cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 47 results. Next

A051958 a(n) = 2*a(n-1) + 24*a(n-2), a(0)=0, a(1)=1.

Original entry on oeis.org

0, 1, 2, 28, 104, 880, 4256, 29632, 161408, 1033984, 5941760, 36699136, 216000512, 1312780288, 7809572864, 47125872640, 281681494016, 1694383931392, 10149123719168, 60963461791744, 365505892843520, 2194134868688896
Offset: 0

Views

Author

Barry E. Williams, Jan 04 2000

Keywords

Crossrefs

Programs

Formula

G.f.: x/((1+4*x)*(1-6*x)).
a(n) = (6^n - (-4)^n)/10.
a(n) = 2^(n-1)*A015441(n).
a(n+1) = Sum_{k = 0..n} A238801(n,k)*5^k. - Philippe Deléham, Mar 07 2014
Limit_{n -> oo} a(n+1)/a(n) = 6. - Felix P. Muga II, Mar 10 2014
E.g.f.: (1/10)*(exp(6*x) - exp(-4*x)). - G. C. Greubel, Nov 11 2024

A122117 a(n) = 3*a(n-1) + 4*a(n-2), with a(0)=1, a(1)=2.

Original entry on oeis.org

1, 2, 10, 38, 154, 614, 2458, 9830, 39322, 157286, 629146, 2516582, 10066330, 40265318, 161061274, 644245094, 2576980378, 10307921510, 41231686042, 164926744166, 659706976666, 2638827906662, 10555311626650, 42221246506598
Offset: 0

Views

Author

Philippe Deléham, Oct 19 2006

Keywords

Comments

Inverse binomial transform of A005053. Binomial transform of [1, 1, 7, 13, 55, ...] = A015441(n+1).
Convolved with [1, 2, 2, 2, ...] = powers of 4: [1, 4, 16, 64, ...]. - Gary W. Adamson, Jun 02 2009
a(n) is the number of compositions of n when there are 2 types of 1 and 6 types of other natural numbers. - Milan Janjic, Aug 13 2010

Crossrefs

Programs

  • GAP
    a:=[1,2];; for n in [3..30] do a[n]:=3*a[n-1]+4*a[n-2]; od; a; # G. C. Greubel, May 18 2019
    
  • Magma
    I:=[1, 2]; [n le 2 select I[n] else 3*Self(n-1)+4*Self(n-2): n in [1..30]]; // Vincenzo Librandi, Jul 06 2012
    
  • Mathematica
    CoefficientList[Series[(1-x)/(1-3*x-4*x^2),{x,0,30}],x] (* Vincenzo Librandi, Jul 06 2012 *)
  • PARI
    Vec((1-x)/(1-3*x-4*x^2)+O(x^30)) \\ Charles R Greathouse IV, Jan 11 2012
    
  • Python
    def A122117(n): return ((4<<(m:=n<<1))|2)//5-((1<Chai Wah Wu, Apr 22 2025
  • Sage
    from sage.combinat.sloane_functions import recur_gen2b; it = recur_gen2b(1,2,3,4, lambda n: 0); [next(it) for i in range(24)] # Zerinvary Lajos, Jul 03 2008
    
  • Sage
    ((1-x)/(1-3*x-4*x^2)).series(x, 30).coefficients(x, sparse=False) # G. C. Greubel, May 18 2019
    

Formula

a(n) = 2*A108981(n-1) for n > 0, with a(0) = 1.
a(2*n) = 4*a(2*n-1) + 2, a(2*n+1) = 4*a(2*n) - 2.
a(n) = Sum_{k=0..n} 2^(n-k)*A055380(n,k).
G.f.: (1-x)/(1-3*x-4*x^2).
Lim_{n->infinity} a(n+1)/a(n) = 4.
a(n) = Sum_{k=0..n} A122016(n,k)*2^k. - Philippe Deléham, Nov 05 2008
a(n) = A100088(2*n). - Chai Wah Wu, Apr 22 2025

Extensions

Corrected by T. D. Noe, Nov 07 2006

A079773 a(n) = 2*a(n-1)+15*a(n-2) with n>0, a(0)=0, a(1)=1.

Original entry on oeis.org

0, 1, 2, 19, 68, 421, 1862, 10039, 48008, 246601, 1213322, 6125659, 30451148, 152787181, 762341582, 3816490879, 19068105488, 95383574161, 476788730642, 2384331073699, 11920493107028, 59605952319541, 298019301244502
Offset: 0

Views

Author

Paul Barry, Feb 20 2003

Keywords

References

  • F. P. Muga II, Extending the Golden Ratio and the Binet-de Moivre Formula, March 2014; Preprint on ResearchGate.

Crossrefs

Programs

Formula

G.f.: x/((1+3*x)*(1-5*x)).
a(n) = (5^n-(-3)^n)/8.
a(n) = sum(k=1..n, binomial(n, 2*k-1)*4^(2*(k-1))).
E.g.f.: exp(x)*sinh(4*x)/4. - Paul Barry, Jul 09 2003
a(n+1) = Sum_{k = 0..n} A238801(n,k)*4^k. - Philippe Deléham, Mar 07 2014

A135030 Generalized Fibonacci numbers: a(n) = 6*a(n-1) + 2*a(n-2).

Original entry on oeis.org

0, 1, 6, 38, 240, 1516, 9576, 60488, 382080, 2413456, 15244896, 96296288, 608267520, 3842197696, 24269721216, 153302722688, 968355778560, 6116740116736, 38637152257536, 244056393778688, 1541612667187200
Offset: 0

Views

Author

Rolf Pleisch, Feb 10 2008, Feb 14 2008

Keywords

Comments

For n>0, a(n) equals the number of words of length n-1 over {0,1,...,7} in which 0 and 1 avoid runs of odd lengths. - Milan Janjic, Jan 08 2017

Crossrefs

Programs

  • Magma
    [n le 2 select n-1 else 6*Self(n-1) + 2*Self(n-2): n in [1..35]]; // Vincenzo Librandi, Sep 18 2016
    
  • Maple
    A:= gfun:-rectoproc({a(0) = 0, a(1) = 1, a(n) = 2*(3*a(n-1) + a(n-2))},a(n),remember):
    seq(A(n),n=1..30); # Robert Israel, Sep 16 2014
  • Mathematica
    Join[{a=0,b=1},Table[c=6*b+2*a;a=b;b=c,{n,100}]] (* Vladimir Joseph Stephan Orlovsky, Jan 16 2011 *)
    LinearRecurrence[{6,2},{0,1},30] (* or *) CoefficientList[Series[ -(x/(2x^2+6x-1)),{x,0,30}],x] (* Harvey P. Dale, Jun 20 2011 *)
  • PARI
    a(n)=([0,1; 2,6]^n*[0;1])[1,1] \\ Charles R Greathouse IV, Oct 03 2016
  • Sage
    [lucas_number1(n,6,-2) for n in range(0, 21)] # Zerinvary Lajos, Apr 24 2009
    

Formula

a(0) = 0; a(1) = 1; a(n) = 2*(3*a(n-1) + a(n-2)).
a(n) = 1/(2*sqrt(11))*( (3 + sqrt(11))^n - (3 - sqrt(11))^n ).
G.f.: x/(1 - 6*x - 2*x^2). - Harvey P. Dale, Jun 20 2011
a(n+1) = Sum_{k=0..n} A099097(n,k)*2^k. - Philippe Deléham, Sep 16 2014
E.g.f.: (1/sqrt(11))*exp(3*x)*sinh(sqrt(11)*x). - G. C. Greubel, Sep 17 2016

Extensions

More terms from Joshua Zucker, Feb 23 2008

A053428 a(n) = a(n-1) + 20*a(n-2), n >= 2; a(0)=1, a(1)=1.

Original entry on oeis.org

1, 1, 21, 41, 461, 1281, 10501, 36121, 246141, 968561, 5891381, 25262601, 143090221, 648342241, 3510146661, 16476991481, 86679924701, 416219754321, 2149818248341, 10474213334761, 53470578301581, 262954844996801
Offset: 0

Views

Author

Barry E. Williams, Jan 10 2000

Keywords

Comments

Hankel transform is 1,20,0,0,0,0,0,0,0,0,0,0,... - Philippe Deléham, Nov 02 2008
Zero followed by this sequence gives the inverse binomial transform of A080424. - Paul Curtz, Jun 07 2011

References

  • A. H. Beiler, Recreations in the Theory of Numbers, Dover, N.Y., 1964, pp. 194-196.

Crossrefs

Programs

Formula

a(n) = ((5^(n+1)) - (-4)^(n+1))/9.
G.f.: 1/((1+4*x)*(1-5*x)). - R. J. Mathar, Nov 16 2007

Extensions

More terms from James Sellers, Feb 02 2000

A081297 Array T(k,n), read by antidiagonals: T(k,n) = ((k+1)^(n+1)-(-k)^(n+1))/(2k+1).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 7, 5, 1, 1, 1, 13, 13, 11, 1, 1, 1, 21, 25, 55, 21, 1, 1, 1, 31, 41, 181, 133, 43, 1, 1, 1, 43, 61, 461, 481, 463, 85, 1, 1, 1, 57, 85, 991, 1281, 2653, 1261, 171, 1, 1, 1, 73, 113, 1891, 2821, 10501, 8425, 4039, 341, 1, 1, 1, 91, 145, 3305
Offset: 0

Views

Author

Paul Barry, Mar 17 2003

Keywords

Comments

Square array of solutions of a family of recurrences.
Rows of the array give solutions to the recurrences a(n)=a(n-1)+k(k-1)a(n-2), a(0)=a(1)=1.
Subarray of array in A072024. - Philippe Deléham, Nov 24 2013

Examples

			Rows begin
  1, 1,  1,  1,   1,    1, ...
  1, 1,  3,  5,  11,   21, ...
  1, 1,  7, 13,  55,  133, ...
  1, 1, 13, 25, 181,  481, ...
  1, 1, 21, 41, 461, 1281, ...
		

Crossrefs

Columns include A002061, A001844, A072025.
Diagonals include A081298, A081299, A081300, A081301, A081302.

Programs

  • Mathematica
    T[n_, k_]:=((n + 1)^(k + 1) - (-n)^(k + 1)) / (2n + 1); Flatten[Table[T[n - k, k], {n, 0, 10}, {k, 0, n}]] (* Indranil Ghosh, Mar 27 2017 *)
  • PARI
    for(k=0, 10, for(n=0, 9, print1(((k+1)^(n+1)-(-k)^(n+1))/(2*k+1), ", "); ); print(); ) \\ Andrew Howroyd, Mar 26 2017
    
  • Python
    def T(n, k): return ((n + 1)**(k + 1) - (-n)**(k + 1)) // (2*n + 1)
    for n in range(11):
        print([T(n - k, k) for k in range(n + 1)]) # Indranil Ghosh, Mar 27 2017

Formula

T(k, n) = ((k+1)^(n+1)-(-k)^(n+1))/(2k+1).
Rows of the array have g.f. 1/((1+kx)(1-(k+1)x)).

Extensions

Name clarified by Andrew Howroyd, Mar 27 2017

A083856 Square array T(n,k) of generalized Fibonacci numbers, read by antidiagonals upwards (n, k >= 0).

Original entry on oeis.org

0, 0, 1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 1, 2, 1, 0, 1, 1, 3, 3, 1, 0, 1, 1, 4, 5, 5, 1, 0, 1, 1, 5, 7, 11, 8, 1, 0, 1, 1, 6, 9, 19, 21, 13, 1, 0, 1, 1, 7, 11, 29, 40, 43, 21, 1, 0, 1, 1, 8, 13, 41, 65, 97, 85, 34, 1, 0, 1, 1, 9, 15, 55, 96, 181, 217, 171, 55, 1
Offset: 0

Views

Author

Paul Barry, May 06 2003

Keywords

Comments

Row n >= 0 of the array gives the solution to the recurrence b(k) = b(k-1) + n*b(k-2) for k >= 2 with b(0) = 0 and b(1) = 1.

Examples

			Array T(n,k) (with rows n >= 0 and columns k >= 0) begins as follows:
  0, 1, 1,  1,  1,   1,   1,    1,    1,     1, ... [A057427]
  0, 1, 1,  2,  3,   5,   8,   13,   21,    34, ... [A000045]
  0, 1, 1,  3,  5,  11,  21,   43,   85,   171, ... [A001045]
  0, 1, 1,  4,  7,  19,  40,   97,  217,   508, ... [A006130]
  0, 1, 1,  5,  9,  29,  65,  181,  441,  1165, ... [A006131]
  0, 1, 1,  6, 11,  41,  96,  301,  781,  2286, ... [A015440]
  0, 1, 1,  7, 13,  55, 133,  463, 1261,  4039, ... [A015441]
  0, 1, 1,  8, 15,  71, 176,  673, 1905,  6616, ... [A015442]
  0, 1, 1,  9, 17,  89, 225,  937, 2737, 10233, ... [A015443]
  0, 1, 1, 10, 19, 109, 280, 1261, 3781, 15130, ... [A015445]
  ...
		

Crossrefs

Rows include A057427 (n=0), A000045 (n=1), A001045 (n=2), A006130 (n=3), A006131 (n=4), A015440 (n=5), A015441 (n=6), A015442 (n=7), A015443 (n=8), A015445 (n=9).
Columns include A000012 (k=1,2), A000027 (k=3), A005408 (k=4), A028387 (k=5), A000567 (k=6), A106734 (k=7).
Cf. A083857 (binomial transform), A083859 (main diagonal), A083860 (first subdiagonal), A083861 (second binomial transform), A110112, A110113 (diagonal sums), A193376 (transposed variant), A172237 (transposed variant).

Programs

  • Julia
    function generalized_fibonacci(r, n)
       F = BigInt[1 r; 1 0]
       Fn = F^n
       Fn[2, 1]
    end
    for r in 0:6 println([generalized_fibonacci(r, n) for n in 0:9]) end # Peter Luschny, Mar 06 2017
  • Maple
    A083856_row := proc(r, n) local R; R := proc(n) option remember;
    if n<=1 then n else R(n-1)+r*R(n-2) fi end: R(n) end:
    for r from 0 to 9 do seq(A083856_row(r, n), n=0..9) od; # Peter Luschny, Mar 06 2017
  • Mathematica
    T[, 0] = 0; T[, 1|2] = 1; T[n_, k_] := T[n, k] = T[n, k-1] + n T[n, k-2];
    Table[T[n-k, k], {n, 0, 11}, {k, 0, n}] // Flatten (* Jean-François Alcover, Jun 22 2018 *)

Formula

T(n, k) = (((1 + sqrt(4*n + 1))/2)^k - ((1 - sqrt(4*n + 1))/2)^k)/sqrt(4*n + 1). [corrected by Michel Marcus, Jun 25 2018]
From Thomas Baruchel, Jun 25 2018: (Start)
The g.f. for row n >= 0 is x/(1 - x - n*x^2).
The g.f. for column k >= 1 is g(k,x) = 1/(1-x) + Sum_{m = 1..floor((k-1)/2)} (1 - x)^(-1 - m) * binomial(k - 1 - m, m) * Sum_{i = 0..m} x^i * Sum_{j = 0..i} (-1)^j * (i - j)^m * binomial(1 + m, j).
The g.f. for column k >= 1 is also g(k,x) = 1 + Sum_{m = 1..floor((k+1)/2)} ((1 - x)^(-m) * binomial(k-m, m-1) * Sum_{j = 0..m} (-1)^j * binomial(m, j) * x^m * Phi(x, -m+1, -j+m)) + Sum_{s = 0..floor((k-1)/2)} binomial(k-s-1, s) * PolyLog(-s, x), where Phi is the Lerch transcendent function. (End)
T(n,k) = Sum_{i = 0..k} (-1)^(k+i) * binomial(k,i) * A083857(n,i). - Petros Hadjicostas, Dec 24 2019

Extensions

Various sections edited by Petros Hadjicostas, Dec 24 2019

A096951 Sum of odd powers of 2 and of 3 divided by 5.

Original entry on oeis.org

1, 7, 55, 463, 4039, 35839, 320503, 2876335, 25854247, 232557151, 2092490071, 18830313487, 169464432775, 1525146340543, 13726182847159, 123535108753519, 1111813831298023, 10006315891747615, 90056808665990167, 810511140554958031, 7294599715238808391
Offset: 0

Views

Author

Wolfdieter Lang, Jul 16 2004

Keywords

Comments

Sequence appears in A096952 (upper bounds for Lagrange remainder in Taylor expansion of log((1+x)/(1-x)) for x=1/3, i.e., for log(2)).
Divisibility of 2^(2*n+1) + 3^(2*n+1) by 5 is proved by induction.
The sequence a(n+1), with g.f. (7-36*x)/(1-13*x+36*x^2) and formula (27*9^n + 8*4^n)/5, is the Hankel transform of C(n) + 6*C(n+1), where C(n) is A000108(n). - Paul Barry, Dec 06 2006

Crossrefs

Cf. A074614 (sum of even powers of 2 and of 3), A007689 (sum of powers of 2 and powers of 3).

Programs

  • Magma
    [(2^(2*n+1) + 3^(2*n+1))/5: n in [0..30]]; // Vincenzo Librandi, May 31 2011
  • Mathematica
    LinearRecurrence[{13, -36},{1, 7},19] (* Ray Chandler, Jul 14 2017 *)

Formula

a(n) = (2^(2*n+1) + 3^(2*n+1))/5.
G.f.: (1-6*x)/((1-4*x)*(1-9*x)).
From Reinhard Zumkeller, Mar 07 2008: (Start)
a(n+1) = 4*a(n) + 3^(2*n+1), a(0) = 1.
a(n) = A138233(n)/5. (End)
From Elmo R. Oliveira, Aug 02 2025: (Start)
E.g.f.: exp(4*x)*(2 + 3*exp(5*x))/5.
a(n) = 13*a(n-1) - 36*a(n-2).
a(n) = A015441(2*n+1). (End)

A102901 a(n) = a(n-1) + 6*a(n-2), a(0)=1, a(1)=0.

Original entry on oeis.org

1, 0, 6, 6, 42, 78, 330, 798, 2778, 7566, 24234, 69630, 215034, 632814, 1923018, 5719902, 17258010, 51577422, 155125482, 464590014, 1395342906, 4182882990, 12554940426, 37652238366, 112981880922, 338895311118, 1016786596650
Offset: 0

Views

Author

Paul Barry, Jan 17 2005

Keywords

Comments

Binomial transform is A102900.
Hankel transform is = 1,6,0,0,0,0,0,0,0,0,0,0,... - Philippe Deléham, Nov 02 2008

Examples

			a(6) = 330; (2*3^6 + 3*(-2)^6)/5 = (1458 + 192)/5 = 330.
		

References

  • Maria Paola Bonacina and Nachum Dershowitz, Canonical Inference for Implicational Systems, in Automated Reasoning, Lecture Notes in Computer Science, Volume 5195/2008, Springer-Verlag.

Crossrefs

Programs

Formula

G.f.: (1-x)/((1+2*x)*(1-3*x)).
a(n) = (2*3^n + 3*(-2)^n)/5.
a(n) = 6*A015441(n-1), for n>0.

A180250 a(n) = 5*a(n-1) + 10*a(n-2), with a(1)=0 and a(2)=1.

Original entry on oeis.org

0, 1, 5, 35, 225, 1475, 9625, 62875, 410625, 2681875, 17515625, 114396875, 747140625, 4879671875, 31869765625, 208145546875, 1359425390625, 8878582421875, 57987166015625, 378721654296875, 2473479931640625, 16154616201171875, 105507880322265625
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Magma
    [n le 2 select n-1 else 5*Self(n-1) +10*Self(n-2): n in [1..30]]; // G. C. Greubel, Jan 16 2018
    
  • Mathematica
    Join[{a=0,b=1},Table[c=5*b+10*a;a=b;b=c,{n,100}]]
    LinearRecurrence[{5,10}, {0,1}, 30] (* G. C. Greubel, Jan 16 2018 *)
  • PARI
    a(n)=([0,1;10,5]^(n-1))[1,2] \\ Charles R Greathouse IV, Oct 03 2016
    
  • PARI
    my(x='x+O('x^30)); concat([0], Vec(x^2/(1-5*x-10*x^2))) \\ G. C. Greubel, Jan 16 2018
    
  • SageMath
    A180250= BinaryRecurrenceSequence(5,10,0,1)
    [A180250(n-1) for n in range(1,41)] # G. C. Greubel, Jul 21 2023

Formula

a(n) = ((5+sqrt(65))^(n-1) - (5-sqrt(65))^(n-1))/(2^(n-1)*sqrt(65)). - Rolf Pleisch, May 14 2011
G.f.: x^2/(1-5*x-10*x^2).
a(n) = (i*sqrt(10))^(n-1) * ChebyshevU(n-1, -i*sqrt(5/8)). - G. C. Greubel, Jul 21 2023
Previous Showing 11-20 of 47 results. Next