A088790
Numbers k such that (k^k-1)/(k-1) is prime.
Original entry on oeis.org
2, 3, 19, 31, 7547
Offset: 1
- R. K. Guy, Unsolved Problems in Theory of Numbers, 1994, A3.
Cf.
A070519 (cyclotomic(n, n) is prime).
Cf.
A056826 ((n^n+1)/(n+1) is prime).
-
Do[p=Prime[n]; If[PrimeQ[(p^p-1)/(p-1)], Print[p]], {n, 100}]
-
is(n)=ispseudoprime((n^n-1)/(n-1)) \\ Charles R Greathouse IV, Feb 17 2017
A031972
a(n) = Sum_{k=1..n} n^k.
Original entry on oeis.org
0, 1, 6, 39, 340, 3905, 55986, 960799, 19173960, 435848049, 11111111110, 313842837671, 9726655034460, 328114698808273, 11966776581370170, 469172025408063615, 19676527011956855056, 878942778254232811937, 41660902667961039785742, 2088331858752553232964199
Offset: 0
-
a031972 n = sum $ take n $ iterate (* n) n
-- Reinhard Zumkeller, Nov 22 2014
-
[1] cat [(n^(n+1)-n)/(n-1): n in [2..20]]; // Vincenzo Librandi, Apr 16 2015
-
a:= n-> `if`(n<2, n, (n^(n+1)-n)/(n-1)):
seq(a(n), n=0..20); # Alois P. Heinz, Aug 15 2013
-
f[n_]:=Sum[n^k,{k,n}];Array[f,30] (* Vladimir Joseph Stephan Orlovsky, Feb 14 2011*)
A226238
a(n) = (n^n - n)/(n - 1).
Original entry on oeis.org
2, 12, 84, 780, 9330, 137256, 2396744, 48427560, 1111111110, 28531167060, 810554586204, 25239592216020, 854769755812154, 31278135027204240, 1229782938247303440, 51702516367896047760, 2314494592664502210318, 109912203092239643840220
Offset: 2
A068475
a(n) = Sum_{m=0..n} m*n^(m-1).
Original entry on oeis.org
0, 1, 5, 34, 313, 3711, 54121, 937924, 18831569, 429794605, 10987654321, 310989720966, 9652968253897, 326011399456939, 11901025061692313, 466937872906120456, 19594541482740368161, 875711370981239308953, 41524755927216069067489, 2082225625247428808306410
Offset: 0
Francois Jooste (phukraut(AT)hotmail.com), Mar 10 2002
a(2) = Sum_{m = 1..2} m*2^(m-1) = 1 + 2*2 = 5.
-
a068475 n = sum $ zipWith (*) [1..n] $ iterate (* n) 1
-- Reinhard Zumkeller, Nov 22 2014
-
[0] cat [(&+[m*n^(m-1): m in [0..n]]): n in [1..30]]; // G. C. Greubel, Oct 13 2018
-
a := n->sum(m*n^(m-1),m=1..n);
-
Join[{0}, Table[Sum[m*n^(m-1), {m,0,n}], {n,1,30}]] (* G. C. Greubel, Oct 13 2018 *)
-
for(n=0,30, print1(if(n==0, 0, sum(m=0,n, m*n^(m-1))), ", ")) \\ G. C. Greubel, Oct 13 2018
A191690
a(n) = n^n-n^(n-1)-n^(n-2)-...-n^2-n-1.
Original entry on oeis.org
0, 1, 14, 171, 2344, 37325, 686286, 14380471, 338992928, 8888888889, 256780503550, 8105545862051, 277635514376232, 10257237069745861, 406615755353655134, 17216961135462248175, 775537745518440716416, 37031913482632035365105
Offset: 1
a(1)=0 (=1^1-1), a(2)=1 (=2^2-2-1), a(3)=14 (=3^3-3^2-3-1), a(4)=171 (=4^4-4^3-4^2-4-1).
-
A191690 := proc(n) n^n-add( n^j,j=0..n-1) ; end proc: # R. J. Mathar, Jun 23 2011
-
Table[Total[-n^Range[0,n-1]]+n^n,{n,2,20}] (* Harvey P. Dale, Jul 06 2011 *)
f[n_] := ((n - 2) n^n + n)/(n - 1) - 1; f[1] = 0; Array[f, 18] (* Robert G. Wilson v, Apr 16 2015 *)
-
a(n) = n^n - sum(k=0, n-1, n^k); \\ Michel Marcus, Apr 16 2015
-
[n^n - sum([n^k for k in range(n)]) for n in range(1,19)] # Danny Rorabaugh, Apr 20 2015
A300332
Integers of the form Sum_{j in 0:p-1} x^j*y^(p-j-1) where x and y are positive integers with max(x, y) >= 2 and p is some prime.
Original entry on oeis.org
3, 4, 7, 12, 13, 19, 21, 27, 28, 31, 37, 39, 43, 48, 49, 52, 57, 61, 63, 67, 73, 75, 76, 79, 80, 84, 91, 93, 97, 103, 108, 109, 111, 112, 117, 121, 124, 127, 129, 133, 139, 147, 148, 151, 156, 157, 163, 169, 171, 172, 175, 181, 183, 189, 192, 193, 196, 199
Offset: 1
Let p denote an odd prime. Subsequences are numbers of the form
2^p - 1, (A001348) (x = 1, y = 2) (Mersenne numbers),
p*2^(p - 1), (A299795) (x = 2, y = 2),
(3^p - 1)/2, (A003462) (x = 1, y = 3),
3^p - 2^p, (A135171) (x = 2, y = 3),
p*3^(p - 1), (A027471) (x = 3, y = 3),
(4^p - 1)/3, (A002450) (x = 1, y = 4),
2^(p-1)*(2^p-1), (A006516) (x = 2, y = 4),
4^p - 3^p, (A005061) (x = 3, y = 4),
p*4^(p - 1), (A002697) (x = 4, y = 4),
(p^p-1)/(p-1), (A023037),
p^p, (A000312, A051674).
.
The generalized cuban primes A007645 are a subsequence, as are the quintan primes A002649, the septan primes and so on.
All primes in this sequence less than 1031 are generalized cuban primes. 1031 is an element because 1031 = f(5,2) where f(x,y) = x^4 + y*x^3 + y^2*x^2 + y^3*x + y^4, however 1031 is not a cuban prime because 1030 is not divisible by 6.
Indices of the nonzero values of
A300333.
Cf.
A001348,
A299795,
A003462,
A135171,
A027471,
A002450,
A006516,
A005061,
A002697,
A000312,
A051674,
A023037,
A007645.
-
using Primes
function isA300332(n)
logn = log(n)^1.161
K = Int(floor(5.383*logn))
M = Int(floor(2*(n/3)^(1/2)))
k = 2
while k <= K
if k == 7
K = Int(floor(4.864*logn))
M = Int(ceil(2*(n/11)^(1/4)))
end
for y in 2:M, x in 1:y
r = x == y ? k*y^(k - 1) : div(x^k - y^k, x - y)
n == r && return true
end
k = nextprime(k+1)
end
return false
end
A300332list(upto) = [n for n in 1:upto if isA300332(n)]
println(A300332list(200))
A345030
a(n) = Sum_{k=1..n} n^(floor(n/k) - 1).
Original entry on oeis.org
1, 3, 11, 70, 633, 7821, 117709, 2097684, 43047545, 1000010125, 25937439391, 743008621422, 23298085496173, 793714780786669, 29192926036832363, 1152921504875352376, 48661191876077295937, 2185911559749718388655, 104127350297928227579629
Offset: 1
-
a[n_] := Sum[n^(Floor[n/k] - 1), {k, 1, n}]; Array[a, 20] (* Amiram Eldar, Jun 06 2021 *)
-
a(n) = sum(k=1, n, n^(n\k-1));
A068740
Result after dividing (n^n)! as many times as possible by n!.
Original entry on oeis.org
1, 1, 3, 833712928048000000
Offset: 0
a(3)=833712928048000000 since 3!=6 and (3^3)!=27!=10888869450418352160768000000 which is divisible by 6^13=13060694016 but not 6^14=78364164096.
A076483
a(n) = n!*Sum_{k=1..n} (k-1)^k/k!.
Original entry on oeis.org
0, 0, 1, 11, 125, 1649, 25519, 458569, 9433353, 219117905, 5677963451, 162457597961, 5087919552253, 173136159558361, 6361282619516343, 250987334850557369, 10584205713321808529, 475079402305823570849, 22614513693572549266291, 1137911105533216112417161
Offset: 0
a(4) = 4!*(0^1/1! + 1^2/2! + 2^3/3! + 3^4/4!) = 0 + 12 + 32 + 81 = 125.
A125598
a(n) = ((n+1)^(n-1) - 1)/n.
Original entry on oeis.org
0, 1, 5, 31, 259, 2801, 37449, 597871, 11111111, 235794769, 5628851293, 149346699503, 4361070182715, 139013933454241, 4803839602528529, 178901440719363487, 7143501829211426575, 304465936543600121441
Offset: 1
Cf. other sequences of generalized repunits, such as
A125118,
A053696,
A055129,
A060072,
A031973,
A173468,
A023037,
A119598,
A085104, and
A162861.
-
[((n+1)^(n-1) -1)/n: n in [1..25]]; // G. C. Greubel, Aug 15 2022
-
Table[((n+1)^(n-1)-1)/n, {n,25}]
-
[gaussian_binomial(n,1,n+2) for n in range(0,18)] # Zerinvary Lajos, May 31 2009
Comments