cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 41-50 of 203 results. Next

A080335 Diagonal in square spiral or maze arrangement of natural numbers.

Original entry on oeis.org

1, 5, 9, 17, 25, 37, 49, 65, 81, 101, 121, 145, 169, 197, 225, 257, 289, 325, 361, 401, 441, 485, 529, 577, 625, 677, 729, 785, 841, 901, 961, 1025, 1089, 1157, 1225, 1297, 1369, 1445, 1521, 1601, 1681, 1765, 1849, 1937, 2025, 2117, 2209, 2305, 2401, 2501
Offset: 0

Views

Author

Paul Barry, Mar 19 2003

Keywords

Comments

Interleaves the odd squares A016754 with (1+4n^2), A053755.
Squares of positive integers (plus 1 if n is odd). - Wesley Ivan Hurt, Oct 10 2013
a(n) is the maximum total number of queens that can coexist without attacking each other on an [n+3] X [n+3] chessboard, when the lone queen is in the most vulnerable position on the board. Specifically, the lone queen will placed in any center position, facing an opponent's "army" of size a(n)-1 == A137932(n+2). - Bob Selcoe, Feb 12 2015
a(n) is also the edge chromatic number of the complement of the (n+2) X (n+2) rook graph. - Eric W. Weisstein, Jan 31 2024

Crossrefs

Sequences on the four axes of the square spiral: Starting at 0: A001107, A033991, A007742, A033954; starting at 1: A054552, A054556, A054567, A033951.
Sequences on the four diagonals of the square spiral: Starting at 0: A002939 = 2*A000384, A016742 = 4*A000290, A002943 = 2*A014105, A033996 = 8*A000217; starting at 1: A054554, A053755, A054569, A016754.
Sequences obtained by reading alternate terms on the X and Y axes and the two main diagonals of the square spiral: Starting at 0: A035608, A156859, A002378 = 2*A000217, A137932 = 4*A002620; starting at 1: A317186, A267682, A002061, A080335.

Programs

Formula

a(n) = (3 + 4*n + 2*n^2 - (-1)^n)/2.
a(2*n) = A016754(n), a(2*n+1) = A053755(n+1).
E.g.f.: exp(x)*(2 + 3*x + x^2) - cosh(x). The sequence 1,1,5,9,... is given by n^2+(1+(-1)^n)/2 with e.g.f. exp(1+x+x^2)*exp(x)-sinh(x). - Paul Barry, Sep 02 2003 and Sep 19 2003
a(0)=1, a(1)=5, a(2)=9, a(3)=17, a(n) = 2*a(n-1) - 2*a(n-3) + a(n-4). - Harvey P. Dale, Jan 29 2012
a(n)+(-1)^n = A137928(n+1). - Philippe Deléham, Feb 17 2012
G.f.: (1 + 3*x - x^2 + x^3)/((1-x)^3*(1+x)). - Colin Barker, Mar 18 2012
a(n) = A000035(n) + A000290(n+1). - Wesley Ivan Hurt, Oct 10 2013
From Bob Selcoe, Feb 12 2015: (Start)
a(n) = A137932(n+2) + 1.
a(n) = (n+1)^2 when n is even; a(n) = (n+1)^2 + 1 when n is odd.
a(n) = A002378(n+2) - A047238(n+3) + 1.
(End)
Sum_{n>=0} 1/a(n) = Pi*coth(Pi/2)/4 + Pi^2/8 - 1/2. - Amiram Eldar, Jul 07 2022

A137932 Terms in an n X n spiral that do not lie on its principal diagonals.

Original entry on oeis.org

0, 0, 0, 4, 8, 16, 24, 36, 48, 64, 80, 100, 120, 144, 168, 196, 224, 256, 288, 324, 360, 400, 440, 484, 528, 576, 624, 676, 728, 784, 840, 900, 960, 1024, 1088, 1156, 1224, 1296, 1368, 1444, 1520, 1600, 1680, 1764, 1848, 1936, 2024, 2116, 2208, 2304, 2400, 2500, 2600, 2704, 2808
Offset: 0

Views

Author

William A. Tedeschi, Feb 29 2008

Keywords

Comments

The count of terms not on the principal diagonals is always even.
The last digit is the repeating pattern 0,0,0,4,8,6,4,6,8,4, which is palindromic if the leading 0's are removed, 4864684.
The sum of the last digits is 40, which is the count of the pattern times 4.
A 4 X 4 spiral is the only spiral, aside from a 0 X 0, whose count of terms that do not lie on its principal diagonals equal the count of terms that do [A137932(4) = A042948(4)] making the 4 X 4 the "perfect spiral".
Yet another property is mod(a(n), A042948(n)) = 0 iff n is even. This is a large family that includes the 4 X 4 spiral.
a(n) is the maximum number of queens of one color that can coexist without attacking one queen of the opponent's color on an [n+1] X [n+1] chessboard, when the lone queen is in the most vulnerable position on the board, i.e., on a center square. - Bob Selcoe, Feb 12 2015
Also the circumference of the (n-1) X (n-1) grid graph for n > 2. - Eric W. Weisstein, Mar 25 2018
Also the crossing number of the complete bipartite graph K_{5,n}. - Eric W. Weisstein, Sep 11 2018

Examples

			a(0) = 0^2 - (2(0) - mod(0,2)) = 0.
a(3) = 3^2 - (2(3) - mod(3,2)) = 4.
		

Crossrefs

Cf. A042948.
Sequences on the four axes of the square spiral: Starting at 0: A001107, A033991, A007742, A033954; starting at 1: A054552, A054556, A054567, A033951.
Sequences on the four diagonals of the square spiral: Starting at 0: A002939 = 2*A000384, A016742 = 4*A000290, A002943 = 2*A014105, A033996 = 8*A000217; starting at 1: A054554, A053755, A054569, A016754.
Sequences obtained by reading alternate terms on the X and Y axes and the two main diagonals of the square spiral: Starting at 0: A035608, A156859, A002378 = 2*A000217, A137932 = 4*A002620; starting at 1: A317186, A267682, A002061, A080335.

Programs

Formula

a(n) = n^2 - (2*n - mod(n,2)) = n^2 - A042948(n).
a(n) = 2*A007590(n-1). - Enrique Pérez Herrero, Jul 04 2012
G.f.: -4*x^3 / ( (1+x)*(x-1)^3 ). a(n) = 4*A002620(n-1). - R. J. Mathar, Jul 06 2012
From Bob Selcoe, Feb 12 2015: (Start)
a(n) = (n-1)^2 when n is odd; a(n) = (n-1)^2 - 1 when n is even.
a(n) = A002378(n) - A047238(n+1). (End)
From Amiram Eldar, Mar 20 2022: (Start)
Sum_{n>=3} 1/a(n) = Pi^2/24 + 1/4.
Sum_{n>=3} (-1)^(n+1)/a(n) = Pi^2/24 - 1/4. (End)
E.g.f.: x*(x - 1)*cosh(x) + (x^2 - x + 1)*sinh(x). - Stefano Spezia, Oct 17 2022

A156859 The main column of a version of the square spiral.

Original entry on oeis.org

0, 3, 7, 14, 22, 33, 45, 60, 76, 95, 115, 138, 162, 189, 217, 248, 280, 315, 351, 390, 430, 473, 517, 564, 612, 663, 715, 770, 826, 885, 945, 1008, 1072, 1139, 1207, 1278, 1350, 1425, 1501, 1580, 1660, 1743, 1827, 1914, 2002, 2093, 2185, 2280, 2376, 2475, 2575
Offset: 0

Views

Author

Emilio Apricena (emilioapricena(AT)yahoo.it), Feb 17 2009

Keywords

Comments

This spiral is sometimes called an Ulam spiral, but square spiral is a better name. - N. J. A. Sloane, Jul 27 2018
It is easy to see that the only two primes in the sequence are 3, 7. Therefore the primes of the version of Ulam spiral are divided into four parts (see also A035608): northeast (NE), northwest (NW), southwest (SW), and southeast (SE).
Number of pairs (x,y) having x and y of opposite parity with x in {0,...,n} and y in {0,...,2n}. - Clark Kimberling, Jul 02 2012
Partial Sums of A014601(n). - Wesley Ivan Hurt, Oct 11 2013

Crossrefs

Cf. A000290, A000384, A004526, A014601 (first differences), A115258.
Sequences on the four axes of the square spiral: Starting at 0: A001107, A033991, A007742, A033954; starting at 1: A054552, A054556, A054567, A033951.
Sequences on the four diagonals of the square spiral: Starting at 0: A002939 = 2*A000384, A016742 = 4*A000290, A002943 = 2*A014105, A033996 = 8*A000217; starting at 1: A054554, A053755, A054569, A016754.
Sequences obtained by reading alternate terms on the X and Y axes and the two main diagonals of the square spiral: Starting at 0: A035608, A156859, A002378 = 2*A000217, A137932 = 4*A002620; starting at 1: A317186, A267682, A002061, A080335.

Programs

Formula

a(n) = n^2 + n + floor((n+1)/2) = A002378(n) + A004526(n+1) = A002620(n+1) + 3*A002620(n).
From R. J. Mathar, Feb 20 2009: (Start)
G.f.: x*(3+x)/((1+x)*(1-x)^3).
a(n) = 2*a(n-1) - 2*a(n-3) + a(n-4). (End)
a(n-1) = floor(n/(e^(1/n)-1)). - Richard R. Forberg, Jun 19 2013
a(n) = A000290(n+1) + A004526(-n-1). - Wesley Ivan Hurt, Jul 15 2013
a(n) + a(n+1) = A014105(n+1). - R. J. Mathar, Jul 15 2013
a(n) = floor(A000384(n+1)/2). - Bruno Berselli, Nov 11 2013
E.g.f.: (x*(5 + 2*x)*cosh(x) + (1 + 5*x + 2*x^2)*sinh(x))/2. - Stefano Spezia, Apr 24 2024
Sum_{n>=1} 1/a(n) = 4/9 + 2*log(2) - Pi/3. - Amiram Eldar, Apr 26 2024

Extensions

More terms added by Wesley Ivan Hurt, Oct 11 2013

A317186 One of many square spiral sequences: a(n) = n^2 + n - floor((n-1)/2).

Original entry on oeis.org

1, 2, 6, 11, 19, 28, 40, 53, 69, 86, 106, 127, 151, 176, 204, 233, 265, 298, 334, 371, 411, 452, 496, 541, 589, 638, 690, 743, 799, 856, 916, 977, 1041, 1106, 1174, 1243, 1315, 1388, 1464, 1541, 1621, 1702, 1786, 1871, 1959, 2048, 2140, 2233, 2329, 2426
Offset: 0

Views

Author

N. J. A. Sloane, Jul 27 2018

Keywords

Comments

Draw a square spiral on a piece of graph paper, and label the cells starting at the center with the positive (resp. nonnegative) numbers. This produces two versions of the labeled square spiral, shown in the Example section below.
The spiral may proceed clockwise or counterclockwise, and the first arm of the spiral may be along any of the four axes, so there are eight versions of each spiral. However, this has no effect on the resulting sequences, and it is enough to consider just two versions of the square spiral (starting at 1 or starting at 0).
The present sequence is obtained by reading alternate entries on the X-axis (say) of the square spiral started at 1.
The cross-references section lists many sequences that can be read directly off the two spirals. Many other sequences can be obtained from them by using them to extract subsequences from other important sequences. For example, the subsequence of primes indexed by the present sequence gives A317187.
a(n) is also the number of free polyominoes with n + 4 cells whose difference between length and width is n. In this comment the length is the longer of the two dimensions and the width is the shorter of the two dimensions (see the examples of polyominoes). Hence this is also the diagonal 4 of A379625. - Omar E. Pol, Jan 24 2025
From John Mason, Feb 19 2025: (Start)
The sequence enumerates polyominoes of width 2 having precisely 2 horizontal bars. By classifying such polyominoes according to the following templates, it is possible to define a formula that reduces to the one below:
.
OO O O
O OO OO
O O O
O O OO
OO OO O
.
(End)

Examples

			The square spiral when started with 1 begins:
.
  100--99--98--97--96--95--94--93--92--91
                                        |
   65--64--63--62--61--60--59--58--57  90
    |                               |   |
   66  37--36--35--34--33--32--31  56  89
    |   |                       |   |   |
   67  38  17--16--15--14--13  30  55  88
    |   |   |               |   |   |   |
   68  39  18   5---4---3  12  29  54  87
    |   |   |   |       |   |   |   |   |
   69  40  19   6   1---2  11  28  53  86
    |   |   |   |           |   |   |   |
   70  41  20   7---8---9--10  27  52  85
    |   |   |                   |   |   |
   71  42  21--22--23--24--25--26  51  84
    |   |                           |   |
   72  43--44--45--46--47--48--49--50  83
    |                                   |
   73--74--75--76--77--78--79--80--81--82
.
For the square spiral when started with 0, subtract 1 from each entry. In the following diagram this spiral has been reflected and rotated, but of course that makes no difference to the sequences:
.
   99  64--65--66--67--68--69--70--71--72
    |   |                               |
   98  63  36--37--38--39--40--41--42  73
    |   |   |                       |   |
   97  62  35  16--17--18--19--20  43  74
    |   |   |   |               |   |   |
   96  61  34  15   4---5---6  21  44  75
    |   |   |   |   |       |   |   |   |
   95  60  33  14   3   0   7  22  45  76
    |   |   |   |   |   |   |   |   |   |
   94  59  32  13   2---1   8  23  46  77
    |   |   |   |           |   |   |   |
   93  58  31  12--11--10---9  24  47  78
    |   |   |                   |   |   |
   92  57  30--29--28--27--26--25  48  79
    |   |                           |   |
   91  56--55--54--53--52--51--50--49  80
    |                                   |
   90--89--88--87--86--85--84--83--82--81
.
From _Omar E. Pol_, Jan 24 2025: (Start)
For n = 0 there is only one free polyomino with 0 + 4 = 4 cells whose difference between length and width is 0 as shown below, so a(0) = 1.
   _ _
  |_|_|
  |_|_|
.
For n = 1 there are two free polyominoes with 1 + 4 = 5 cells whose difference between length and width is 1 as shown below, so a(1) = 2.
   _ _     _ _
  |_|_|   |_|_|
  |_|_|   |_|_
  |_|     |_|_|
.
(End)
		

Crossrefs

Sequences on the four axes of the square spiral: Starting at 0: A001107, A033991, A007742, A033954; starting at 1: A054552, A054556, A054567, A033951.
Sequences on the four diagonals of the square spiral: Starting at 0: A002939 = 2*A000384, A016742 = 4*A000290, A002943 = 2*A014105, A033996 = 8*A000217; starting at 1: A054554, A053755, A054569, A016754.
Sequences obtained by reading alternate terms on the X and Y axes and the two main diagonals of the square spiral: Starting at 0: A035608, A156859, A002378 = 2*A000217, A137932 = 4*A002620; starting at 1: A317186, A267682, A002061, A080335.
Filling in these two squares spirals with greedy algorithm: A274640, A274641.
Cf. also A317187.

Programs

  • Mathematica
    a[n_] := n^2 + n - Floor[(n - 1)/2]; Array[a, 50, 0] (* Robert G. Wilson v, Aug 01 2018 *)
    LinearRecurrence[{2, 0, -2 , 1},{1, 2, 6, 11},50] (* or *)
    CoefficientList[Series[(- x^3 - 2 * x^2 - 1) / ((x - 1)^3 * (x + 1)), {x, 0, 50}], x] (* Stefano Spezia, Sep 02 2018 *)

Formula

From Daniel Forgues, Aug 01 2018: (Start)
a(n) = (1/4) * (4 * n^2 + 2 * n + (-1)^n + 3), n >= 0.
a(0) = 1; a(n) = - a(n-1) + 2 * n^2 - n + 2, n >= 1.
a(0) = 1; a(1) = 2; a(2) = 6; a(3) = 11; a(n) = 2 * a(n-1) - 2 * a(n-3) + a(n-4), n >= 4.
G.f.: (- x^3 - 2 * x^2 - 1) / ((x - 1)^3 * (x + 1)). (End)
E.g.f.: ((2 + 3*x + 2*x^2)*cosh(x) + (1 + 3*x + 2*x^2)*sinh(x))/2. - Stefano Spezia, Apr 24 2024
a(n)+a(n+1)=A033816(n). - R. J. Mathar, Mar 21 2025
a(n)-a(n-1) = A042948(n), n>=1. - R. J. Mathar, Mar 21 2025

A000969 Expansion of g.f. (1 + x + 2*x^2)/((1 - x)^2*(1 - x^3)).

Original entry on oeis.org

1, 3, 7, 12, 18, 26, 35, 45, 57, 70, 84, 100, 117, 135, 155, 176, 198, 222, 247, 273, 301, 330, 360, 392, 425, 459, 495, 532, 570, 610, 651, 693, 737, 782, 828, 876, 925, 975, 1027, 1080, 1134, 1190, 1247, 1305, 1365, 1426, 1488, 1552, 1617, 1683, 1751, 1820, 1890
Offset: 0

Views

Author

Keywords

Comments

From Paul Curtz, Oct 07 2018: (Start)
Terms that are on the x-axis of the following spiral (without 0):
28--29--29--30--31--31--32
|
27 13--14--15--15--16--17
| | |
27 13 4---5---5---6 17
| | | | |
26 12 3 0---1 7 18
| | | | | |
25 11 3---2---1 7 19
| | | |
25 11--10---9---9---8 19
| |
24--23--23--22--21--21--20 (End)
Diagonal 1, 4, 8, 13, 20, 28, ... (without 0) is A143978. - Bruno Berselli, Oct 08 2018

References

  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A004773 (first differences), A092498 (partial sums).

Programs

  • Haskell
    a000969 = flip div 3 . a014105 . (+ 1)  -- Reinhard Zumkeller, Jun 23 2015
    
  • Magma
    [Floor(Binomial(2*n+3,2)/3): n in [0..60]]; // G. C. Greubel, Apr 18 2023
    
  • Maple
    A000969:=-(1+z+2*z**2)/(z**2+z+1)/(z-1)**3; # Simon Plouffe in his 1992 dissertation
  • Mathematica
    f[x_, y_]:= Floor[Abs[y/x -x/y]]; Table[f[3, 2n^2+n+2], {n,53}] (* Robert G. Wilson v, Aug 11 2010 *)
    CoefficientList[Series[(1+x+2*x^2)/((1-x)^2*(1-x^3)), {x, 0, 50}], x] (* Stefano Spezia, Oct 08 2018 *)
  • PARI
    a(n)=([0,1,0,0,0; 0,0,1,0,0; 0,0,0,1,0; 0,0,0,0,1; 1,-2,1,-1,2]^n*[1;3;7;12;18])[1,1] \\ Charles R Greathouse IV, May 10 2016
    
  • SageMath
    [(binomial(2*n+3,2)//3) for n in range(61)] # G. C. Greubel, Apr 18 2023

Formula

a(n) = floor( (2*n+3)*(n+1)/3 ). Or, a(n) = (2*n+3)*(n+1)/3 but subtract 1/3 if n == 1 mod 3. - N. J. A. Sloane, May 05 2010
a(2^k-2) = A139250(2^k-1), k >= 1. - Omar E. Pol, Feb 13 2010
a(n) = Sum_{i=0..n} floor(4*i/3). - Enrique Pérez Herrero, Apr 21 2012
a(n) = +2*a(n-1) -1*a(n-2) +1*a(n-3) -2*a(n-4) +1*a(n-5). - Joerg Arndt, Apr 22 2012
a(n) = A014105(n+1) = A258708(n+3,n). - Reinhard Zumkeller, Jun 23 2015
Sum_{n>=0} 1/a(n) = 6 - Pi/sqrt(3) - 10*log(2)/3. - Amiram Eldar, Oct 01 2022
E.g.f.: (exp(x)*(8 + 21*x + 6*x^2) + exp(-x/2)*(cos(sqrt(3)*x/2) - sqrt(3)*sin(sqrt(3)*x/2)))/9. - Stefano Spezia, Apr 05 2023

A267682 a(n) = 2*a(n-1) - 2*a(n-3) + a(n-4) for n > 3, with initial terms 1, 1, 4, 8.

Original entry on oeis.org

1, 1, 4, 8, 15, 23, 34, 46, 61, 77, 96, 116, 139, 163, 190, 218, 249, 281, 316, 352, 391, 431, 474, 518, 565, 613, 664, 716, 771, 827, 886, 946, 1009, 1073, 1140, 1208, 1279, 1351, 1426, 1502, 1581, 1661, 1744, 1828, 1915, 2003, 2094, 2186, 2281, 2377, 2476
Offset: 0

Views

Author

Robert Price, Jan 19 2016

Keywords

Comments

Also, total number of ON (black) cells after n iterations of the "Rule 201" elementary cellular automaton starting with a single ON (black) cell.

References

  • S. Wolfram, A New Kind of Science, Wolfram Media, 2002; p. 55.

Crossrefs

Cf. A267679.
Sequences on the four axes of the square spiral: Starting at 0: A001107, A033991, A007742, A033954; starting at 1: A054552, A054556, A054567, A033951.
Sequences on the four diagonals of the square spiral: Starting at 0: A002939 = 2*A000384, A016742 = 4*A000290, A002943 = 2*A014105, A033996 = 8*A000217; starting at 1: A054554, A053755, A054569, A016754.
Sequences obtained by reading alternate terms on the X and Y axes and the two main diagonals of the square spiral: Starting at 0: A035608, A156859, A002378 = 2*A000217, A137932 = 4*A002620; starting at 1: A317186, A267682, A002061, A080335.

Programs

  • Mathematica
    rule=201; rows=20; ca=CellularAutomaton[rule,{{1},0},rows-1,{All,All}]; (* Start with single black cell *) catri=Table[Take[ca[[k]],{rows-k+1,rows+k-1}],{k,1,rows}]; (* Truncated list of each row *) nbc=Table[Total[catri[[k]]],{k,1,rows}]; (* Number of Black cells in stage n *) Table[Total[Take[nbc,k]],{k,1,rows}] (* Number of Black cells through stage n *)
    LinearRecurrence[{2, 0, -2, 1}, {1, 1, 4, 8}, 60] (* Vincenzo Librandi, Jan 19 2016 *)
  • PARI
    Vec((1-x+2*x^2+2*x^3)/((1-x)^3*(1+x)) + O(x^100)) \\ Colin Barker, Jan 19 2016
    
  • Python
    print([n*(n-1)+n//2+1 for n in range(51)]) # Karl V. Keller, Jr., Jul 14 2021

Formula

G.f.: (1 - x + 2*x^2 + 2*x^3) / ((1-x)^3*(1+x)). - Colin Barker, Jan 19 2016
a(n) = n*(n-1) + floor(n/2) + 1. - Karl V. Keller, Jr., Jul 14 2021
E.g.f.: (exp(x)*(2 + x + 2*x^2) - sinh(x))/2. - Stefano Spezia, Jul 16 2021

Extensions

Edited by N. J. A. Sloane, Jul 25 2018, replacing definition with simpler formula provided by Colin Barker, Jan 19 2016.

A093353 a(n) = (n + (n mod 2))*(n + 1)/2.

Original entry on oeis.org

0, 2, 3, 8, 10, 18, 21, 32, 36, 50, 55, 72, 78, 98, 105, 128, 136, 162, 171, 200, 210, 242, 253, 288, 300, 338, 351, 392, 406, 450, 465, 512, 528, 578, 595, 648, 666, 722, 741, 800, 820, 882, 903, 968, 990, 1058, 1081, 1152, 1176, 1250, 1275, 1352, 1378, 1458
Offset: 0

Views

Author

Reinhard Zumkeller, Apr 27 2004

Keywords

Comments

Partial sums of A014682. - Paul Barry, Mar 31 2008
a(n) is the sum of all parts in the integer partitions of n+1 into two parts, see example. - Wesley Ivan Hurt, Jan 26 2013
Also the independence number of the n X n torus grid graph. - Eric W. Weisstein, Sep 06 2017
Also the number of circles we can draw on vertices of an (n+1)-sided regular polygon (using only a compass). - Matej Veselovac, Jan 21 2020

Examples

			a(1) = 2 since 2 = (1+1) and the sum of the first and second parts in the partition is 2; a(2) = 3 since 3 = (1+2) and the sum of these parts is 3; a(3) = 8 since 4 = (1+3) = (2+2) and the sum of all the parts is 8. - _Wesley Ivan Hurt_, Jan 26 2013
		

References

  • W. R. Hare, S. T. Hedetniemi, R. Laskar, and J. Pfaff, Complete coloring parameters of graphs, Proceedings of the sixteenth Southeastern international conference on combinatorics, graph theory and computing (Boca Raton, Fla., 1985). Congr. Numer., Vol. 48 (1985), pp. 171-178. MR0830709 (87h:05088). See s_m on page 135. - N. J. A. Sloane, Apr 06 2012

Crossrefs

Programs

  • Magma
    [(n+1)*(2*n+1-(-1)^n)/4: n in [0..60]]; // Vincenzo Librandi, Jan 23 2020
    
  • Maple
    a:= n-> (n+1)*floor((n+1)/2); seq(a(n), n = 0..70);
  • Mathematica
    (* Contributions from Harvey P. Dale, Nov 15 2013: Start *)
    Table[(n+Mod[n,2])*(n+1)/2,{n,0,60}]
    LinearRecurrence[{1,2,-2,-1,1},{0,2,3,8,10},60]
    Join[{0},Module[{nn = 60, ab}, ab = Transpose[ Partition[ Accumulate[ Range[nn]], 2]]; Flatten[ Transpose[ {ab[[1]] + Range[nn/2], ab[[2]]}]]]]
    (* End *)
  • PARI
    a(n)=(n+1)\2*(n+1) \\ Charles R Greathouse IV, Jun 11 2015
    
  • SageMath
    [(n+1)*int((n+1)//2) for n in range(0,71)] # G. C. Greubel, Mar 14 2024

Formula

a(2*n) = a(2*n-1) + n = A014105(n).
a(2*n+1) = a(2*n) + 3*n + 2 = A001105(n+1).
G.f.: x*(2+x+x^2)/((1-x)^3*(1+x)^2).
a(n) = (n+1)*(2*n+1-(-1)^n)/4. - Paul Barry, Mar 31 2008
a(n) = (n+1)*floor((n+1)/2). - Wesley Ivan Hurt, Jan 26 2013
a(n) = Sum_{i=1..floor((n+1)/2)} i + Sum_{i=ceiling((n+1)/2)..n} i. - Wesley Ivan Hurt, Jun 08 2013
From Amiram Eldar, Mar 10 2022: (Start)
Sum_{n>=1} 1/a(n) = Pi^2/12 + 2*(1-log(2)) = A072691 + A188859.
Sum_{n>=1} (-1)^(n+1)/a(n) = Pi^2/12 - 2*(1-log(2)) = A072691 - A188859. (End)
E.g.f.: (x*(3 + x)*cosh(x) + (1 + x)^2*sinh(x))/2. - Stefano Spezia, Nov 13 2024

Extensions

a(0)=0 prepended by Alois P. Heinz, Nov 13 2024

A303432 Number of ways to write n as a*(2*a-1) + b*(2*b-1) + 2^c + 2^d, where a,b,c,d are nonnegative integers with a <= b and c <= d.

Original entry on oeis.org

0, 1, 2, 3, 3, 3, 2, 3, 4, 5, 4, 4, 2, 3, 3, 4, 5, 7, 5, 5, 4, 4, 4, 7, 5, 4, 3, 2, 2, 4, 5, 7, 8, 7, 5, 7, 5, 7, 7, 7, 4, 4, 2, 3, 5, 7, 6, 9, 7, 6, 5, 6, 5, 7, 7, 3, 3, 3, 3, 5, 7, 7, 8, 7, 6, 8, 5, 8, 8, 8, 5, 7, 4, 6, 7, 9, 8, 9, 7, 8
Offset: 1

Views

Author

Zhi-Wei Sun, Apr 23 2018

Keywords

Comments

Conjecture 1: a(n) > 0 for all n > 1. In other words, any integer n > 1 can be written as the sum of two hexagonal numbers and two powers of 2.
Conjecture 2: Any integer n > 1 can be written as a*(2*a+1) + b*(2*b+1) + 2^c + 2^d with a,b,c,d nonnegative integers.
Conjecture 3: Each integer n > 1 can be written as a*(2*a-1) + b*(2*b+1) + 2^c + 2^d with a,b,c,d nonnegative integers.
All the three conjectures hold for n = 2..2*10^6. Note that either of them is stronger than the conjecture in A303233.
See also A303363, A303389 and A303401 for similar conjectures.

Examples

			a(2) = 1 with 2 = 0*(2*0-1) + 0*(2*0-1) + 2^0 + 2^0.
a(7) = 2 with 7 = 1*(2*1-1) + 1*(2*1-1) + 2^0 + 2^2 = 0*(2*0-1) + 1*(2*1-1) + 2^1 + 2^2.
		

Crossrefs

Programs

  • Mathematica
    SQ[n_]:=SQ[n]=IntegerQ[Sqrt[n]];
    HexQ[n_]:=HexQ[n]=SQ[8n+1]&&(n==0||Mod[Sqrt[8n+1]+1,4]==0);
    f[n_]:=f[n]=FactorInteger[n];
    g[n_]:=g[n]=Sum[Boole[Mod[Part[Part[f[n],i],1],4]==3&&Mod[Part[Part[f[n],i],2],2]==1],{i,1,Length[f[n]]}]==0;
    QQ[n_]:=QQ[n]=(n==0)||(n>0&&g[n]);
    tab={};Do[r=0;Do[If[QQ[4(n-2^j-2^k)+1],Do[If[HexQ[n-2^j-2^k-x(2x-1)],r=r+1],{x,0,(Sqrt[4(n-2^j-2^k)+1]+1)/4}]],{j,0,Log[2,n/2]},{k,j,Log[2,n-2^j]}];tab=Append[tab,r],{n,1,80}];Print[tab]

A033585 a(n) = 2*n*(4*n + 1).

Original entry on oeis.org

0, 10, 36, 78, 136, 210, 300, 406, 528, 666, 820, 990, 1176, 1378, 1596, 1830, 2080, 2346, 2628, 2926, 3240, 3570, 3916, 4278, 4656, 5050, 5460, 5886, 6328, 6786, 7260, 7750, 8256, 8778, 9316, 9870, 10440, 11026, 11628, 12246, 12880, 13530, 14196, 14878, 15576
Offset: 0

Views

Author

Keywords

Comments

If Y is a fixed 3-subset of a (4n+1)-set X then a(n) is the number of (4n-1)-subsets of X intersecting Y. - Milan Janjic, Oct 28 2007
Sequence found by reading the line from 0, in the direction 0, 10, ..., in the square spiral whose vertices are the triangular numbers A000217. - Omar E. Pol, Sep 03 2011

Crossrefs

Cf. A000217.

Programs

Formula

a(n) = 2*A007742(n).
a(n) = A000217(4*n) = A014105(2*n). - Reinhard Zumkeller, Sep 17 2008
a(n) = 16*n + a(n-1) - 6 with a(0) = 0. - Vincenzo Librandi, Aug 05 2010
a(n) = A005843(n)*A016813(n). - Omar E. Pol, Oct 31 2013
G.f.: -2*x*(5+3*x)/(x-1)^3 . - R. J. Mathar, Feb 06 2017
E.g.f.: (8*x^2 + 10*x)*exp(x). - G. C. Greubel, Jul 18 2017
From Amiram Eldar, Jul 22 2020: (Start)
Sum_{n>=1} 1/a(n) = 2 - Pi/4 - 3*log(2)/2.
Sum_{n>=1} (-1)^(n+1)/a(n) = sqrt(2)*Pi/4 + sqrt(2)*arcsinh(1)/2 + log(2)/2 - 2. (End)

A099174 Triangle read by rows: coefficients of modified Hermite polynomials.

Original entry on oeis.org

1, 0, 1, 1, 0, 1, 0, 3, 0, 1, 3, 0, 6, 0, 1, 0, 15, 0, 10, 0, 1, 15, 0, 45, 0, 15, 0, 1, 0, 105, 0, 105, 0, 21, 0, 1, 105, 0, 420, 0, 210, 0, 28, 0, 1, 0, 945, 0, 1260, 0, 378, 0, 36, 0, 1, 945, 0, 4725, 0, 3150, 0, 630, 0, 45, 0, 1, 0, 10395, 0, 17325, 0, 6930, 0, 990, 0, 55, 0, 1
Offset: 0

Views

Author

Ralf Stephan, on a suggestion of Karol A. Penson, Oct 13 2004

Keywords

Comments

Absolute values of A066325.
T(n,k) is the number of involutions of {1,2,...,n}, having k fixed points (0 <= k <= n). Example: T(4,2)=6 because we have 1243,1432,1324,4231,3214 and 2134. - Emeric Deutsch, Oct 14 2006
Riordan array [exp(x^2/2),x]. - Paul Barry, Nov 06 2008
Same as triangle of Bessel numbers of second kind, B(n,k) (see Cheon et al., 2013). - N. J. A. Sloane, Sep 03 2013
The modified Hermite polynomial h(n,x) (as in the Formula section) is the numerator of the rational function given by f(n,x) = x + (n-2)/f(n-1,x), where f(x,0) = 1. - Clark Kimberling, Oct 20 2014
Second lower diagonal T(n,n-2) equals positive triangular numbers A000217 \ {0}. - M. F. Hasler, Oct 23 2014
From James East, Aug 17 2015: (Start)
T(n,k) is the number of R-classes (equivalently, L-classes) in the D-class consisting of all rank k elements of the Brauer monoid of degree n.
For n < k with n == k (mod 2), T(n,k) is the rank (minimal size of a generating set) and idempotent rank (minimal size of an idempotent generating set) of the ideal consisting of all rank <= k elements of the Brauer monoid. (End)
This array provides the coefficients of a Laplace-dual sequence H(n,x) of the Dirac delta function, delta(x), and its derivatives, formed by taking the inverse Laplace transform of these modified Hermite polynomials. H(n,x) = h(n,D) delta(x) with h(n,x) as in the examples and the lowering and raising operators L = -x and R = -x + D = -x + d/dx such that L H(n,x) = n * H(n-1,x) and R H(n,x) = H(n+1,x). The e.g.f. is exp[t H(.,x)] = e^(t^2/2) e^(t D) delta(x) = e^(t^2/2) delta(x+t). - Tom Copeland, Oct 02 2016
Antidiagonals of this entry are rows of A001497. - Tom Copeland, Oct 04 2016
This triangle is the reverse of that in Table 2 on p. 7 of the Artioli et al. paper and Table 6.2 on p. 234 of Licciardi's thesis, with associations to the telephone numbers. - Tom Copeland, Jun 18 2018 and Jul 08 2018
See A344678 for connections to a Heisenberg-Weyl algebra of differential operators, matching and independent edge sets of the regular n-simplices with partially labeled vertices, and telephone switchboard scenarios. - Tom Copeland, Jun 02 2021

Examples

			h(0,x) = 1
h(1,x) = x
h(2,x) = x^2 + 1
h(3,x) = x^3 + 3*x
h(4,x) = x^4 + 6*x^2 + 3
h(5,x) = x^5 + 10*x^3 + 15*x
h(6,x) = x^6 + 15*x^4 + 45*x^2 + 15
From _Paul Barry_, Nov 06 2008: (Start)
Triangle begins
   1,
   0,  1,
   1,  0,  1,
   0,  3,  0,  1,
   3,  0,  6,  0,  1,
   0, 15,  0, 10,  0,  1,
  15,  0, 45,  0, 15,  0,  1
Production array starts
  0, 1,
  1, 0, 1,
  0, 2, 0, 1,
  0, 0, 3, 0, 1,
  0, 0, 0, 4, 0, 1,
  0, 0, 0, 0, 5, 0, 1 (End)
		

Crossrefs

Row sums (polynomial values at x=1) are A000085.
Polynomial values: A005425 (x=2), A202834 (x=3), A202879(x=4).
Cf. A137286.
Cf. A001497.

Programs

  • Maple
    T:=proc(n,k) if n-k mod 2 = 0 then n!/2^((n-k)/2)/((n-k)/2)!/k! else 0 fi end: for n from 0 to 12 do seq(T(n,k),k=0..n) od; # yields sequence in triangular form; Emeric Deutsch, Oct 14 2006
  • Mathematica
    nn=10;a=y x+x^2/2!;Range[0,nn]!CoefficientList[Series[Exp[a],{x,0,nn}],{x,y}]//Grid  (* Geoffrey Critzer, May 08 2012 *)
    H[0, x_] = 1; H[1, x_] := x; H[n_, x_] := H[n, x] = x*H[n-1, x]-(n-1)* H[n-2, x]; Table[CoefficientList[H[n, x], x], {n, 0, 11}] // Flatten // Abs (* Jean-François Alcover, May 23 2016 *)
    T[ n_, k_] := If[ n < 0, 0, Coefficient[HermiteH[n, x I/Sqrt[2]] (Sqrt[1/2]/I)^n, x, k]]; (* Michael Somos, May 10 2019 *)
  • PARI
    T(n,k)=if(k<=n && k==Mod(n,2), n!/k!/(k=(n-k)/2)!>>k) \\ M. F. Hasler, Oct 23 2014
    
  • Python
    import sympy
    from sympy import Poly
    from sympy.abc import x, y
    def H(n, x): return 1 if n==0 else x if n==1 else x*H(n - 1, x) - (n - 1)*H(n - 2, x)
    def a(n): return [abs(cf) for cf in Poly(H(n, x), x).all_coeffs()[::-1]]
    for n in range(21): print(a(n)) # Indranil Ghosh, May 26 2017
    
  • Python
    def Trow(n: int) -> list[int]:
        row: list[int] = [0] * (n + 1); row[n] = 1
        for k in range(n - 2, -1, -2):
            row[k] = (row[k + 2] * (k + 2) * (k + 1)) // (n - k)
        return row  # Peter Luschny, Jan 08 2023
  • Sage
    def A099174_triangle(dim):
        M = matrix(ZZ,dim,dim)
        for n in (0..dim-1): M[n,n] = 1
        for n in (1..dim-1):
            for k in (0..n-1):
                M[n,k] = M[n-1,k-1]+(k+1)*M[n-1,k+1]
        return M
    A099174_triangle(9)  # Peter Luschny, Oct 06 2012
    

Formula

h(k, x) = (-I/sqrt(2))^k * H(k, I*x/sqrt(2)), H(n, x) the Hermite polynomials (A060821, A059343).
T(n,k) = n!/(2^((n-k)/2)*((n-k)/2)!k!) if n-k >= 0 is even; 0 otherwise. - Emeric Deutsch, Oct 14 2006
G.f.: 1/(1-x*y-x^2/(1-x*y-2*x^2/(1-x*y-3*x^2/(1-x*y-4*x^2/(1-... (continued fraction). - Paul Barry, Apr 10 2009
E.g.f.: exp(y*x + x^2/2). - Geoffrey Critzer, May 08 2012
Recurrence: T(0,0)=1, T(0,k)=0 for k>0 and for n >= 1 T(n,k) = T(n-1,k-1) + (k+1)*T(n-1,k+1). - Peter Luschny, Oct 06 2012
T(n+2,n) = A000217(n+1), n >= 0. - M. F. Hasler, Oct 23 2014
The row polynomials P(n,x) = (a. + x)^n, umbrally evaluated with (a.)^n = a_n = aerated A001147, are an Appell sequence with dP(n,x)/dx = n * P(n-1,x). The umbral compositional inverses (cf. A001147) of these polynomials are given by the same polynomials signed, A066325. - Tom Copeland, Nov 15 2014
From Tom Copeland, Dec 13 2015: (Start)
The odd rows are (2x^2)^n x n! L(n,-1/(2x^2),1/2), and the even, (2x^2)^n n! L(n,-1/(2x^2),-1/2) in sequence with n= 0,1,2,... and L(n,x,a) = Sum_{k=0..n} binomial(n+a,k+a) (-x)^k/k!, the associated Laguerre polynomial of order a. The odd rows are related to A130757, and the even to A176230 and A176231. Other versions of this entry are A122848, A049403, A096713 and A104556, and reversed A100861, A144299, A111924. With each non-vanishing diagonal divided by its initial element A001147(n), this array becomes reversed, aerated A034839.
Create four shift and stretch matrices S1,S2,S3, and S4 with all elements zero except S1(2n,n) = 1 for n >= 1, S2(n,2n) = 1 for n >= 0, S3(2n+1,n) = 1 for n >= 1, and S4(n,2n+1) = 1 for n >= 0. Then this entry's lower triangular matrix is T = Id + S1 * (A176230-Id) * S2 + S3 * (unsigned A130757-Id) * S4 with Id the identity matrix. The sandwiched matrices have infinitesimal generators with the nonvanishing subdiagonals A000384(n>0) and A014105(n>0).
As an Appell sequence, the lowering and raising operators are L = D and R = x + dlog(exp(D^2/2))/dD = x + D, where D = d/dx, L h(n,x) = n h(n-1,x), and R h(n,x) = h(n+1,x), so R^n 1 = h(n,x). The fundamental moment sequence has the e.g.f. e^(t^2/2) with coefficients a(n) = aerated A001147, i.e., h(n,x) = (a. + x)^n, as noted above. The raising operator R as a matrix acting on o.g.f.s (formal power series) is the transpose of the production matrix P below, i.e., (1,x,x^2,...)(P^T)^n (1,0,0,...)^T = h(n,x).
For characterization as a Riordan array and associations to combinatorial structures, see the Barry link and the Yang and Qiao reference. For relations to projective modules, see the Sazdanovic link.
(End)
From the Appell formalism, e^(D^2/2) x^n = h_n(x), the n-th row polynomial listed below, and e^(-D^2/2) x^n = u_n(x), the n-th row polynomial of A066325. Then R = e^(D^2/2) * x * e^(-D^2/2) is another representation of the raising operator, implied by the umbral compositional inverse relation h_n(u.(x)) = x^n. - Tom Copeland, Oct 02 2016
h_n(x) = p_n(x-1), where p_n(x) are the polynomials of A111062, related to the telephone numbers A000085. - Tom Copeland, Jun 26 2018
From Tom Copeland, Jun 06 2021: (Start)
In the power basis x^n, the matrix infinitesimal generator M = A132440^2/2, when acting on a row vector for an o.g.f., is the matrix representation for the differential operator D^2/2.
e^{M} gives the coefficients of the Hermite polynomials of this entry.
The only nonvanishing subdiagonal of M, the second subdiagonal (1,3,6,10,...), gives, aside from the initial 0, the triangular numbers A000217, the number of edges of the n-dimensional simplices with (n+1) vertices. The perfect matchings of these simplices are the aerated odd double factorials A001147 noted above, the moments for the Hermite polynomials.
The polynomials are also generated from A036040 with x[1] = x, x[2] = 1, and the other indeterminates equal to zero. (End)
Previous Showing 41-50 of 203 results. Next