cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 81-90 of 205 results. Next

A106611 a(n) = numerator of n/(n+10).

Original entry on oeis.org

0, 1, 1, 3, 2, 1, 3, 7, 4, 9, 1, 11, 6, 13, 7, 3, 8, 17, 9, 19, 2, 21, 11, 23, 12, 5, 13, 27, 14, 29, 3, 31, 16, 33, 17, 7, 18, 37, 19, 39, 4, 41, 21, 43, 22, 9, 23, 47, 24, 49, 5, 51, 26, 53, 27, 11, 28, 57, 29, 59, 6, 61, 31, 63, 32, 13, 33, 67, 34, 69, 7, 71, 36, 73, 37, 15, 38, 77, 39
Offset: 0

Views

Author

N. J. A. Sloane, May 15 2005

Keywords

Comments

A strong divisibility sequence, that is, gcd(a(n),a(m)) = a(gcd(n,m)) for n,m >= 1. It follows that a(n) is a divisibility sequence: if n divides m then a(n) divides a(m). - Peter Bala, Feb 17 2019

Crossrefs

Sequences given by the formula numerator(n/(n + k)): A026741 (k = 2), A051176 (k = 3), A060819 (k = 4), A060791 (k = 5), A060789 (k = 6), A106608 thru A106612 (k = 7 thru 11), A051724 (k = 12), A106614 thru A106621 (k = 13 thru 20).

Programs

Formula

From R. J. Mathar, Apr 18 2011: (Start)
a(n) = A109051(n)/10.
Dirichlet g.f.: zeta(s-1)*(1 - 4/5^s - 1/2^s + 4/10^s).
Multiplicative with a(2^e) = 2^max(0,e-1), a(5^e) = 5^max(0,e-1), a(p^e) = p^e if p = 3 or p >= 7. (End)
From Peter Bala, Feb 17 2019: (Start)
a(n) = numerator(n/((n + 2)*(n + 5))).
a(n) = n/b(n), where b(n) = [1, 2, 1, 2, 5, 2, 1, 2, 1, 10, 1, 2, 1, 2, 5, 2, 1, 2, 1, 10, ...] is a purely periodic sequence of period 10. Thus a(n) is a quasi-polynomial in n.
If gcd(n,m) = 1 then a( a(n)*a(m) ) = a(a(n)) * a(a(m)), a( a(a(n))*a(a(m)) ) = a(a(a(n))) * a(a(a(m))) and so on.
O.g.f.: Sum_{d divides 10} A023900(d)*x^d/(1 - x^d)^2 = x/(1 - x)^2 - x^2/(1 - x^2)^2 - 4*x^5/(1 - x^5)^2 + 4*x^10/(1 - x^10)^2.
(End)
Sum_{k=1..n} a(k) ~ (63/200) * n^2. - Amiram Eldar, Nov 25 2022

A106615 a(n) = numerator of n/(n+14).

Original entry on oeis.org

0, 1, 1, 3, 2, 5, 3, 1, 4, 9, 5, 11, 6, 13, 1, 15, 8, 17, 9, 19, 10, 3, 11, 23, 12, 25, 13, 27, 2, 29, 15, 31, 16, 33, 17, 5, 18, 37, 19, 39, 20, 41, 3, 43, 22, 45, 23, 47, 24, 7, 25, 51, 26, 53, 27, 55, 4, 57, 29, 59, 30, 61, 31, 9, 32, 65, 33, 67, 34, 69, 5, 71, 36, 73, 37, 75, 38, 11, 39
Offset: 0

Views

Author

N. J. A. Sloane, May 15 2005

Keywords

Comments

A multiplicative function and also a strong divisibility sequence, that is, gcd(a(n),a(m)) = a(gcd(n,m)) for n, m >= 1. It follows that a(n) is a divisibility sequence: if n divides m then a(n) divides a(m). - Peter Bala, Feb 22 2019

Crossrefs

Cf. Sequences given by the formula numerator(n/(n + k)): A026741 (k = 2), A051176 (k = 3), A060819 (k = 4), A060791 (k = 5), A060789 (k = 6), A106608 thru A106612 (k = 7 thru 11), A051724 (k = 12), A106614 thru A106621 (k = 13 thru 20).

Programs

Formula

Dirichlet g.f.: zeta(s-1)*(1 - 6/7^s - 1/2^s + 6/14^s). - R. J. Mathar, Apr 18 2011
a(n) = 2*a(n-14) - a(n-28). - G. C. Greubel, Feb 19 2019
From Peter Bala, Feb 22 2019: (Start)
a(n) = n/gcd(n,14).
a(n) = n/b(n), where b(n) = [1, 2, 1, 2, 1, 2, 7, 2, 1, 2, 1, 2, 1, 14, ...] is a purely periodic sequence of period 14. Thus a(n) is a quasi-polynomial in n.
If gcd(n,m) = 1 then a( a(n)*a(m) ) = a(a(n)) * a(a(m)), a( a(a(n))*a(a(m)) ) = a(a(a(n))) * a(a(a(m))) and so on.
O.g.f.: Sum_{d divides 14} A023900(d)*x^d/(1 - x^d)^2 = x/(1 - x)^2 - x^2/(1 - x^2)^2 - 6*x^7/(1 - x^7)^2 + 6*x^14/(1 - x^14)^2.
O.g.f. for reciprocals: Sum_{n >= 1} (1/a(n))*x^n = L(x) + 1/2*L(x^2) + 6/7*L(x^7) + 6/14*L(x^14), where L(x) = log (1/(1 - x)). (End)
From Amiram Eldar, Nov 25 2022: (Start)
Multiplicative with a(2^e) = 2^max(0,e-1), a(7^e) = 7^max(0,e-1), and a(p^e) = p^e otherwise.
Sum_{k=1..n} a(k) ~ (129/392) * n^2. (End)

A167192 Triangle read by rows: T(n,k) = (n-k)/gcd(n,k), 1 <= k <= n.

Original entry on oeis.org

0, 1, 0, 2, 1, 0, 3, 1, 1, 0, 4, 3, 2, 1, 0, 5, 2, 1, 1, 1, 0, 6, 5, 4, 3, 2, 1, 0, 7, 3, 5, 1, 3, 1, 1, 0, 8, 7, 2, 5, 4, 1, 2, 1, 0, 9, 4, 7, 3, 1, 2, 3, 1, 1, 0, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0, 11, 5, 3, 2, 7, 1, 5, 1, 1, 1, 1, 0, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0, 13, 6, 11, 5, 9, 4, 1, 3, 5, 2, 3
Offset: 1

Views

Author

Reinhard Zumkeller, Oct 30 2009

Keywords

Examples

			The triangle T(n,k) begins:
n\k   1   2   3   4  5  6  7  8  9 10 11 12 13  14  15 ...
1:    0
2:    1   0
3:    2   1   0
4:    3   1   1   0
5:    4   3   2   1  0
6:    5   2   1   1  1  0
7:    6   5   4   3  2  1  0
8:    7   3   5   1  3  1  1  0
9:    8   7   2   5  4  1  2  1  0
10:   9   4   7   3  1  2  3  1  1  0
11:  10   9   8   7  6  5  4  3  2  1  0
12:  11   5   3   2  7  1  5  1  1  1  1  0
13:  12  11  10   9  8  7  6  5  4  3  2  1  0
14:  13   6  11   5  9  4  1  3  5  2  3  1  1   0
15:  14  13   4  11  2  3  8  7  2  1  4  1  2   1   0
- _Wolfdieter Lang_, Feb 20 2013
		

Crossrefs

Programs

  • Mathematica
    Flatten[Table[(n-k)/GCD[n,k],{n,20},{k,n}]] (* Harvey P. Dale, Nov 27 2015 *)
  • PARI
    for(n=1,10, for(k=1,n, print1((n-k)/gcd(n,k), ", "))) \\ G. C. Greubel, Sep 13 2017

Formula

T(n,k) = (n-k)/gcd(n,k), 1 <= k <= n.
T(n,k) = A025581(n,k)/A050873(n,k);
T(n,1) = A001477(n-1);
T(n,2) = A026741(n-2) for n > 1;
T(n,3) = A051176(n-3) for n > 2;
T(n,4) = A060819(n-4) for n > 4;
T(n,n-3) = A144437(n) for n > 3;
T(n,n-2) = A000034(n) for n > 2;
T(n,n-1) = A000012(n);
T(n,n) = A000004(n).

A235963 n appears (n+1)/(1 + (n mod 2)) times.

Original entry on oeis.org

0, 1, 2, 2, 2, 3, 3, 4, 4, 4, 4, 4, 5, 5, 5, 6, 6, 6, 6, 6, 6, 6, 7, 7, 7, 7, 8, 8, 8, 8, 8, 8, 8, 8, 8, 9, 9, 9, 9, 9, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 11, 11, 11, 11, 11, 11, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 13, 13, 13, 13, 13, 13, 13
Offset: 0

Views

Author

Mircea Merca, Jan 17 2014

Keywords

Comments

n appears A001318(n+1) - A001318(n) = A026741(n+1) times.
Sum_{k=0...a(n)} (-1)^ceiling(k/2)*p(n-G(k)) = 0 for n>0, where p(n)=A000041(n) is the partition function, and G(k)=A001318(k) denotes the generalized pentagonal numbers.
Row lengths of A238442, n >= 1. - Omar E. Pol, Dec 22 2016

Examples

			As a triangle:
  0;
  1;
  2, 2, 2;
  3, 3;
  4, 4, 4, 4, 4;
  5, 5, 5;
  6, 6, 6, 6, 6, 6, 6;
  7, 7, 7, 7;
  8, 8, 8, 8, 8, 8, 8, 8, 8;
  ...
		

Crossrefs

First differences are A080995.

Programs

  • Maple
    T:= n-> n$(n+1)/(n mod 2+1):
    seq(T(n), n=0..13);  # Alois P. Heinz, Nov 23 2024
  • Mathematica
    Table[Table[n, {(n + 1)/(1 + Mod[n, 2])}], {n, 0, 14}]//Flatten (* T. D. Noe, Jan 29 2014 *)
  • Python
    from math import isqrt
    def A235963(n): return (m:=isqrt((n+1<<3)//3))-(n+1<=(m*(3*m+4)+1 if m&1 else m*(3*m+2))>>3) # Chai Wah Wu, Nov 23 2024
    
  • Python
    A235963=lambda n: ((s:=isqrt(24*n+1))+1)//6+(s-1)//6 # Natalia L. Skirrow, May 13 2025

Formula

Let t = (sqrt(n*8/3 + 1) - 1)/2 + 1/3 and let k = floor(t); then a(n) = 2k if t - k < 2/3, 2k+1 otherwise. - Jon E. Schoenfield, Jun 13 2017
a(n) = m if n+1>A001318(m) and a(n) = m-1 otherwise where m = floor(sqrt(8(n+1)/3)). - Chai Wah Wu, Nov 23 2024
From Natalia L. Skirrow, May 13 2025: (Start)
a(n) = A180447(n) + A085141(n).
a(n) = floor((s+1)/6) + floor((s-1)/6) where s=floor(sqrt(24*n+1)).
G.f.: (f(x,x^2)-1)/(1-x), where f is Ramanujan's bivariate theta function. (End)
Sum_{n>=1} (-1)^(n+1)/a(n) = (sqrt(2)-1)*Pi/8 + (2-sqrt(2))*log(2)/8 + log(2+sqrt(2))/(2*sqrt(2)). - Amiram Eldar, May 28 2025

A333570 Number of nonnegative values c such that c^n == -c (mod n).

Original entry on oeis.org

1, 2, 1, 2, 1, 4, 1, 2, 1, 4, 1, 4, 1, 4, 3, 2, 1, 4, 1, 4, 1, 4, 1, 4, 1, 4, 1, 8, 1, 8, 1, 2, 1, 4, 3, 4, 1, 4, 3, 4, 1, 8, 1, 4, 1, 4, 1, 4, 1, 4, 3, 8, 1, 4, 3, 4, 1, 4, 1, 8, 1, 4, 1, 2, 1, 24, 1, 4, 1, 16, 1, 4, 1, 4, 3, 8, 1, 8, 1, 4, 1, 4, 1, 8, 5, 4, 3, 4, 1, 8, 7, 4, 1, 4, 3
Offset: 1

Views

Author

Juri-Stepan Gerasimov, Mar 27 2020

Keywords

Comments

a(n) is the number of nonnegative bases c < n such that c^n + c == 0 (mod n).
a(2^k) = 2 for k > 0.
a(p^m) = 1 for odd prime p with m >= 0.
Let fy(n) = (the number of values b in Z/nZ such that b^y = b)/(the number of values c in Z/nZ such that -c^y = c) for nonnegative y, then:
f0(n) = A000012(n),
f1(n) = A026741(n),
f2(n) = A000012(n),
1 <= f3(n) <= n,
f4(n) = A000012(n), ...,
1 <= fn(n) = A182816(n)/a(n) <= n, where fn(n) = n for odd noncomposite numbers A006005 and Carmichael numbers A002997.

Crossrefs

Programs

  • Magma
    [#[c: c in [0..n-1] | -c^n mod n eq c]: n in [1..95]];
    
  • PARI
    a(n) = sum(c=1, n, Mod(c, n)^n == -c); \\ Michel Marcus, Mar 27 2020

Formula

a(n) = A182816(n)/r for some odd r.

A384039 The number of integers k from 1 to n such that gcd(n,k) is a powerful number.

Original entry on oeis.org

1, 1, 2, 3, 4, 2, 6, 6, 7, 4, 10, 6, 12, 6, 8, 12, 16, 7, 18, 12, 12, 10, 22, 12, 21, 12, 21, 18, 28, 8, 30, 24, 20, 16, 24, 21, 36, 18, 24, 24, 40, 12, 42, 30, 28, 22, 46, 24, 43, 21, 32, 36, 52, 21, 40, 36, 36, 28, 58, 24, 60, 30, 42, 48, 48, 20, 66, 48, 44
Offset: 1

Views

Author

Amiram Eldar, May 18 2025

Keywords

Comments

The number of integers k from 1 to n such that the powerfree part (A055231) of gcd(n,k) is 1.

Crossrefs

The number of integers k from 1 to n such that gcd(n,k) is: A026741 (odd), A062570 (power of 2), A063659 (squarefree), A078429 (cube), A116512 (power of a prime), A117494 (prime), A126246 (1 or 2), A206369 (square), A254926 (cubefree), A372671 (3-smooth), this sequence (powerful), A384040 (cubefull), A384041 (exponentially odd), A384042 (5-rough).

Programs

  • Mathematica
    f[p_, e_] := If[e == 1, p-1, (p^2-p+1)*p^(e-2)]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100]
  • PARI
    a(n) = {my(f = factor(n)); prod(i = 1, #f~, if(f[i,2] == 1, f[i,1]-1, (f[i,1]^2-f[i,1]+1)*f[i,1]^(f[i,2]-2)));}

Formula

Multiplicative with a(p^e) = (p^2-p+1)*p^(e-2) if e >= 2, and p-1 otherwise.
a(n) >= A000010(n), with equality if and only if n is squarefree (A005117).
Dirichlet g.f.: zeta(s-1) * Product_{p prime} (1 - 1/p^s + 1/p^(2*s)).
Sum_{k=1..n} a(k) ~ c * n^2 / 2, where c = Product_{p prime} (1 - 1/p^2 + 1/p^4) = 0.66922021803510257394... .

A066043 a(1) = 1; for m > 0, a(2m) = 2m, a(2m+1) = 4m+2.

Original entry on oeis.org

1, 2, 6, 4, 10, 6, 14, 8, 18, 10, 22, 12, 26, 14, 30, 16, 34, 18, 38, 20, 42, 22, 46, 24, 50, 26, 54, 28, 58, 30, 62, 32, 66, 34, 70, 36, 74, 38, 78, 40, 82, 42, 86, 44, 90, 46, 94, 48, 98, 50, 102, 52, 106, 54, 110, 56, 114, 58, 118, 60, 122, 62, 126, 64, 130, 66, 134, 68
Offset: 1

Views

Author

George E. Antoniou, Nov 30 2001

Keywords

Comments

Length of period of sequences r(k,n) = floor(sinh(1)*k!) - n*floor(sinh(1)*k!/n) when n is fixed. - Benoit Cloitre, Jun 22 2003

Examples

			r(k,7) is sequence 1, 2, 0, 0, 1, 6, 1, 1, 3, 2, 2, 3, 5, 0, 1, 2, 0, 0, 1, 6, 1, 1, 3, 2, 2, 3, 5, 0.... which is periodic with period (1, 2, 0, 0, 1, 6, 1, 1, 3, 2, 2, 3, 5, 0) of length 14 = a(7).
		

Programs

  • Mathematica
    Join[{1}, LCM[Range[2, 100], 2]] (* Paolo Xausa, Feb 19 2024 *)
  • PARI
    a(n)=if(n<2,1,if(n%2,2*n,n))
    
  • PARI
    { for (n=1, 1000, a=if (n>1 && n%2, 2*n, n); write("b066043.txt", n, " ", a) ) } \\ Harry J. Smith, Nov 08 2009

Formula

O.g.f.: (x+2x^2+4x^3-x^5)/(1-x^2)^2. - Len Smiley, Dec 05 2001
a(n)*a(n+3) = -4 + a(n+1)*a(n+2).
From Harry J. Smith, Nov 08 2009: (Start)
a(n) = A109043(n), n > 1.
a(n) = 2*A026741(n), n > 1. (End)

A106620 a(n) = numerator of n/(n+19).

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 1, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 2, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 3, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74
Offset: 0

Views

Author

N. J. A. Sloane, May 15 2005

Keywords

Comments

a(n) <> n iff n = 19 * k, in this case, a(n) = k. - Bernard Schott, Feb 19 2019

Crossrefs

Cf. Sequences given by the formula numerator(n/(n + k)): A026741 (k = 2), A051176 (k = 3), A060819 (k = 4), A060791 (k = 5), A060789 (k = 6), A106608 thru A106612 (k = 7 thru 11), A051724 (k = 12), A106614 thru A106621 (k = 13 thru 20).

Programs

Formula

Dirichlet g.f.: zeta(s-1)*(1 - 18/19^s). - R. J. Mathar, Apr 18 2011
a(n) = 2*a(n-19) - a(n-38). - G. C. Greubel, Feb 19 2019
From Amiram Eldar, Nov 25 2022: (Start)
Multiplicative with a(19^e) = 19^(e-1), and a(p^e) = p^e if p != 19.
Sum_{k=1..n} a(k) ~ (343/722) * n^2. (End)
Sum_{n>=1} (-1)^(n+1)/a(n) = 37*log(2)/19. - Amiram Eldar, Sep 08 2023

A108412 Expansion of (1 + x + x^2)/(1 - 4x^2 + x^4).

Original entry on oeis.org

1, 1, 5, 4, 19, 15, 71, 56, 265, 209, 989, 780, 3691, 2911, 13775, 10864, 51409, 40545, 191861, 151316, 716035, 564719, 2672279, 2107560, 9973081, 7865521, 37220045, 29354524, 138907099, 109552575, 518408351, 408855776, 1934726305
Offset: 0

Views

Author

Ralf Stephan, Jun 05 2005

Keywords

Comments

This is the sequence of Lehmer numbers u_n(sqrt(R),Q) with the parameters R = 6 and Q = 1. It is a strong divisibility sequence, that is, gcd(a(n),a(m)) = a(gcd(n,m)) for all natural numbers n and m. The sequence satisfies a linear recurrence of order four. - Peter Bala, Apr 18 2014
The sequence of convergents of the 2-periodic continued fraction [0; 1, -6, 1, -6, ...] = 1/(1 - 1/(6 - 1/(1 - 1/(6 - ...)))) = 3 - sqrt(3) begins [0/1, 1/1, 6/5, 5/4, 24/19, 19/15, 90/71,...]. The present sequence is the sequence of denominators; the sequence of numerators of the continued fraction convergents [1, 6, 5, 24, 19, 90,...] is also a strong divisibility sequence. Cf. A005013 and A203976. - Peter Bala, May 19 2014
From Peter Bala, Mar 25 2018: (Start)
The following remarks assume an offset of 1.
Define a binary operation o on the real numbers by x o y = x*sqrt(1 + (1/2)*y^2) + y*sqrt(1 + (1/2)*x^2). The operation o is commutative and associative with identity 0. We have a(2*n + 1) = 1 o 1 o ... o 1 (2*n + 1 terms) and sqrt(6)*a(2*n) = (1 o 1 o ... o 1) (2*n terms). Cf. A005013 and A084068. For example, 1 o 1 = sqrt(6) and 1 o 1 o 1 = sqrt(6) o 1 = 5 = a(3).
From the obvious identity ( 1 o 1 o ... o 1 (2*n terms) ) o ( 1 o 1 o ... o 1 (2*m terms) ) = 1 o 1 o ... o 1 (2*n + 2*m terms) we find the relation a(2*n+2*m) = a(2*n)*sqrt(1 + 3*a(2*m)^2) + a(2*m)*sqrt(1 + 3*a(2*n)^2).
Similarly, from a(2*n+1) o a(2*m+1) = sqrt(6)*a(2*n+2*m+2) we find sqrt(6)*a(2*n+2*m+2) = a(2*n+1)*sqrt(1 + (1/2)*a(2*m+1)^2) + a(2*m+1)*sqrt(1 + (1/2)*a(2*n+1)^2). (End)

Examples

			G.f. = 1 + x + 5*x^2 + 4*x^3 + 19*x^4 + 15*x^5 + 71*x^6 + 56*x^7 + ...
		

Crossrefs

Programs

  • Maple
    a := proc (n) if `mod`(n, 2) = 1 then 1/sqrt(2)*( ((sqrt(6) + sqrt(2))/2 )^n - ( (sqrt(6) - sqrt(2))/2 )^n) else 1/sqrt(12)*( ((sqrt(6) + sqrt(2))/2 )^n - ( (sqrt(6) - sqrt(2))/2 )^n) end if;
    end proc:
    seq(simplify(a(n)), n = 1..30); # Peter Bala, Mar 25 2018
  • Mathematica
    CoefficientList[Series[(1+x+x^2)/(1-4x^2+x^4),{x,0,40}],x] (* or *) LinearRecurrence[{0,4,0,-1},{1,1,5,4},40] (* Harvey P. Dale, Nov 15 2012 *)
  • PARI
    {a(n) = my( w = quadgen(24)); simplify( polchebyshev( n, 2, w/2) / if( n%2, w, 1))}; /* Michael Somos, Feb 10 2015 */

Formula

a(0)=a(1)=1, a(2)=5, a(n)a(n+3) - a(n+1)a(n+2) = -1.
a(0)=1, a(1)=1, a(2)=5, a(3)=4, a(n) = 4*a(n-2)-a(n-4). - Harvey P. Dale, Nov 15 2012
a(n) = (alpha^n - beta^n)/(alpha - beta) for n odd, and a(n) = (alpha^n - beta^n)/(alpha^2 - beta^2) for n even, where alpha = (1/2)*(sqrt(6) + sqrt(2)) (A188887) and beta = (1/2)*(sqrt(6) - sqrt(2)) (A101263). Equivalently, a(n) = U(n-1,sqrt(6)/2) for n odd and a(n) = (1/sqrt(6))*U(n-1,sqrt(6)/2) for n even, where U(n,x) is the Chebyshev polynomial of the second kind. - Peter Bala, Apr 18 2014
a(2*n) = A001834(n). a(2*n + 1) = A001353(n+1). - Michael Somos, Feb 10 2015
a(n) = -a(-2-n) for all n in Z. - Michael Somos, Feb 10 2015

A117818 a(n) = n if n is 1 or a prime, otherwise a(n) = n divided by the least prime factor of n (A032742(n)).

Original entry on oeis.org

1, 2, 3, 2, 5, 3, 7, 4, 3, 5, 11, 6, 13, 7, 5, 8, 17, 9, 19, 10, 7, 11, 23, 12, 5, 13, 9, 14, 29, 15, 31, 16, 11, 17, 7, 18, 37, 19, 13, 20, 41, 21, 43, 22, 15, 23, 47, 24, 7, 25, 17, 26, 53, 27, 11, 28, 19, 29, 59, 30, 61, 31, 21, 32, 13, 33, 67, 34, 23, 35, 71, 36, 73, 37, 25, 38
Offset: 1

Views

Author

Roger L. Bagula, Apr 30 2006

Keywords

Comments

A026741 generalized to give either a prime or the largest proper divisor of a nonprime.
Sometimes called "Conway's subprime function", although it surely predates John Conway. - N. J. A. Sloane, Sep 29 2017

Crossrefs

Programs

  • Haskell
    a117818 n = if a010051 n == 1 then n else a032742 n
    -- Reinhard Zumkeller, Jun 24 2013
    
  • Maple
    A117818 := proc(n)
        local a,d;
        if isprime(n) or n =1 then
            return n;
        end if;
        a := -1 ;
        for d in numtheory[divisors](n) do
            if d < n and d> a then
                a := d ;
            end if;
        end do:
        a ;
    end proc:
    seq(A117818(n),n=1..100) ; # R. J. Mathar, Apr 30 2024
  • Mathematica
    Table[If[PrimeQ[n], n, If[n == 1, 1, n/FactorInteger[n][[1, 1]]]], {n, 1, 76}]
    Table[Which[n==1,1,PrimeQ[n],1,True,Divisors[n][[-2]]],{n,80}] (* Harvey P. Dale, Feb 02 2022 *)
  • Python
    import sympy
    def A117818(n):
        if n == 1:
            return 1
        else:
            =sympy.ntheory.factor.primefactors(n)
            return _[-1]
    print([A117818(n) for n in range(1,100)])
    # R. J. Mathar, May 24 2024

Extensions

Edited by Stefan Steinerberger, Jul 22 2007
Extended by Charles R Greathouse IV, Jul 28 2010
Previous Showing 81-90 of 205 results. Next