G.f.: Sum_{n>=0} (2-x)^n * x^(n*(n+1)/2). - Robert Israel, Apr 26 2015
G.f.: 1/(1-2*x+x*y). - R. J. Mathar, Aug 11 2015

A001848 Crystal ball sequence for 6-dimensional cubic lattice.

Original entry on oeis.org

1, 13, 85, 377, 1289, 3653, 8989, 19825, 40081, 75517, 134245, 227305, 369305, 579125, 880685, 1303777, 1884961, 2668525, 3707509, 5064793, 6814249, 9041957, 11847485, 15345233, 19665841, 24957661, 31388293, 39146185, 48442297, 59511829, 72616013, 88043969
Offset: 0

Views

Author

Keywords

Comments

Number of nodes of degree 12 in virtual, optimal chordal graphs of diameter d(G)=n. - S. Bujnowski & B. Dubalski (slawb(AT)atr.bydgoszcz.pl), Nov 25 2002
Equals binomial transform of [1, 12, 60, 160, 240, 192, 64, 0, 0, 0, ...] where (1, 12, 60, 160, 240, 192, 64) = row 6 of the Chebyshev triangle A013609. - Gary W. Adamson, Jul 19 2008
a(n) is the number of points in Z^6 that are L1 (Manhattan) distance <= n from any given point. Equivalently, due to a symmetry that is easier to see in the Delannoy numbers array (A008288), as a special case of Dmitry Zaitsev's Dec 10 2015 comment on A008288, a(n) is the number of points in Z^n that are L1 (Manhattan) distance <= 6 from any given point. - Shel Kaphan, Jan 02 2023

References

  • L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 81.
  • E. Deza and M. M. Deza, Figurate numbers, World Scientific Publishing (2012), page 231.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A240876.
Row/column 6 of A008288.

Programs

  • Maple
    for n from 1 to k do eval(4/45*n^6+4/15*n^5+14/9*n^4+8/3*n^3+196/45*n^2+46/15*n+1); od;
    A001848:=-(z+1)**6/(z-1)**7; # conjectured (correctly) by Simon Plouffe in his 1992 dissertation
  • Mathematica
    CoefficientList[Series[-(z + 1)^6/(z - 1)^7, {z, 0, 200}], z] (* Vladimir Joseph Stephan Orlovsky, Jun 19 2011 *)

Formula

G.f.: (1+x)^6 /(1-x)^7.
a(n) = (4/45)*n^6 + (4/15)*n^5 + (14/9)*n^4 + (8/3)*n^3 + (196/45)*n^2 + (46/15)*n + 1. - S. Bujnowski & B. Dubalski (slawb(AT)atr.bydgoszcz.pl), Nov 25 2002
a(n) = Sum_{k=0..min(6,n)} 2^k * binomial(6,k)* binomial(n,k). See Bump et al. - Tom Copeland, Sep 05 2014
Sum_{n >= 1} (-1)^(n+1)/(n*a(n-1)*a(n)) = log(2) - 37/60 = log(2) - (1 - 1/2 + 1/3 - 1/4 + 1/5 - 1/6). - Peter Bala, Mar 23 2024

A130123 Infinite lower triangular matrix with 2^k in the right diagonal and the rest zeros. Triangle, T(n,k), n zeros followed by the term 2^k. Triangle by columns, (2^k, 0, 0, 0, ...).

Original entry on oeis.org

1, 0, 2, 0, 0, 4, 0, 0, 0, 8, 0, 0, 0, 0, 16, 0, 0, 0, 0, 0, 32, 0, 0, 0, 0, 0, 0, 64, 0, 0, 0, 0, 0, 0, 0, 128, 0, 0, 0, 0, 0, 0, 0, 0, 256, 0, 0, 0, 0, 0, 0, 0, 0, 0, 512, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1024, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2048, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4096
Offset: 0

Views

Author

Gary W. Adamson, May 11 2007

Keywords

Comments

A 2^n transform matrix.
Triangle T(n,k), 0 <= k <= n, given by [0,0,0,0,0,0,...] DELTA [2,0,0,0,0,0,0,...] where DELTA is the operator defined in A084938. - Philippe Deléham, May 26 2007
Also the Bell transform of A000038. For the definition of the Bell transform see A264428. - Peter Luschny, Jan 27 2016
T is the convolution triangle of the characteristic function of 2 (see A357368). - Peter Luschny, Oct 19 2022

Examples

			First few terms of the triangle:
  1;
  0, 2;
  0, 0, 4;
  0, 0, 0, 8;
  0, 0, 0, 0, 16;
  0, 0, 0, 0,  0, 32; ...
		

Crossrefs

Programs

  • Magma
    [[k eq n select 2^n else 0: k in [0..n]]: n in [0..14]]; // G. C. Greubel, Jun 05 2019
    
  • Maple
    # The function BellMatrix is defined in A264428.
    BellMatrix(n -> `if`(n=0,2,0), 9); # Peter Luschny, Jan 27 2016
    # Uses function PMatrix from A357368.
    PMatrix(10, n -> ifelse(n=1, 2, 0)); # Peter Luschny, Oct 19 2022
  • Mathematica
    BellMatrix[f_Function, len_] := With[{t = Array[f, len, 0]}, Table[BellY[n, k, t], {n, 0, len - 1}, {k, 0, len - 1}]];
    rows = 12;
    M = BellMatrix[If[# == 0, 2, 0]&, rows];
    Table[M[[n, k]], {n, 1, rows}, {k, 1, n}] // Flatten (* Jean-François Alcover, Jun 23 2018, after Peter Luschny *)
    Table[If[k==n, 2^n, 0], {n, 0, 12}, {k, 0, n}]//Flatten (* G. C. Greubel, Jun 05 2019 *)
  • PARI
    {T(n,k) = if(k==n, 2^n, 0)}; \\ G. C. Greubel, Jun 05 2019
    
  • Sage
    def T(n, k):
        if (k==n): return 2^n
        else: return 0
    [[T(n, k) for k in (0..n)] for n in (0..14)] # G. C. Greubel, Jun 05 2019

Formula

G.f.: 1/(1-2*x*y). - R. J. Mathar, Aug 11 2015

A105728 Triangle read by rows: T(n,1) = 1, T(n,n) = n and for 1 < k < n: T(n,k) = T(n-1,k-1) + 2*T(n-1,k).

Original entry on oeis.org

1, 1, 2, 1, 5, 3, 1, 11, 11, 4, 1, 23, 33, 19, 5, 1, 47, 89, 71, 29, 6, 1, 95, 225, 231, 129, 41, 7, 1, 191, 545, 687, 489, 211, 55, 8, 1, 383, 1281, 1919, 1665, 911, 321, 71, 9, 1, 767, 2945, 5119, 5249, 3487, 1553, 463, 89, 10, 1, 1535, 6657, 13183, 15617, 12223, 6593, 2479, 641, 109, 11
Offset: 1

Views

Author

Reinhard Zumkeller, Apr 18 2005

Keywords

Comments

Sum of n-th row = 3^(n-1): Sum_{k=1..n} T(n,k) = A000244(n-1);
for n>1: T(n,2) = A083329(n-1), T(n,n-1) = A028387(n-2).

Examples

			Triangle begins as:
  1;
  1,  2;
  1,  5,  3;
  1, 11, 11,  4;
  1, 23, 33, 19,  5;
  1, 47, 89, 71, 29, 6;
...
		

Crossrefs

Programs

  • Haskell
    a105728 n k = a105728_tabl !! (n-1) !! (k-1)
    a105728_row n = a105728_tabl !! (n-1)
    a105728_tabl = iterate (\row -> zipWith (+) ([0] ++ tail row ++ [1]) $
                                    zipWith (+) ([0] ++ row) (row ++ [0])) [1]
    -- Reinhard Zumkeller, Jul 22 2013
    
  • Magma
    function T(n,k)
      if k eq 1 then return 1;
      elif k eq n then return n;
      else return T(n-1,k-1) + 2*T(n-1,k);
      end if;
      return T;
    end function;
    [T(n,k): k in [1..n], n in [1..12]]; // G. C. Greubel, Nov 13 2019
    
  • Maple
    T:= proc(n, k) option remember;
          if k=1 then 1
        elif k=n then n
        else T(n-1, k-1) + 2*T(n-1, k)
          fi
        end:
    seq(seq(T(n, k), k=1..n), n=1..12); # G. C. Greubel, Nov 13 2019
  • Mathematica
    T[n_, k_]:= T[n, k]= If[k==1, 1, If[k==n, n, T[n-1, k-1] + 2*T[n-1, k]]];
    Table[T[n, k], {n, 12}, {k, n}]//Flatten (* G. C. Greubel, Nov 13 2019 *)
  • Sage
    @CachedFunction
    def T(n, k):
        if (k==1): return 1
        elif (k==n): return n
        else: return T(n-1,k-1) + 2*T(n-1, k)
    [[T(n, k) for k in (1..n)] for n in (1..12)] # G. C. Greubel, Nov 13 2019

A115068 Triangle read by rows: T(n,k) = number of elements in the Coxeter group D_n with descent set contained in {s_k}, for 0<=k<=n-1.

Original entry on oeis.org

1, 2, 2, 4, 6, 3, 8, 16, 12, 4, 16, 40, 40, 20, 5, 32, 96, 120, 80, 30, 6, 64, 224, 336, 280, 140, 42, 7, 128, 512, 896, 896, 560, 224, 56, 8, 256, 1152, 2304, 2688, 2016, 1008, 336, 72, 9, 512, 2560, 5760, 7680, 6720, 4032, 1680, 480, 90, 10, 1024, 5632, 14080, 21120
Offset: 1

Views

Author

Elizabeth Morris (epmorris(AT)math.washington.edu), Mar 01 2006

Keywords

Comments

A115068 is the fission of the polynomial sequence (p(x,n)) by the polynomial sequence ((2x+1)^n), where p(n,x)=x^n+x^(n-1)+...+x+1, n>=0. See A193842 for the definition of fission. - Clark Kimberling, Aug 07 2011

Examples

			First six rows:
1
2...2
4...6....3
8...16...12...4
16..40...40...20...5
32..96...120..80...30...6
		

References

  • A. Bjorner and F. Brenti, Combinatorics of Coxeter Groups, Springer, New York, 2005.
  • J. E. Humphreys, Reflection Groups and Coxeter Groups, Cambridge University Press, Cambridge, 1990.

Crossrefs

Programs

  • Haskell
    a115068 n k = a115068_tabl !! (n-1) !! (k-1)
    a115068_row n = a115068_tabl !! (n-1)
    a115068_tabl = iterate (\row -> zipWith (+) (row ++ [1]) $
                                    zipWith (+) (row ++ [0]) ([0] ++ row)) [1]
    -- Reinhard Zumkeller, Jul 22 2013
  • Mathematica
    z = 11;
    p[0, x_] := 1; p[n_, x_] := x*p[n - 1, x] + 1;
    q[n_, x_] := (2 x + 1)^n;
    p1[n_, k_] := Coefficient[p[n, x], x^k];
    p1[n_, 0] := p[n, x] /. x -> 0;
    d[n_, x_] := Sum[p1[n, k]*q[n - 1 - k, x], {k, 0, n - 1}]
    h[n_] := CoefficientList[d[n, x], {x}]
    TableForm[Table[Reverse[h[n]], {n, 0, z}]]
    Flatten[Table[Reverse[h[n]], {n, -1, z}]]  (* A115068 *)
    TableForm[Table[h[n], {n, 0, z}]]
    Flatten[Table[h[n], {n, -1, z}]]   (* A193862 *)

Formula

T(n,k)=binomial(n,k)*2^(n-k-1).
T(n,1) = 2^(n-1), T(n,n) = n, for n > 1: T(n,k) = T(n-1,k-1) + 2*T(n-1,k), 1 < k < n. - Reinhard Zumkeller, Jul 22 2013

A006588 a(n) = 4^n*(3*n)!/((2*n)!*n!).

Original entry on oeis.org

1, 12, 240, 5376, 126720, 3075072, 76038144, 1905131520, 48199827456, 1228623052800, 31504481648640, 811751838842880, 20999667135283200, 545086744471535616, 14189559697354260480, 370298578584748425216, 9684502341534993088512, 253765034617761850982400
Offset: 0

Views

Author

Keywords

References

  • Jonathan Borwein, David Bailey, and Roland Girgensohn, Experimentation in Mathematics: Computational Paths to Discovery, A K Peters, Natick, MA, 2004. See p. 26.
  • William Allen Whitworth, DCC Exercises in Choice and Chance, Stechert, NY, 1945, p. 35.
  • Henry W. Gould, Combinatorial Identities, Morgantown, 1972; The right-hand side of a binomial coefficient identity, Eq. 3.115, page 35.

Crossrefs

Programs

  • Magma
    [4^n*Factorial(3*n)/(Factorial(2*n)* Factorial(n)): n in [0..20]]; // Vincenzo Librandi, Oct 01 2018
    
  • Maple
    A006588 := n->add( binomial(4*n+1,2*n-2*k)*binomial(n+k,k),k=0..n): seq(A006588(n), n=0..15);
    h := proc(x) hypergeom([1/3, 2/3], [1/2], 27*x) end: ser := series(h(x), x, 20): seq(coeff(ser, x, n), n=0..15); # Peter Luschny, Sep 30 2018
  • Mathematica
    Table[4^n*(3*n)!/((2*n)!*n!), {n, 0, 20}] (* Erich Friedman, Mar 22 2008 *)
  • PARI
    a(n) = 4^n*(3*n)!/((2*n)!*n!) \\ P L Patodia (pannalal(AT)usa.net), Feb 24 2007
    
  • PARI
    a(n) = sum(k=0,n,binomial(4*n+1,2*n-2*k)*binomial(n+k,k)) \\ P L Patodia (pannalal(AT)usa.net), Feb 24 2007
    
  • SageMath
    def A006588(n): return 4**n*binomial(3*n,n)
    print([A006588(n) for n in range(41)]) # G. C. Greubel, Aug 27 2025

Formula

a(n) = Sum_{k=0..n} C(4*n+1, 2*n-2*k)*C(n+k, k) = 4^n*C(3*n, n).
a(n) ~ (1/2)*3^(1/2)*Pi^(-1/2)*n^(-1/2)*3^(3*n)*{1 - (7/72)*n^-1 + ...}. - Joe Keane (jgk(AT)jgk.org), Jun 11 2002
a(n) = A013609(3*n, 2*n). - Johannes W. Meijer, Aug 22 2013
a(n) = [x^n] hypergeom([1/3, 2/3], [1/2], 27*x). - Peter Luschny, Sep 30 2018
a(n) = Sum_{k = n..3*n} binomial(3*n,k)*binomial(k,n). - Peter Bala, Mar 25 2023
From Amiram Eldar, Dec 07 2024: (Start)
a(n) = A000302(n) * A005809(n).
Sum_{n>=1} (-1)^n/a(n) = -1/28 - 3*log(2)/32 + (13/(112*sqrt(7))) * arctan(sqrt(7)/5) (Borwein et al., 2004; Borwein and Girgensohn, 2005; Batir, 2005). (End)
From G. C. Greubel, Aug 27 2025: (Start)
G.f.: (1/(2*(1-27*x))*( cos(t) + cos(2*t) ), where t = (1/3)*arccos(1-54*x).
E.g.f.: hypergeometric2F2([1/3, 2/3], [1/2, 1], 27*x). (End)

A303872 Triangle read by rows: T(0,0) = 1; T(n,k) = -T(n-1,k) + 2 T(n-1,k-1) for k = 0,1,...,n; T(n,k)=0 for n or k < 0.

Original entry on oeis.org

1, -1, 2, 1, -4, 4, -1, 6, -12, 8, 1, -8, 24, -32, 16, -1, 10, -40, 80, -80, 32, 1, -12, 60, -160, 240, -192, 64, -1, 14, -84, 280, -560, 672, -448, 128, 1, -16, 112, -448, 1120, -1792, 1792, -1024, 256, -1, 18, -144, 672, -2016, 4032, -5376, 4608, -2304, 512
Offset: 0

Views

Author

Shara Lalo, May 25 2018

Keywords

Comments

Row n gives coefficients in expansion of (-1+2x)^n. Row sums=1.
In the center-justified triangle, the numbers in skew diagonals pointing top-Left give the triangle in A133156 (coefficients of Chebyshev polynomials of the second kind), and the numbers in skew diagonals pointing top-right give the triangle in A305098. The coefficients in the expansion of 1/(1-x) are given by the sequence generated by the row sums. The generating function of the central terms is 1/sqrt(1+8x), signed version of A059304.

Examples

			Triangle begins:
   1;
  -1,   2;
   1,  -4,   4;
  -1,   6, -12,    8;
   1,  -8,  24,  -32,   16;
  -1,  10, -40,   80,  -80,    32;
   1, -12,  60, -160,  240,  -192,   64;
  -1,  14, -84,  280, -560,   672, -448,   128;
   1, -16, 112, -448, 1120, -1792, 1792, -1024, 256;
		

References

  • Shara Lalo and Zagros Lalo, Polynomial Expansion Theorems and Number Triangles, Zana Publishing, 2018, ISBN: 978-1-9995914-0-3, pp. 389-391.

Crossrefs

Row sums give A000012.
Signed version of A013609 ((1+2*x)^n).
Cf. A033999 (column 0).

Programs

  • Mathematica
    T[0, 0] = 1; T[n_, k_] := If[n < 0 || k < 0, 0, - T[n - 1, k] + 2 T[n - 1, k - 1]]; Table[T[n, k], {n, 0, 9}, {k, 0, n}] // Flatten
    For[i = 0, i < 4, i++, Print[CoefficientList[Expand[(-1 +2 x)^i], x]]]
  • PARI
    T(n, k) = if ((n<0) || (k<0), 0, if ((n==0) && (k==0), 1, -T(n-1, k) + 2*T(n-1, k-1)));
    tabl(nn) = for (n=0, nn, for (k=0, n, print1(T(n,k), ", ")); print); \\ Michel Marcus, May 26 2018

Formula

G.f.: 1 / (1 + t - 2t*x).
T(n,k) = (-1)^(n+k)*2^k*binomial(n,k). - Stefano Spezia, Aug 08 2025
Previous Showing 21-30 of 58 results. Next