cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 69 results. Next

A017305 a(n) = 10*n + 3.

Original entry on oeis.org

3, 13, 23, 33, 43, 53, 63, 73, 83, 93, 103, 113, 123, 133, 143, 153, 163, 173, 183, 193, 203, 213, 223, 233, 243, 253, 263, 273, 283, 293, 303, 313, 323, 333, 343, 353, 363, 373, 383, 393, 403, 413, 423, 433, 443, 453, 463, 473, 483, 493, 503, 513, 523, 533
Offset: 0

Views

Author

Keywords

Comments

Apart from initial term(s), dimension of the space of weight 2n cusp forms for Gamma_0(38).

Crossrefs

Programs

Formula

a(n) = A017198(n) - A156677(n+2). - Reinhard Zumkeller, Jul 13 2010
a(n) = 2*a(n-1) - a(n-2). - Vincenzo Librandi, May 28 2011
G.f.: (3+7*x)/(x-1)^2. - R. J. Mathar, Apr 11 2016
E.g.f.: exp(x)*(3 + 10*x). - Stefano Spezia, Aug 22 2023
a(n) = A016885(2*n). - Elmo R. Oliveira, Apr 10 2025

A017293 a(n) = 10*n + 2.

Original entry on oeis.org

2, 12, 22, 32, 42, 52, 62, 72, 82, 92, 102, 112, 122, 132, 142, 152, 162, 172, 182, 192, 202, 212, 222, 232, 242, 252, 262, 272, 282, 292, 302, 312, 322, 332, 342, 352, 362, 372, 382, 392, 402, 412, 422, 432, 442, 452, 462, 472, 482, 492, 502, 512, 522, 532
Offset: 0

Views

Author

N. J. A. Sloane, Dec 11 1996

Keywords

Comments

Number of 5 X n 0-1 matrices avoiding simultaneously the right angled numbered polyomino patterns (ranpp) (00;1), (01;0), (11;0) and (01;1). An occurrence of a ranpp (xy;z) in a matrix A=(a(i,j)) is a triple (a(i1,j1), a(i1,j2), a(i2,j1)) where i1A008574; m=3: A016933; m=4: A022144; m=6: A017569. - Sergey Kitaev, Nov 13 2004

Crossrefs

Programs

Formula

a(n) = 2*A016861(n) = A008592(n) + 2. - Wesley Ivan Hurt, May 03 2014
G.f.: 2*(1 + 4*x)/(1-x)^2. - Vincenzo Librandi, Jul 23 2016
From Elmo R. Oliveira, Apr 04 2025: (Start)
E.g.f.: 2*exp(x)*(1 + 5*x).
a(n) = 2*a(n-1) - a(n-2) for n >= 2.
a(n) = A016873(2*n). (End)

A101321 Table T(n,m) = 1 + n*m*(m+1)/2 read by antidiagonals: centered polygonal numbers.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 4, 3, 1, 1, 7, 7, 4, 1, 1, 11, 13, 10, 5, 1, 1, 16, 21, 19, 13, 6, 1, 1, 22, 31, 31, 25, 16, 7, 1, 1, 29, 43, 46, 41, 31, 19, 8, 1, 1, 37, 57, 64, 61, 51, 37, 22, 9, 1, 1, 46, 73, 85, 85, 76, 61, 43, 25, 10, 1, 1, 56, 91, 109, 113, 106, 91, 71, 49, 28, 11, 1, 1, 67
Offset: 0

Views

Author

Eugene McDonnell (eemcd(AT)mac.com), Dec 24 2004

Keywords

Comments

Row n gives the centered figurate numbers of the n-gon.
Antidiagonal sums are in A101338.

Examples

			The upper left corner of the infinite array T is
|0| 1   1   1   1   1   1   1   1   1   1 ... A000012
|1| 1   2   4   7  11  16  22  29  37  46 ... A000124
|2| 1   3   7  13  21  31  43  57  73  91 ... A002061
|3| 1   4  10  19  31  46  64  85 109 136 ... A005448
|4| 1   5  13  25  41  61  85 113 145 181 ... A001844
|5| 1   6  16  31  51  76 106 141 181 226 ... A005891
|6| 1   7  19  37  61  91 127 169 217 271 ... A003215
|7| 1   8  22  43  71 106 148 197 253 316 ... A069099
|8| 1   9  25  49  81 121 169 225 289 361 ... A016754
|9| 1  10  28  55  91 136 190 253 325 406 ... A060544
		

Crossrefs

Programs

Formula

T(n,2) = A016777(n). T(n,3) = A016921(n). T(n,4) = A017281(n).
T(10,m) = A062786(m+1).
T(11,m) = A069125(m+1).
T(12,m) = A003154(m+1).
T(13,m) = A069126(m+1).
T(14,m) = A069127(m+1).
T(15,m) = A069128(m+1).
T(16,m) = A069129(m+1).
T(17,m) = A069130(m+1).
T(18,m) = A069131(m+1).
T(19,m) = A069132(m+1).
T(20,m) = A069133(m+1).
T(n+1,m) = T(n,m) + m*(m+1)/2. - Gary W. Adamson and Michel Marcus, Oct 13 2015

Extensions

Edited by R. J. Mathar, Oct 21 2009

A161705 a(n) = 18*n + 1.

Original entry on oeis.org

1, 19, 37, 55, 73, 91, 109, 127, 145, 163, 181, 199, 217, 235, 253, 271, 289, 307, 325, 343, 361, 379, 397, 415, 433, 451, 469, 487, 505, 523, 541, 559, 577, 595, 613, 631, 649, 667, 685, 703, 721, 739, 757, 775, 793, 811, 829, 847, 865, 883, 901, 919, 937, 955
Offset: 0

Views

Author

Reinhard Zumkeller, Jun 17 2009

Keywords

Comments

Digital root of a(n) is 1. - Alexander R. Povolotsky, Jun 13 2012
These numbers can be written as the sum of four integer cubes as a(n) = (2*n + 14)^3 + (3*n + 30)^3 + (- 2*n - 23)^3 + (- 3*n - 26)^3. - Arkadiusz Wesolowski, Aug 15 2013

Crossrefs

Programs

Formula

a(n) = 18*n + 1, n >= 0.
a(n) = a(n-1) + 18 (with a(0)=1). - Vincenzo Librandi, Dec 27 2010
From G. C. Greubel, Feb 17 2017: (Start)
G.f.: (1 + 17*x)/(1-x)^2.
E.g.f.: (1 + 18*x)*exp(x).
a(n) = 2*a(n-1) - a(n-2). (End)
a(n) = A017173(2*n) = A016777(6*n). - Elmo R. Oliveira, Apr 12 2025

A106621 a(n) = numerator of n/(n+20).

Original entry on oeis.org

0, 1, 1, 3, 1, 1, 3, 7, 2, 9, 1, 11, 3, 13, 7, 3, 4, 17, 9, 19, 1, 21, 11, 23, 6, 5, 13, 27, 7, 29, 3, 31, 8, 33, 17, 7, 9, 37, 19, 39, 2, 41, 21, 43, 11, 9, 23, 47, 12, 49, 5, 51, 13, 53, 27, 11, 14, 57, 29, 59, 3, 61, 31, 63, 16, 13, 33, 67, 17, 69, 7, 71, 18, 73, 37, 15, 19, 77, 39, 79
Offset: 0

Views

Author

N. J. A. Sloane, May 15 2005

Keywords

Comments

Contains as subsequences A026741, A017281, A017305, A005408, A017353, and A017377. - Luce ETIENNE, Nov 04 2018
Multiplicative and also a strong divisibility sequence: gcd(a(n),a(m)) = a(gcd(n,m)) for n, m >= 1. - Peter Bala, Feb 24 2019

Crossrefs

Cf. Sequences given by the formula numerator(n/(n + k)): A026741 (k = 2), A051176 (k = 3), A060819 (k = 4), A060791 (k = 5), A060789 (k = 6), A106608 thru A106612 (k = 7 thru 11), A051724 (k = 12), A106614 thru A106620 (k = 13 thru 19).

Programs

Formula

a(n) = lcm(20, n)/20. - Zerinvary Lajos, Jun 12 2009
a(n) = n/gcd(n, 20). - Andrew Howroyd, Jul 25 2018
From Luce ETIENNE, Nov 04 2018: (Start)
a(n) = 9*a(n-20) - 36*a(n-40) + 84*a(n-60) - 126*a(n-80) + 126*a(n-100) - 84*a(n-120) + 36*a(n-140) - 9*a(n-160) + a(n-180).
a(n) = (5*(119*m^9 - 4923*m^8 + 86250*m^7 - 832230*m^6 + 4807887*m^5 - 16882299*m^4 + 34770400*m^3 - 37855620m^2 + 16581744*m + 54432)*floor(n/10) + 72*m*(3*m^8 - 120*m^7 + 2030*m^6 - 18900*m^5 + 105329*m^4 - 356580*m^3 + 706220*m^2 - 733200*m + 300258) + ((19*m^9 - 855*m^8 + 15810*m^7 - 154350*m^6 + 849387*m^5 - 2597175*m^4 + 4037840*m^3 - 2600100*m^2 + 540144*m - 90720)*floor(n/10) - 72*m*(m^7 - 35*m^6 + 490*m^5 - 3500*m^4 + 13489*m^3 - 27335*m^2 + 26340*m - 9450))*(-1)^floor(n/10))/362880 where m = (n mod 10). (End)
From Peter Bala, Feb 24 2019: (Start)
a(n) = n/gcd(n,20) is a quasi-polynomial in n since gcd(n,20) is a purely periodic sequence of period 20.
O.g.f.: F(x) - F(x^2) - F(x^4) - 4*F(x^5) + 4*F(x^10) + 4*F(x^20), where F(x) = x/(1 - x)^2.
O.g.f. for reciprocals: Sum_{n >= 1} x^n/a(n) = Sum_{d divides 20} (phi(d)/d) * log(1/(1 - x^d)) = log(1/(1 - x)) + (1/2)*log(1/(1 - x^2)) + (2/4)*log(1/(1 - x^4)) + (4/5)*log(1/(1 - x^5)) + (4/10)*log(1/(1 - x^10)) + (8/20)*log(1/(1 - x^20)), where phi(n) denotes the Euler totient function A000010. (End)
From Amiram Eldar, Nov 25 2022: (Start)
Multiplicative with a(2^e) = 2^max(0, e-2), a(5^e) = 5^max(0,e-1), and a(p^e) = p^e otherwise.
Dirichlet g.f.: zeta(s-1)*(1 - 1/2^s - 1/4^s - 4/5^s + 4/10^s + 4/20^s).
Sum_{k=1..n} a(k) ~ (231/800) * n^2. (End)

Extensions

Keyword:mult added by Andrew Howroyd, Jul 25 2018

A139279 a(n) = 40*n - 32.

Original entry on oeis.org

8, 48, 88, 128, 168, 208, 248, 288, 328, 368, 408, 448, 488, 528, 568, 608, 648, 688, 728, 768, 808, 848, 888, 928, 968, 1008, 1048, 1088, 1128, 1168, 1208, 1248, 1288, 1328, 1368, 1408, 1448, 1488, 1528, 1568, 1608, 1648, 1688, 1728, 1768, 1808, 1848
Offset: 1

Views

Author

Odimar Fabeny, Jun 06 2008

Keywords

Comments

Multiples of 8 with unit digit equal to 8.

Crossrefs

Subsequence of A034709, together with A017281, A017293, A139222, A139245, A017329, A139249, A139264 and A139280.

Programs

Formula

a(n) = a(n-1) + 40.
From G. C. Greubel, Jul 18 2017: (Start)
G.f.: (72*x - 32)/(1-x)^2.
E.g.f.: (40*x - 32)*exp(x). (End)

Extensions

More terms from Reinhard Zumkeller, Jun 22 2008
New definition from Paolo P. Lava, Sep 06 2010

A139280 a(n) = 90*n - 81.

Original entry on oeis.org

9, 99, 189, 279, 369, 459, 549, 639, 729, 819, 909, 999, 1089, 1179, 1269, 1359, 1449, 1539, 1629, 1719, 1809, 1899, 1989, 2079, 2169, 2259, 2349, 2439, 2529, 2619, 2709, 2799, 2889, 2979, 3069, 3159, 3249, 3339, 3429, 3519, 3609, 3699, 3789, 3879, 3969
Offset: 1

Views

Author

Odimar Fabeny, Jun 06 2008

Keywords

Comments

Multiples of 9 with final digit 9.

Crossrefs

Subsequence of A034709, together with A017281, A017293, A139222, A139245, A017329, A139249, A139264 and A139279.

Programs

Formula

a(n) = a(n-1) + 90.
From G. C. Greubel, Jul 18 2017: (Start)
G.f.: 9*(19*x-9)/(x-1)^2.
E.g.f.: 81 + 9*(10*x - 9)*exp(x). (End) [G.f. corrected by Georg Fischer, May 12 2019]; [E.g.f. corrected by Elmo R. Oliveira, Apr 04 2025]
From Elmo R. Oliveira, Apr 04 2025: (Start)
a(n) = 9*A017281(n-1) = 3*A139222(n).
a(n) = 2*a(n-1) - a(n-2) for n > 2. (End)

Extensions

More terms from Reinhard Zumkeller, Jun 22 2008

A128470 a(n) = 30*n + 1.

Original entry on oeis.org

1, 31, 61, 91, 121, 151, 181, 211, 241, 271, 301, 331, 361, 391, 421, 451, 481, 511, 541, 571, 601, 631, 661, 691, 721, 751, 781, 811, 841, 871, 901, 931, 961, 991, 1021, 1051, 1081, 1111, 1141, 1171, 1201, 1231, 1261, 1291, 1321, 1351, 1381, 1411, 1441, 1471
Offset: 0

Views

Author

Cino Hilliard, May 06 2007

Keywords

Comments

Possible upper bounds of twin primes pairs ending in 1: For a 30k + r "wheel", k > 0, r = 1, 13, 19 are the only possible values that can form an upper bound of a twin prime pair. The 30k+r wheel gives the sequence 1, 7, 11, 13, 17, 19, 23, 29 31, 37, 41, 43, 47, 49, 53, 59, ... which is frequently used in prime number sieves to skip multiples of 2, 3, 5. The fact that subtracting 2 from 30k+7, 11, 17, 23 will give us a multiple of 3 or 5 precludes these numbers from being an upper bound of a twin prime pair. This leaves us with r = 1, 13, 19 for k > 0 as the only possible cases to form an upper bound of a twin prime pair. 1, 13, 19 concludes the 6 numbers of the 8 number wheel that can form part of a twin prime pair.

Examples

			61 = 30 * 2 + 1, the upper part of the twin prime pair 59, 61.
		

Crossrefs

Programs

Formula

a(n) = 2*a(n-1) - a(n-2) for n > 1. - Vincenzo Librandi, Dec 30 2014
G.f.: (1 + 29*x)/(1 - x)^2. - Vincenzo Librandi, Dec 30 2014
E.g.f.: (1 + 30*x)*exp(x). - G. C. Greubel, Apr 04 2016

A139245 a(n) = 20*n - 16.

Original entry on oeis.org

4, 24, 44, 64, 84, 104, 124, 144, 164, 184, 204, 224, 244, 264, 284, 304, 324, 344, 364, 384, 404, 424, 444, 464, 484, 504, 524, 544, 564, 584, 604, 624, 644, 664, 684, 704, 724, 744, 764, 784, 804, 824, 844, 864, 884, 904, 924, 944, 964, 984, 1004, 1024, 1044
Offset: 1

Views

Author

Odimar Fabeny, Jun 06 2008

Keywords

Comments

Multiples of 4 with the unit digit equal to 4.
Positive integers that are the product of two integers ending with 2 (see A017293). - Stefano Spezia, Jul 25 2021

Crossrefs

Subsequence of A034709, together with A017281, A017293, A139222, A017329, A139249, A139264, A139279 and A139280.
Cf. A017293.

Programs

Formula

a(n) = a(n-1) + 20.
a(n) = 4*A016861(n-1). - Wesley Ivan Hurt, Jan 17 2014
From Stefano Spezia, Jul 25 2021: (Start)
O.g.f.: 4*x*(1 + 4*x)/(1 - x)^2.
E.g.f.: 16 + 4*exp(x)*(5*x - 4).
a(n) = 2*a(n-1) - a(n-2) for n > 2. (End)

Extensions

More terms from Reinhard Zumkeller, Jun 22 2008

A017401 a(n) = 11n + 1.

Original entry on oeis.org

1, 12, 23, 34, 45, 56, 67, 78, 89, 100, 111, 122, 133, 144, 155, 166, 177, 188, 199, 210, 221, 232, 243, 254, 265, 276, 287, 298, 309, 320, 331, 342, 353, 364, 375, 386, 397, 408, 419, 430, 441, 452, 463, 474, 485, 496, 507, 518, 529, 540, 551, 562, 573, 584, 595, 606, 617, 628, 639, 650, 661
Offset: 0

Views

Author

Keywords

Comments

Let A be the Hessenberg matrix of order n, defined by: A[1,j]=1, A[i,i]:=11, (i>1), A[i,i-1]=-1, and A[i,j]=0 otherwise. Then, for n>=2, a(n-1)=-charpoly(A,x^(n-1)). - Milan Janjic, Feb 21 2010
Sequence lists all nonnegative solutions to x^k == 1 (mod 11), where k is a member of A045572. - Bruno Berselli, Jan 18 2016

Crossrefs

Programs

Formula

G.f.: (1+10*x)/(1-x)^2.
E.g.f.: exp(x)*(1 + 11*x). - Stefano Spezia, Oct 08 2022
Previous Showing 11-20 of 69 results. Next