A303810
Mirror image of the triangle A026794.
Original entry on oeis.org
1, 1, 1, 1, 0, 2, 1, 0, 1, 3, 1, 0, 0, 1, 5, 1, 0, 0, 1, 2, 7, 1, 0, 0, 0, 1, 2, 11, 1, 0, 0, 0, 1, 1, 4, 15, 1, 0, 0, 0, 0, 1, 2, 4, 22, 1, 0, 0, 0, 0, 1, 1, 2, 7, 30, 1, 0, 0, 0, 0, 0, 1, 1, 3, 8, 42, 1, 0, 0, 0, 0, 0, 1, 1, 2, 4, 12, 56, 1, 0, 0, 0, 0, 0, 0, 1, 1, 2, 5, 14, 77, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 3
Offset: 1
Triangle begins:
1;
1, 1;
1, 0, 2;
1, 0, 1, 3;
1, 0, 0, 1, 5;
1, 0, 0, 1, 2, 7;
1, 0, 0, 0, 1, 2, 11;
1, 0, 0, 0, 1, 1, 4, 15;
1, 0, 0, 0, 0, 1, 2, 4, 22;
1, 0, 0, 0, 0, 1, 1, 2, 7, 30;
1, 0, 0, 0, 0, 0, 1, 1, 3, 8, 42;
1, 0, 0, 0, 0, 0, 1, 1, 2, 4, 12, 56;
1, 0, 0, 0, 0, 0, 0, 1, 1, 2, 5, 14, 77;
1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 3, 6, 21, 101;
1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 2, 3, 9, 24, 135;
...
A000070
a(n) = Sum_{k=0..n} p(k) where p(k) = number of partitions of k (A000041).
Original entry on oeis.org
1, 2, 4, 7, 12, 19, 30, 45, 67, 97, 139, 195, 272, 373, 508, 684, 915, 1212, 1597, 2087, 2714, 3506, 4508, 5763, 7338, 9296, 11732, 14742, 18460, 23025, 28629, 35471, 43820, 53963, 66273, 81156, 99133, 120770, 146785, 177970, 215308, 259891, 313065, 376326, 451501
Offset: 0
G.f. = 1 + 2*x + 4*x^2 + 7*x^3 + 12*x^4 + 19*x^5 + 30*x^6 + 45*x^7 + 67*x^8 + ...
From _Omar E. Pol_, Oct 25 2012: (Start)
For n = 5 consider the partitions of n+1:
--------------------------------------
. Number
Partitions of 6 of 1's
--------------------------------------
6 .......................... 0
3 + 3 ...................... 0
4 + 2 ...................... 0
2 + 2 + 2 .................. 0
5 + 1 ...................... 1
3 + 2 + 1 .................. 1
4 + 1 + 1 .................. 2
2 + 2 + 1 + 1 .............. 2
3 + 1 + 1 + 1 .............. 3
2 + 1 + 1 + 1 + 1 .......... 4
1 + 1 + 1 + 1 + 1 + 1 ...... 6
------------------------------------
35-16 = 19
.
The difference between the sum of the first column and the sum of the second column of the set of partitions of 6 is 35 - 16 = 19 and equals the number of 1's in all partitions of 6, so the 6th term of this sequence is a(5) = 19.
(End)
From _Gus Wiseman_, Oct 26 2018: (Start)
With offset 1, the a(1) = 1 through a(6) = 19 partitions of 2*n whose greatest part is > n:
(2) (4) (6) (8) (A) (C)
(31) (42) (53) (64) (75)
(51) (62) (73) (84)
(411) (71) (82) (93)
(521) (91) (A2)
(611) (622) (B1)
(5111) (631) (732)
(721) (741)
(811) (822)
(6211) (831)
(7111) (921)
(61111) (A11)
(7221)
(7311)
(8211)
(9111)
(72111)
(81111)
(711111)
With offset 1, the a(1) = 1 through a(6) = 19 partitions of 2*n whose number of parts is > n:
(11) (211) (2211) (22211) (222211) (2222211)
(1111) (3111) (32111) (322111) (3222111)
(21111) (41111) (331111) (3321111)
(111111) (221111) (421111) (4221111)
(311111) (511111) (4311111)
(2111111) (2221111) (5211111)
(11111111) (3211111) (6111111)
(4111111) (22221111)
(22111111) (32211111)
(31111111) (33111111)
(211111111) (42111111)
(1111111111) (51111111)
(222111111)
(321111111)
(411111111)
(2211111111)
(3111111111)
(21111111111)
(111111111111)
(End)
From _Joerg Arndt_, Jan 01 2024: (Start)
The a(5) = 19 multiset partitions of the multiset {1^5, 2^1} are:
1: {{1, 1, 1, 1, 1, 2}}
2: {{1, 1, 1, 1, 1}, {2}}
3: {{1, 1, 1, 1, 2}, {1}}
4: {{1, 1, 1, 1}, {1, 2}}
5: {{1, 1, 1, 1}, {1}, {2}}
6: {{1, 1, 1, 2}, {1, 1}}
7: {{1, 1, 1, 2}, {1}, {1}}
8: {{1, 1, 1}, {1, 1, 2}}
9: {{1, 1, 1}, {1, 1}, {2}}
10: {{1, 1, 1}, {1, 2}, {1}}
11: {{1, 1, 1}, {1}, {1}, {2}}
12: {{1, 1, 2}, {1, 1}, {1}}
13: {{1, 1, 2}, {1}, {1}, {1}}
14: {{1, 1}, {1, 1}, {1, 2}}
15: {{1, 1}, {1, 1}, {1}, {2}}
16: {{1, 1}, {1, 2}, {1}, {1}}
17: {{1, 1}, {1}, {1}, {1}, {2}}
18: {{1, 2}, {1}, {1}, {1}, {1}}
19: {{1}, {1}, {1}, {1}, {1}, {2}}
(End)
- H. Gupta, An asymptotic formula in partitions. J. Indian Math. Soc., (N. S.) 10 (1946), 73-76.
- H. Gupta et al., Tables of Partitions. Royal Society Mathematical Tables, Vol. 4, Cambridge Univ. Press, 1958, p. 90.
- R. Honsberger, Mathematical Gems III, M.A.A., 1985, p. 6.
- D. E. Knuth, The Art of Computer Programming, Vol. 4A, Table A-1, page 778. - N. J. A. Sloane, Dec 30 2018
- A. M. Odlyzko, Asymptotic Enumeration Methods, p. 19
- J. Riordan, Combinatorial Identities, Wiley, 1968, p. 199.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- Stanley, R. P., Exercise 1.26 in Enumerative Combinatorics, Vol. 1. Cambridge, England: Cambridge University Press, p. 59, 1999.
- T. D. Noe, Table of n, a(n) for n = 0..1000
- P. A. Baikov and S. V. Mikhailov, The {beta}-expansion for Adler function, Bjorken Sum Rule, and the Crewther-Broadhurst-Kataev relation at order O(alpha_s^4), J. High Energy Phys. 09 (2022) Art. No. 185. See also arXiv:2206.14063 [hep-ph], 2022.
- Kevin Beanland and Hung Viet Chu, On Schreier-type Sets, Partitions, and Compositions, arXiv:2311.01926 [math.CO], 2023.
- David Benson, Radha Kessar, and Markus Linckelmann, Hochschild cohomology of symmetric groups in low degrees, arXiv:2204.09970 [math.GR], 2022.
- Philip Boalch, Counting the fission trees and nonabelian Hodge graphs, arXiv:2410.23358 [math.AG], 2024. See p. 15.
- L. Bracci and L. E. Picasso, A simple iterative method to write the terms of any order of perturbation theory in quantum mechanics, The European Physical Journal Plus, 127 (2012), Article 119. - From _N. J. A. Sloane_, Dec 31 2012
- Emmanuel Briand, Samuel A. Lopes, and Mercedes Rosas, Normally ordered forms of powers of differential operators and their combinatorics, arXiv:1811.00857 [math.CO], 2018.
- C. C. Cadogan, On partly ordered partitions of a positive integer, Fib. Quart., 9 (1971), 329-336.
- P. J. Cameron, Sequences realized by oligomorphic permutation groups, J. Integ. Seqs. Vol. 3 (2000), #00.1.5.
- M. S. Cheema and H. Gupta, Tables of Partitions of Gaussian Integers, National Institute of Sciences of India, Mathematical Tables, Vol. 1, New Delhi, 1956. (Annotated scanned pages from, plus a review)
- Philip Cuthbertson, Fixed hooks in arbitrary columns of partitions, Integers (2025) Vol. 25, Art. No. A28. See p. 3.
- Mario De Salvo, Dario Fasino, Domenico Freni and Giovanni Lo Faro, A Family of 0-Simple Semihypergroups Related to Sequence A000070, Journal of Multiple-Valued Logic & Soft Computing, 2016, Vol. 27, Issue 5/6, pp. 553-572.
- Mario De Salvo, Dario Fasino, Domenico Freni, and Giovanni Lo Faro, Semihypergroups Obtained by Merging of 0-semigroups with Groups, Filomat 32(12) (2018), 4177-4194.
- P. Flajolet and B. Salvy, Euler sums and contour integral representations, Experimental Mathematics, 7(1) (1998), 15-35.
- D. Frank, C. D. Savage and J. A. Sellers, On the Number of Graphical Forest Partitions, Ars Combinatoria, Vol. 65 (2002), 33-37.
- D. Frank, C. D. Savage and J. A. Sellers, On the Number of Graphical Forest Partitions, preprint.
- Manosij Ghosh Dastidar and Sourav Sen Gupta, Generalization of a few results in Integer Partitions, arXiv preprint arXiv:1111.0094 [cs.DM], 2011.
- Petros Hadjicostas, Cyclic, Dihedral and Symmetrical Carlitz Compositions of a Positive Integer, Journal of Integer Sequences, 20 (2017), Article #17.8.5.
- Guo-Niu Han, Enumeration of Standard Puzzles, arXiv:2006.14070 [math.CO], 2020.
- Guo-Niu Han, Enumeration of Standard Puzzles [Cached copy]
- M. D. Hirschhorn, The number of 1's in the partitions of n, Fib. Quart., 51 (2013), 326-329.
- M. D. Hirschhorn, The number of different parts in the partitions of n, Fib. Quart., 52 (2014), 10-15. See p. 11. - _N. J. A. Sloane_, Mar 25 2014
- Nick Hobson, Solution to puzzle 56: Partition identity
- INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 113.
- INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 126.
- MathOverflow, Number of branches between two layers of the Young's lattice, Sep 19 2021.
- Mikhailov, S. V. On a realization of beta-expansion in QCD, J. High Energy Phys. 2017, No. 4, Paper No. 169, 16 p. (2017).
- M. M. Mogbonju, O. A. Ojo, and I. A. Ogunleke, Graphical Representation of Conjugacy Classes in the Order-Preserving Partial One-One Transformation Semigroup, International Journal of Science and Research (IJSR), 3(12) (2014), 711-721.
- G. Pfeiffer, Counting Transitive Relations, Journal of Integer Sequences, Vol. 7 (2004), Article 04.3.2.
- F. Ruskey, Combinatorial Object Server.
- Maria Schuld, Kamil Brádler, Robert Israel, Daiqin Su, and Brajesh Gupt, A quantum hardware-induced graph kernel based on Gaussian Boson Sampling, arXiv:1905.12646 [quant-ph], 2019.
- N. J. A. Sloane, Transforms
- I. J. Ugbene, E. O. Eze, and S. O. Makanjuola, On the Number of Conjugacy Classes in the Injective Order-Decreasing Transformation Semigroup, Pacific Journal of Science and Technology, 14(1) (2013), 182-186.
- Ifeanyichukwu Jeff Ugbene, Gatta Naimat Bakare, and Garba Risqot Ibrahim, Conjugacy classes of the order-preserving and order-decreasing partial one-to-one transformation semigroups, Journal of Science, Technology, Mathematics and Education (JOSTMED), 15(2) (2019), 83-88.
- Joseph Vandehey, Digital problems in the theory of partitions, Integers (2024) Vol. 24A, Art. No. A18. See p. 3.
- Eric Weisstein's World of Mathematics, Stanley's Theorem.
Cf.
A014153,
A024786,
A026794,
A026905,
A058884,
A093694,
A133735,
A137633,
A010815,
A027293,
A035363,
A028310,
A000712,
A000990.
-
List([0..45],n->Sum([0..n],k->NrPartitions(k))); # Muniru A Asiru, Jul 25 2018
-
a000070 = p a028310_list where
p _ 0 = 1
p ks'@(k:ks) m = if m < k then 0 else p ks' (m - k) + p ks m
-- Reinhard Zumkeller, Nov 06 2012
-
with(combinat): a:=n->add(numbpart(j),j=0..n): seq(a(n), n=0..44); # Zerinvary Lajos, Aug 26 2008
-
CoefficientList[ Series[1/(1 - x)*Product[1/(1 - x^k), {k, 75}], {x, 0, 45}], x] (* Robert G. Wilson v, Jul 13 2004 *)
Table[ Count[ Flatten@ IntegerPartitions@ n, 1], {n, 45}] (* Robert G. Wilson v, Aug 06 2008 *)
Join[{1}, Accumulate[PartitionsP[Range[50]]]+1] (* _Harvey P. Dale, Mar 12 2013 *)
a[ n_] := SeriesCoefficient[ 1 / (1 - x) / QPochhammer[ x], {x, 0, n}]; (* Michael Somos, Nov 09 2013 *)
Accumulate[PartitionsP[Range[0,49]]] (* George Beck, Oct 23 2014; typo fixed by Virgile Andreani, Jul 10 2016 *)
-
{a(n) = if( n<0, 0, polcoeff( 1 / prod(m=1, n, 1 - x^m, 1 + x * O(x^n)) / (1 - x), n))}; /* Michael Somos, Nov 08 2002 */
-
x='x+O('x^66); Vec(1/((1-x)*eta(x))) /* Joerg Arndt, May 15 2011 */
-
a(n) = sum(k=0, n, numbpart(k)); \\ Michel Marcus, Sep 16 2016
-
from itertools import accumulate
def A000070iter(n):
L = [0]*n; L[0] = 1
def numpart(n):
S = 0; J = n-1; k = 2
while 0 <= J:
T = L[J]
S = S+T if (k//2)%2 else S-T
J -= k if (k)%2 else k//2
k += 1
return S
for j in range(1, n): L[j] = numpart(j)
return accumulate(L)
print(list(A000070iter(100))) # Peter Luschny, Aug 30 2019
-
# Using function A365676Row. Compare also A365675.
from itertools import accumulate
def A000070List(size: int) -> list[int]:
return [sum(accumulate(reversed(A365676Row(n)))) for n in range(size)]
print(A000070List(45)) # Peter Luschny, Sep 16 2023
-
def A000070_list(leng):
p = [number_of_partitions(n) for n in range(leng)]
return [add(p[:k+1]) for k in range(leng)]
A000070_list(45) # Peter Luschny, Sep 15 2014
A008483
Number of partitions of n into parts >= 3.
Original entry on oeis.org
1, 0, 0, 1, 1, 1, 2, 2, 3, 4, 5, 6, 9, 10, 13, 17, 21, 25, 33, 39, 49, 60, 73, 88, 110, 130, 158, 191, 230, 273, 331, 391, 468, 556, 660, 779, 927, 1087, 1284, 1510, 1775, 2075, 2438, 2842, 3323, 3872, 4510
Offset: 0
T. Forbes (anthony.d.forbes(AT)googlemail.com)
- Andrew van den Hoeven, Table of n, a(n) for n = 0..10000 (first 301 terms from Vincenzo Librandi)
- Peter Adams, Saad I. El-Zanati, Peter Florido, and William Turner, On 2-Factorizations of the Complete 3-Uniform Hypergraph of Order 12 Minus a 1-Factor, Combinatorics, Graph Theory and Computing (SEICCGTC 2021) Springer Proc. Math. Stat., Vol 448, pp. 383-392. See p. 326.
- Roland Bacher and P. De La Harpe, Conjugacy growth series of some infinitely generated groups, hal-01285685v2, 2016.
- Kevin Beanland and Hung Viet Chu, On Schreier-type Sets, Partitions, and Compositions, arXiv:2311.01926 [math.CO], 2023.
- R.-Q. Feng, J. H. Kwak and E. K. Lloyd, Isomorphism classes of authentication codes, Bull. Austral. Math. Soc. 69 (2004), no. 2, 203-215.
- Elisabeth Gaar and Daniel Krenn, Metamour-regular Polyamorous Relationships and Graphs, arXiv:2005.14121 [math.CO], 2020.
- INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 446
- F. Jouneau-Sion and O. Torres, In Fisher's net: exact F-tests in semi-parametric models with exchangeable errors, August 2014, preprint on ResearchGate.
- Jason Kimberley, Index of sequences counting not necessarily connected k-regular simple graphs with girth at least g.
- Johan Kok, Degree affinity number of certain 2-regular graphs, Open J. of Disc. Appl. Math. (2020) Vol. 3, No. 3, 77-84.
- Eric Weisstein's World of Mathematics, Two-Regular Graph.
2-regular simple graphs:
A179184 (connected),
A165652 (disconnected), this sequence (not necessarily connected).
2-regular not necessarily connected graphs without multiple edges [partitions without 2 as a part]: this sequence (no loops allowed [without 1 as a part]),
A027336 (loops allowed [parts may be 1]).
Not necessarily connected 2-regular graphs with girth at least g [partitions into parts >= g]:
A026807 (triangle); chosen g:
A000041 (g=1 -- multigraphs with loops allowed),
A002865 (g=2 -- multigraphs with loops forbidden), this sequence (g=3),
A008484 (g=4),
A185325 (g=5),
A185326 (g=6),
A185327 (g=7),
A185328 (g=8),
A185329 (g=9).
-
p := NumberOfPartitions; A008483 := func< n | n eq 0 select 1 else n le 2 select 0 else p(n) - p(n-1) - p(n-2) + p(n-3)>; // Jason Kimberley, Jan 11 2011
-
series(1/product((1-x^i),i=3..50),x,51);
ZL := [ B,{B=Set(Set(Z, card>=3))}, unlabeled ]: seq(combstruct[count](ZL, size=n), n=0..46); # Zerinvary Lajos, Mar 13 2007
with(combstruct):ZL2:=[S,{S=Set(Cycle(Z,card>2))}, unlabeled]:seq(count(ZL2,size=n),n=0..46); # Zerinvary Lajos, Sep 24 2007
with(combstruct):a:=proc(m) [A,{A=Set(Cycle(Z,card>m))},unlabeled]; end: A008483:=a(2):seq(count(A008483,size=n),n=0..46); # Zerinvary Lajos, Oct 02 2007
-
f[1, 1] = 1; f[n_, k_] := f[n, k] = If[n < 0, 0, If[k > n, 0, If[k == n, 1, f[n, k + 1] + f[n - k, k]]]]; Table[ f[n, 3], {n, 49}] (* Robert G. Wilson v, Jan 31 2011 *)
Rest[Table[Count[IntegerPartitions[n], p_ /; MemberQ[p, 2*Length[p]]], {n, 50}]] (* Clark Kimberling, Feb 27 2014 *)
-
a(n) = numbpart(n)-numbpart(n-1)-numbpart(n-2)+numbpart(n-3) \\ Charles R Greathouse IV, Jul 19 2011
-
from sympy import partition
def A008483(n): return partition(n)-partition(n-1)-partition(n-2)+partition(n-3) # Chai Wah Wu, Jun 10 2025
A006141
Number of integer partitions of n whose smallest part is equal to the number of parts.
Original entry on oeis.org
1, 0, 0, 1, 1, 1, 1, 1, 2, 2, 3, 3, 4, 4, 5, 6, 7, 8, 10, 11, 13, 15, 17, 19, 23, 25, 29, 33, 38, 42, 49, 54, 62, 69, 78, 87, 99, 109, 123, 137, 154, 170, 191, 211, 236, 261, 290, 320, 357, 392, 435, 479, 530, 582, 644, 706, 779, 854, 940, 1029, 1133, 1237, 1358, 1485
Offset: 1
G.f. = x + x^4 + x^5 + x^6 + x^7 + x^8 + 2*x^9 + 2*x^10 + 3*x^11 + 3*x^12 + ...
a(15) = 5 because the partitions of 15 where the smallest part equals the number of parts are
3 + 6 + 6,
3 + 5 + 7,
3 + 4 + 8,
3 + 3 + 9, and
2 + 13.
- _Joerg Arndt_, Oct 08 2012
a(15) = 5 because the partitions of 15 with parts differing by at least 2 and part 1 present are: [14,1] obtained from the partition of 11 with one part, [11], added to the first part of the special partition [3,1] of 4 and [11,3,1], [10,4,1], [9,5,1], [8,6,1] from adding all partition of 15 - 9 = 6 with one part, [6], and those with two parts, [5,1], [4,1], [3,3], to the special partition [5,3,1] of 9. - _Wolfdieter Lang_, Oct 31 2016
a(15) = 5 because the partitions of 14 with parts >= 3 and parts differing by at least 2 are [14], [11,3], [10,4], [9,5] and [8,6]. See the second [MacMahon] comment. This follows from the g.f. G[3](q) given in Andrews - Baxter, eq. (5.1) for i=3, (using summation index m) and m*(m+2) = 3 + 5 + ... + (2*m+1). - _Wolfdieter Lang_, Nov 02 2016
From _Gus Wiseman_, Mar 09 2019: (Start)
The a(8) = 1 through a(15) = 5 integer partitions:
(6,2) (7,2) (8,2) (9,2) (10,2) (11,2) (12,2) (13,2)
(3,3,3) (4,3,3) (4,4,3) (5,4,3) (5,5,3) (6,5,3) (6,6,3)
(5,3,3) (6,3,3) (6,4,3) (7,4,3) (7,5,3)
(7,3,3) (8,3,3) (8,4,3)
(9,3,3)
(End)
- G. H. Hardy, Ramanujan, AMS Chelsea Publ., Providence, RI, 2002, pp. 92-95.
- G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers, Fifth ed., Clarendon Press, Oxford, 2003, pp. 292-294.
- P. A. MacMahon, Combinatory Analysis, Cambridge Univ. Press, London and New York, Vol. 1, 1915 and Vol. 2, 1916; see vol. 2, p 45, Section 293.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- Alois P. Heinz, Table of n, a(n) for n = 1..1000
- George E. Andrews and R. J. Baxter, A motivated proof of the Rogers-Ramanujan identities, Amer. Math. Monthly 96 (1989), no. 5, 401-409.
- Shashank Kanade, Some results on the representation theory of vertex operator algebras and integer partition identities, PhD Handout, Math. Dept., Rutgers University, April 2015.
- Shashank Kanade, Some results on the representation theory of vertex operator algebras and integer partition identities, PhD Dissertation, Math. Dept., Rutgers University, April 2015.
- James Lepowsky and Minxian Zhu, A motivated proof of Gordon's identities, arXiv:1205.6570 [math.CO], 2012; The Ramanujan Journal 29.1-3 (2012): 199-211.
- Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.
- Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992
- Eric Weisstein's World of Mathematics, Rogers-Ramanujan Identities
For the generalized Rogers-Ramanujan series G[1], G[2], G[3], G[4], G[5], G[6], G[7], G[8] see
A003114,
A003106,
A006141,
A264591,
A264592,
A264593,
A264594,
A264595. G[0] = G[1]+G[2] is given by
A003113.
A003106 counts partitions with minimum > length.
A003114 counts partitions with minimum >= length.
A026794 counts partitions by minimum.
A039899 counts partitions with minimum < length.
A039900 counts partitions with minimum <= length.
A239950 counts partitions with minimum equal to number of distinct parts.
Sequences related to balance:
-
A010054 counts balanced strict partitions.
-
A047993 counts balanced partitions.
-
A098124 counts balanced compositions.
-
A106529 ranks balanced partitions.
-
A340596 counts co-balanced factorizations.
-
A340598 counts balanced set partitions.
-
A340599 counts alt-balanced factorizations.
-
A340600 counts unlabeled balanced multiset partitions.
-
A340653 counts balanced factorizations.
-
b:= proc(n, i) option remember; `if`(n<0, 0, `if`(n=0, 1,
`if`(i<1, 0, b(n, i-1)+`if`(i>n, 0, b(n-i,i)))))
end:
a:= n-> add(b(n-j^2, j-1), j=0..isqrt(n)):
seq(a(n), n=1..80); # Alois P. Heinz, Oct 08 2012
-
b[n_, i_] := b[n, i] = If[n<0, 0, If[n == 0, 1, If[i<1, 0, b[n, i-1] + If[i>n, 0, b[n-i, i]]]]]; a[n_] := Sum[b[n-j^2, j-1], {j, 0, Sqrt[n]}]; Table[a[n], {n, 1, 80}] (* Jean-François Alcover, Mar 17 2014, after Alois P. Heinz *)
Table[Length[Select[IntegerPartitions[n],Min[#]==Length[#]&]],{n,30}] (* Gus Wiseman, Mar 09 2019 *)
-
{a(n) = if( n<1, 0, polcoeff( sum(k=1, sqrtint(n), x^k^2 / prod(j=1, k-1, 1 - x^j, 1 + O(x ^ (n - k^2 + 1) ))), n))} /* Michael Somos, Jan 22 2008 */
More terms from Kok Seng Chua (chuaks(AT)ihpc.nus.edu.sg), Jun 20 2000
A257993
Least gap in the partition having Heinz number n; index of the least prime not dividing n.
Original entry on oeis.org
1, 2, 1, 2, 1, 3, 1, 2, 1, 2, 1, 3, 1, 2, 1, 2, 1, 3, 1, 2, 1, 2, 1, 3, 1, 2, 1, 2, 1, 4, 1, 2, 1, 2, 1, 3, 1, 2, 1, 2, 1, 3, 1, 2, 1, 2, 1, 3, 1, 2, 1, 2, 1, 3, 1, 2, 1, 2, 1, 4, 1, 2, 1, 2, 1, 3, 1, 2, 1, 2, 1, 3, 1, 2, 1, 2, 1, 3, 1, 2, 1, 2, 1, 3, 1, 2, 1, 2, 1, 4, 1, 2, 1, 2, 1, 3
Offset: 1
a(18) = 3 because the partition having Heinz number 18 = 2*3*3 is [1,2,2], having least gap equal to 3.
- G. E. Andrews and K. Eriksson, Integer Partitions, Cambridge Univ. Press, 2004, Cambridge.
- Miklós Bóna, A Walk Through Combinatorics, World Scientific Publishing Co., 2002.
- Alois P. Heinz, Table of n, a(n) for n = 1..20000
- George E. Andrews and David Newman, Partitions and the Minimal Excludant, Annals of Combinatorics, Volume 23, May 2019, Pages 249-254.
- P. J. Grabner and A. Knopfmacher, Analysis of some new partition statistics, Ramanujan J., 12, 2006, 439-454.
- Brian Hopkins, James A. Sellers, and Dennis Stanton, Dyson's Crank and the Mex of Integer Partitions, arXiv:2009.10873 [math.CO], 2020.
- Wikipedia, Mex (mathematics).
- Index entries for sequences related to primorial base.
The triangle counting partitions by this statistic is
A264401.
A maximal instead of minimal version is
A339662.
Positions of even terms are
A342050.
Positions of odd terms are
A342051.
A000070 counts partitions with a selected part.
A006128 counts partitions with a selected position.
A073491 lists numbers with gap-free prime indices.
A238709 counts partitions by sum and least difference.
A333214 lists positions of adjacent unequal prime gaps.
A339737 counts partitions by sum and greatest gap.
Cf.
A001223,
A001511,
A005117,
A026794,
A029707,
A072233,
A079068,
A098743,
A124010,
A279945,
A325351,
A325352.
-
with(numtheory): a := proc (n) local B, q: B := proc (n) local nn, j, m: nn := op(2, ifactors(n)): for j to nops(nn) do m[j] := op(j, nn) end do: [seq(seq(pi(op(1, m[i])), q = 1 .. op(2, m[i])), i = 1 .. nops(nn))] end proc: for q while member(q, B(n)) = true do end do: q end proc: seq(a(n), n = 1 .. 150);
# second Maple program:
a:= n-> `if`(n=1, 1, (s-> min({$1..(max(s)+1)} minus s))(
{map(x-> numtheory[pi](x[1]), ifactors(n)[2])[]})):
seq(a(n), n=1..100); # Alois P. Heinz, May 09 2016
# faster:
A257993 := proc(n) local p, c; c := 1; p := 2;
while n mod p = 0 do p := nextprime(p); c := c + 1 od: c end:
seq(A257993(n), n=1..100); # Peter Luschny, Jun 04 2017
-
A053669[n_] := For[p = 2, True, p = NextPrime[p], If[CoprimeQ[p, n], Return[p]]]; a[n_] := PrimePi[A053669[n]]; Array[a, 100] (* Jean-François Alcover, Nov 28 2016 *)
Table[k = 1; While[! CoprimeQ[Prime@ k, n], k++]; k, {n, 100}] (* Michael De Vlieger, Jun 22 2017 *)
-
a(n) = forprime(p=2,, if (n % p, return(primepi(p)))); \\ Michel Marcus, Jun 22 2017
-
from sympy import nextprime, primepi
def a053669(n):
p = 2
while True:
if n%p!=0: return p
else: p=nextprime(p)
def a(n): return primepi(a053669(n)) # Indranil Ghosh, May 12 2017
-
(define (A257993 n) (let loop ((n n) (i 1)) (let* ((p (A000040 i)) (d (modulo n p))) (if (not (zero? d)) i (loop (/ (- n d) p) (+ 1 i))))))
;; Antti Karttunen, Aug 22 2016
A362614
Irregular triangle read by rows where T(n,k) is the number of integer partitions of n with k modes.
Original entry on oeis.org
1, 0, 1, 0, 2, 0, 2, 1, 0, 4, 1, 0, 5, 2, 0, 7, 3, 1, 0, 11, 3, 1, 0, 16, 4, 2, 0, 21, 6, 3, 0, 29, 8, 4, 1, 0, 43, 7, 5, 1, 0, 54, 13, 8, 2, 0, 78, 12, 8, 3, 0, 102, 17, 11, 5, 0, 131, 26, 12, 6, 1, 0, 175, 29, 17, 9, 1, 0, 233, 33, 18, 11, 2, 0, 295, 47, 25
Offset: 0
Triangle begins:
1
0 1
0 2
0 2 1
0 4 1
0 5 2
0 7 3 1
0 11 3 1
0 16 4 2
0 21 6 3
0 29 8 4 1
0 43 7 5 1
0 54 13 8 2
0 78 12 8 3
0 102 17 11 5
0 131 26 12 6 1
0 175 29 17 9 1
Row n = 8 counts the following partitions:
(8) (53) (431)
(44) (62) (521)
(332) (71)
(422) (3311)
(611)
(2222)
(3221)
(4211)
(5111)
(22211)
(32111)
(41111)
(221111)
(311111)
(2111111)
(11111111)
Removing columns 0 and 1 and taking sums gives
A362607, ranks
A362605.
This statistic (mode-count) is ranked by
A362611.
A008284 counts partitions by length.
A275870 counts collapsible partitions.
-
msi[ms_]:=Select[Union[ms],Count[ms,#]>=Max@@Length/@Split[ms]&];
Table[Length[Select[IntegerPartitions[n],Length[msi[#]]==k&]],{n,0,15},{k,0,Floor[(Sqrt[1+8n]-1)/2]}]
A046746
Sum of smallest parts of all partitions of n.
Original entry on oeis.org
0, 1, 3, 5, 9, 12, 20, 25, 38, 49, 69, 87, 123, 152, 205, 260, 341, 425, 555, 687, 882, 1094, 1380, 1702, 2140, 2620, 3254, 3982, 4907, 5967, 7318, 8856, 10787, 13019, 15759, 18943, 22840, 27334, 32794, 39139, 46758, 55595, 66182, 78433, 93021, 109935, 129922
Offset: 0
For n = 4 the five partitions of 4 are 4, 2+2, 3+1, 2+1+1, 1+1+1+1, therefore the smallest parts of all partitions of 4 are 4, 2, 1, 1, 1 and the sum is 4+2+1+1+1 = 9, so a(4) = 9. - _Omar E. Pol_, Aug 02 2013
-
b:= proc(n, i) option remember;
`if`(n=i, n, 0) +`if`(i<1, 0, b(n, i-1) +`if`(n b(n, n):
seq(a(n), n=0..100); # Alois P. Heinz, Mar 28 2012
-
f[n_] := Plus @@ Min /@ IntegerPartitions@ n; Array[f, 45, 0] (* Robert G. Wilson v, Apr 12 2011 *)
b[n_, i_] := b[n, i] = If[n==i, n, 0] + If[i<1, 0, b[n, i-1] + If[nJean-François Alcover, Aug 31 2015, after Alois P. Heinz *)
Join[{0},Table[Total[IntegerPartitions[n][[;;,-1]]],{n,50}]] (* Harvey P. Dale, Aug 24 2025 *)
-
N=66; z='z+O('z^N); gf=sum(k=1,N, k * z^k / prod(j=k,N, 1-z^j ) ); concat([0], Vec(gf)) \\ Joerg Arndt, Apr 17 2011
A362615
Irregular triangle read by rows where T(n,k) is the number of integer partitions of n with k co-modes.
Original entry on oeis.org
1, 0, 1, 0, 2, 0, 2, 1, 0, 4, 1, 0, 5, 2, 0, 7, 3, 1, 0, 10, 4, 1, 0, 13, 7, 2, 0, 16, 11, 3, 0, 23, 14, 4, 1, 0, 30, 19, 6, 1, 0, 35, 29, 11, 2, 0, 50, 34, 14, 3, 0, 61, 46, 23, 5, 0, 73, 69, 27, 6, 1, 0, 95, 81, 44, 10, 1, 0, 123, 105, 53, 14, 2
Offset: 0
Triangle begins:
1
0 1
0 2
0 2 1
0 4 1
0 5 2
0 7 3 1
0 10 4 1
0 13 7 2
0 16 11 3
0 23 14 4 1
0 30 19 6 1
0 35 29 11 2
0 50 34 14 3
0 61 46 23 5
0 73 69 27 6 1
0 95 81 44 10 1
Row n = 8 counts the following partitions:
(8) (53) (431)
(44) (62) (521)
(332) (71)
(422) (3221)
(611) (3311)
(2222) (4211)
(5111) (32111)
(22211)
(41111)
(221111)
(311111)
(2111111)
(11111111)
Removing columns 0 and 1 and taking sums gives
A362609, ranks
A362606.
This statistic (co-mode count) is ranked by
A362613.
A008284 counts partitions by length.
A275870 counts collapsible partitions.
-
comsi[ms_]:=Select[Union[ms],Count[ms,#]<=Min@@Length/@Split[ms]&];
Table[Length[Select[IntegerPartitions[n],Length[comsi[#]]==k&]],{n,0,15},{k,0,Floor[(Sqrt[1+8n]-1)/2]}]
A008484
Number of partitions of n into parts >= 4.
Original entry on oeis.org
1, 0, 0, 0, 1, 1, 1, 1, 2, 2, 3, 3, 5, 5, 7, 8, 11, 12, 16, 18, 24, 27, 34, 39, 50, 57, 70, 81, 100, 115, 140, 161, 195, 225, 269, 311, 371, 427, 505, 583, 688, 791, 928, 1067, 1248, 1434, 1668, 1914, 2223, 2546, 2945, 3370, 3889, 4443, 5113, 5834, 6698
Offset: 0
T. Forbes (anthony.d.forbes(AT)googlemail.com)
2-regular graphs with girth at least 4:
A185114 (connected),
A185224 (disconnected), this sequence (not necessarily connected).
Not necessarily connected 2-regular graphs with girth at least g [partitions into parts >= g]:
A026807 (triangle); chosen g:
A000041 (g=1 -- multigraphs with loops allowed),
A002865 (g=2 -- multigraphs with loops forbidden),
A008483 (g=3), this sequence (g=4),
A185325(g=5),
A185326 (g=6),
A185327 (g=7),
A185328 (g=8),
A185329 (g=9).
Not necessarily connected k-regular simple graphs with girth at least 4:
A185314 (any k),
A185304 (triangle); specified degree k: this sequence (k=2),
A185334 (k=3),
A185344 (k=4),
A185354 (k=5),
A185364 (k=6).
-
a:= func< n | NumberOfPartitions(n)-NumberOfPartitions(n-1)-NumberOfPartitions(n-2)+ NumberOfPartitions(n-4)+NumberOfPartitions(n-5)- NumberOfPartitions(n-6) >; [1,0,0,0,1,1,1] cat [ a(n) : n in [7..60]]; // Vincenzo Librandi, Aug 20 2017
-
R:=PowerSeriesRing(Integers(), 60); Coefficients(R!( 1/(&*[1-x^(m+4): m in [0..70]]) )); // G. C. Greubel, Nov 03 2019
-
series(1/product((1-x^i),i=4..65),x,60); # end of program
ZL := [ B,{B=Set(Set(Z, card>=4))}, unlabeled ]: seq(combstruct[count](ZL, size=n), n=0..60); # Zerinvary Lajos, Mar 13 2007
-
f[1, 1]=1; f[n_, k_]:= f[n, k] = If[n<0, 0, If[k>n, 0, If[k==n, 1, f[n, k +1] + f[n-k, k]]]]; Table[f[n, 4], {n, 60}] (* end of program *)
Drop[Table[Count[IntegerPartitions[n], p_ /; MemberQ[p, 3*Length[p]]], {n, 60}],2] (* Clark Kimberling, Feb 27 2014 *)
Table[Count[IntegerPartitions[n],
p_ /; 3 Count[p, 1] == 2 Length[p]], {n, 0, 60}] (* George Beck Aug 19 2017 *)
CoefficientList[Series[1/QPochhammer[x^4, x], {x,0,60}], x] (* G. C. Greubel, Nov 03 2019 *)
-
my(x='x+O('x^60)); Vec(1/prod(m=0,70, 1-x^(m+4))) \\ G. C. Greubel, Nov 03 2019
-
def A008484_list(prec):
P. = PowerSeriesRing(ZZ, prec)
return P( 1/product((1-x^(m+4)) for m in (0..70)) ).list()
A008484_list(60) # G. C. Greubel, Nov 03 2019
A026796
Number of partitions of n in which the least part is 3.
Original entry on oeis.org
0, 0, 0, 1, 0, 0, 1, 1, 1, 2, 2, 3, 4, 5, 6, 9, 10, 13, 17, 21, 25, 33, 39, 49, 60, 73, 88, 110, 130, 158, 191, 230, 273, 331, 391, 468, 556, 660, 779, 927, 1087, 1284, 1510, 1775, 2075, 2438, 2842, 3323, 3872, 4510, 5237, 6095, 7056, 8182, 9465, 10945, 12625
Offset: 0
Essentially the same sequence as
A008483.
Not necessarily connected 2-regular graphs with girth exactly g [partitions with smallest part g]:
A026794 (triangle); chosen g:
A002865 (g=2 -- multigraphs with at least one pair of parallel edges, but loops forbidden), this sequence (g=3),
A026797 (g=4),
A026798 (g=5),
A026799 (g=6),
A026800 (g=7),
A026801 (g=8),
A026802 (g=9),
A026803 (g=10).
-
R:=PowerSeriesRing(Integers(), 60); [0,0,0] cat Coefficients(R!( x^3/(&*[1-x^(m+3): m in [0..70]]) )); // G. C. Greubel, Nov 02 2019
-
seq(coeff(series(x^3/mul(1-x^(m+3), m=0..65), x, n+1), x, n), n = 0 .. 60); # G. C. Greubel, Nov 02 2019
-
Table[Count[IntegerPartitions[n], p_ /; Min@p==3], {n, 0, 60}] (* George Beck Aug 19 2017 *)
CoefficientList[Series[x^3/QPochhammer[x^3, x], {x,0,60}], x] (* G. C. Greubel, Nov 02 2019 *)
-
a(n) = numbpart(n-3) - numbpart(n-4) - numbpart(n-5) + numbpart(n-6); \\ Michel Marcus, Aug 20 2014
-
x='x+O('x^66); Vecrev(Pol(x^3*(1-x)*(1-x^2)/eta(x))) \\ Joerg Arndt, Aug 22 2014
-
def A026796_list(prec):
P. = PowerSeriesRing(ZZ, prec)
return P( x^3/product((1-x^(m+3)) for m in (0..65)) ).list()
A026796_list(60) # G. C. Greubel, Nov 02 2019
Comments