cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 41-50 of 228 results. Next

A265509 a(n) = largest base-2 palindrome m <= 2n+1 such that every base-2 digit of m is <= the corresponding digit of 2n+1; m is written in base 10.

Original entry on oeis.org

1, 3, 5, 7, 9, 9, 9, 15, 17, 17, 21, 21, 17, 27, 21, 31, 33, 33, 33, 33, 33, 33, 45, 45, 33, 51, 33, 51, 33, 51, 45, 63, 65, 65, 65, 65, 73, 73, 73, 73, 65, 65, 85, 85, 73, 73, 93, 93, 65, 99, 65, 99, 73, 107, 73, 107, 65, 99, 85, 119, 73, 107, 93, 127, 129, 129, 129, 129, 129, 129, 129, 129, 129, 129, 129, 129, 153
Offset: 0

Views

Author

N. J. A. Sloane, Dec 09 2015

Keywords

Comments

A007088(a(n)) = A265510(n). - Reinhard Zumkeller, Dec 11 2015

Crossrefs

Sequences related to palindromic floor and ceiling: A175298, A206913, A206914, A261423, A262038, and the large block of consecutive sequences beginning at A265509.

Programs

  • Haskell
    a265509 n = a265509_list !! n
    a265509_list = f (tail a030308_tabf) [[]] where
       f (bs:_:bss) pss = y : f bss pss' where
         y = foldr (\d v -> 2 * v + d) 0 ys
         (ys:_) = dropWhile (\ps -> not $ and $ zipWith (<=) ps bs) pss'
         pss' = if bs /= reverse bs then pss else bs : pss
    -- Reinhard Zumkeller, Dec 11 2015
  • Maple
    ispal := proc(n) # test for base-b palindrome
    local L, Ln, i;
    global b;
        L := convert(n, base, b);
        Ln := nops(L);
        for i to floor(1/2*Ln) do
            if L[i] <> L[Ln + 1 - i] then return false end if
        end do;
        return true
    end proc
    # find max pal <= n and in base-b shadow of n, write in base 10
    under10:=proc(n) global b;
    local t1,t2,i,m,sw1,L2;
    if n mod b = 0 then return(0); fi;
    t1:=convert(n,base,b);
    for m from n by -1 to 0 do
    if ispal(m) then
       t2:=convert(m,base,b);
       L2:=nops(t2);
       sw1:=1;
       for i from 1 to L2 do
          if t2[i] > t1[i] then sw1:=-1; break; fi;
                          od:
       if sw1=1 then return(m); fi;
    fi;
                           od;
    end proc;
    b:=2; [seq(under10(2*n+1),n=0..144)]; # Gives A265509
    # find max pal <= n and in base-b shadow of n, write in base b
    underb:=proc(n) global b;
    local t1,t2,i,m,mb,sw1,L2;
    if n mod b = 0 then return(0); fi;
    t1:=convert(n,base,b);
    for m from n by -1 to 0 do
    if ispal(m) then
       t2:=convert(m,base,b);
       L2:=nops(t2);
       sw1:=1;
       for i from 1 to L2 do
          if t2[i] > t1[i] then sw1:=-1; break; fi;
                          od:
       if sw1=1 then mb:=add(t2[i]*10^(i-1), i=1..L2); return(mb); fi;
    fi;
                           od;
    end proc;
    b:=2; [seq(underb(2*n+1),n=0..144)]; # Gives A265510
  • Mathematica
    A265509 = FromDigits[Min /@ Transpose[{#, Reverse@#}], 2] &@IntegerDigits[2 # + 1, 2] & (* JungHwan Min, Aug 22 2016 *)

A014601 Numbers congruent to 0 or 3 mod 4.

Original entry on oeis.org

0, 3, 4, 7, 8, 11, 12, 15, 16, 19, 20, 23, 24, 27, 28, 31, 32, 35, 36, 39, 40, 43, 44, 47, 48, 51, 52, 55, 56, 59, 60, 63, 64, 67, 68, 71, 72, 75, 76, 79, 80, 83, 84, 87, 88, 91, 92, 95, 96, 99, 100, 103, 104, 107, 108, 111, 112, 115, 116, 119, 120, 123, 124
Offset: 0

Views

Author

Eric Rains (rains(AT)caltech.edu)

Keywords

Comments

Discriminants of orders in imaginary quadratic fields (negated). [Comment corrected by Christopher E. Thompson, Dec 11 2016]
Numbers such that Langford-Skolem problem has a solution - see A014552.
Complement of A042963. - Reinhard Zumkeller, Oct 04 2004
Also called skew amenable numbers; a number k is skew amenable if there exist a set {a(i)} of integers satisfying the relations k = Sum_{i=1..k} a(i) = -Product_{i=1..k} a(i). Thus we have 8 = 1 + 1 + 1 + 1 + 1 + 1 - 2 + 4 = -(1*1*1*1*1*1*(-2)*4). - Lekraj Beedassy, Jan 07 2005
Possible nonpositive discriminants of quadratic equation a*x^2 + b*x + c or discriminants of binary quadratic forms a*x^2 + b*x*y + c*y^2. - Artur Jasinski, Apr 28 2008
Also, disregarding the 0 term, positive integers m such that, equivalently,
(i) +-1 +-2 +-... +-m is even for all choices of signs,
(ii) +-1 +-2 +-... +-m = 0 for some choices of signs,
(iii) for all -m <= k <= m, k = +-1 +-2 +-... +-(k-1) +-(k+1) +-(k+2) +-... +-m for at least one choice of signs. - Rick L. Shepherd, Oct 29 2008
A145768(a(n)) is even. - Reinhard Zumkeller, Jun 05 2012
Multiples of 4 interleaved with 1 less than multiples of 4. - Wesley Ivan Hurt, Nov 08 2013
((2*k+0) + (2*k+1) + ... + (2*k+m-1) + (2*k+m)) is even if and only if m = a(n) for some n where k is any nonnegative integer. - Gionata Neri, Jul 24 2015
Numbers whose binary reflected Gray code (A014550) ends with 0. - Amiram Eldar, May 17 2021

Examples

			G.f. = 3*x + 4*x^2 + 7*x^3 + 8*x^4 + 11*x^5 + 12*x^6 + 15*x^7 + 16*x^8 + ...
		

References

  • H. Cohen, Course in Computational Alg. No. Theory, Springer, 1993, pp. 514-5.
  • A. Scholz and B. Schoeneberg, Einführung in die Zahlentheorie, 5. Aufl., de Gruyter, Berlin, New York, 1973, p. 108.

Crossrefs

Cf. A274406. - Bruno Berselli, Jun 26 2016

Programs

  • Haskell
    a014601 n = a014601_list !! n
    a014601_list = [x | x <- [0..], mod x 4 `elem` [0, 3]]
    -- Reinhard Zumkeller, Jun 05 2012
  • Magma
    [n: n in [0..200]|n mod 4 in {0,3}]; // Vincenzo Librandi, Dec 24 2010
    
  • Maple
    A014601:=n->3*n-2*floor(n/2); seq(A014601(k), k=0..100); # Wesley Ivan Hurt, Nov 08 2013
  • Mathematica
    aa = {}; Do[Do[Do[d = b^2 - 4 a c; If[d <= 0, AppendTo[aa, -d]], {a, 0, 50}], {b, 0, 50}], {c, 0, 50}]; Union[aa] (* Artur Jasinski, Apr 28 2008 *)
    Select[Range[0, 124], Or[Mod[#, 4] == 0, Mod[#, 4] == 3] &] (* Ant King, Nov 18 2010 *)
    CoefficientList[Series[2 x/(1 - x)^2 + (1/(1 - x) + 1/(1 + x)) x/2, {x, 0, 100}], x] (* Vincenzo Librandi, May 18 2014 *)
    a[ n_] := 2 n + Mod[n, 2]; (* Michael Somos, Jul 24 2015 *)
  • PARI
    {a(n) = 2*n + n%2}; /* Michael Somos, Dec 27 2010 */
    

Formula

a(n) = (n + 1)*2 + 1 - n mod 2. - Reinhard Zumkeller, Apr 21 2003
A014494(n) = A000217(a(n)). - Reinhard Zumkeller, Oct 04 2004
a(n) = Sum_{k=1..n} (2 - (-1)^k). - William A. Tedeschi, Mar 20 2008
A139131(a(n)) = A078636(a(n)). - Reinhard Zumkeller, Apr 10 2008
From R. J. Mathar, Sep 25 2009: (Start)
a(n) = a(n-1) + a(n-2) - a(n-3) for n > 2.
G.f.: x*(3+x)/((1+x)*(x-1)^2). (End)
a(n) = 2*n + (n mod 2). - Paolo Valzasina (p.valzasina(AT)gmail.com), Nov 24 2009
a(n) = (4*n - (-1)^n + 1)/2. - Bruno Berselli, Oct 06 2010
a(n) = 4*n - a(n-1) - 1 (with a(0) = 0). - Vincenzo Librandi, Dec 24 2010
a(n) = -A042948(-n) for all n in Z. - Michael Somos, Dec 27 2010
G.f.: 2*x / (1 - x)^2 + (1 / (1 - x) + 1 / (1 + x)) * x/2. - Michael Somos, Dec 27 2010
a(n) = Sum_{k>=0} A030308(n,k)*b(k) with b(0) = 3 and b(k) = 2^(k+1) for k > 0. - Philippe Deléham, Oct 17 2011
a(n) = ceiling((4/3)*ceiling(3*n/2)). - Clark Kimberling, Jul 04 2012
a(n) = 3n - 2*floor(n/2). - Wesley Ivan Hurt, Nov 08 2013
a(n) = A042948(n+1) - 1 for all n in Z. - Michael Somos, Jul 24 2015
a(n) + a(n+1) = A004767(n) for all n in Z. - Michael Somos, Jul 24 2015
Sum_{n>=1} (-1)^(n+1)/a(n) = 3*log(2)/4 - Pi/8. - Amiram Eldar, Dec 05 2021
E.g.f.: ((4*x + 1)*exp(x) - exp(-x))/2. - David Lovler, Aug 04 2022

A101211 Triangle read by rows: n-th row is length of run of leftmost 1's, followed by length of run of 0's, followed by length of run of 1's, etc., in the binary representation of n.

Original entry on oeis.org

1, 1, 1, 2, 1, 2, 1, 1, 1, 2, 1, 3, 1, 3, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 1, 1, 3, 1, 4, 1, 4, 1, 3, 1, 1, 2, 1, 1, 1, 2, 2, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 3, 2, 3, 2, 2, 1, 2, 1, 1, 1, 2, 1, 2, 3, 2, 3, 1, 1, 4, 1, 5, 1, 5, 1, 4, 1, 1, 3, 1, 1, 1, 3, 2, 1, 2, 1, 2, 1, 2, 1, 1, 1, 1, 2, 2, 1
Offset: 1

Views

Author

Leroy Quet, Dec 13 2004

Keywords

Comments

Row n has A005811(n) elements. In rows 2^(k-1)..2^k-1 we have all the compositions (ordered partitions) of k. Other orderings of compositions: A066099, A108244, and A124734. - Jason Kimberley, Feb 09 2013
A043276(n) = largest term in n-th row. - Reinhard Zumkeller, Dec 16 2013
From the first comment it follows that we have a bijection between the positive integers and the set of all compositions. - Emeric Deutsch, Jul 11 2017
From Robert Israel, Jan 23 2018: (Start)
If n is even, row 2*n is row n with its last element incremented by 1, and row 2*n+1 is row n with 1 appended.
If n is odd, row 2*n+1 is row n with its last element incremented by 1, and row 2*n is row n with 1 appended. (End)

Examples

			Since 9 is 1001 in binary, the 9th row is 1,2,1.
Since 11 is 1011 in binary, the 11th row is 1,1,2.
Triangle begins:
  1;
  1,1;
  2;
  1,2;
  1,1,1;
  2,1;
  3;
  1,3;
		

Crossrefs

A070939(n) gives the sum of terms in row n, while A167489(n) gives the product of its terms. A090996 gives the first column. A227736 lists the terms of each row in reverse order.
Cf. also A227186.
Cf. A318927 (concatenation of each row), A318926 (concatenations of reversed rows).
Cf. A382255 (Heinz numbers of the rows: Product_k prime(T(n,k))).

Programs

  • Haskell
    import Data.List (group)
    a101211 n k = a101211_tabf !! (n-1) !! (k-1)
    a101211_row n = a101211_tabf !! (n-1)
    a101211_tabf = map (reverse . map length . group) $ tail a030308_tabf
    -- Reinhard Zumkeller, Dec 16 2013
    
  • Maple
    # Maple program due to W. Edwin Clark:
    Runs := proc (L) local j, r, i, k; j := 1: r[j] := L[1]: for i from 2 to nops(L) do if L[i] = L[i-1] then r[j] := r[j], L[i] else j := j+1: r[j] := L[i] end if end do: [seq([r[k]], k = 1 .. j)] end proc: RunLengths := proc (L) map(nops, Runs(L)) end proc: c := proc (n) ListTools:-Reverse(convert(n, base, 2)): RunLengths(%) end proc: # Row n is obtained with the command c(n). - Emeric Deutsch, Jul 03 2017
    # Maple program due to W. Edwin Clark, yielding the integer ind corresponding to a given composition (the index of the composition):
    ind := proc (x) local X, j, i: X := NULL: for j to nops(x) do if type(j, odd) then X := X, seq(1, i = 1 .. x[j]) end if: if type(j, even) then X := X, seq(0, i = 1 .. x[j]) end if end do: X := [X]: add(X[i]*2^(nops(X)-i), i = 1 .. nops(X)) end proc; # Clearly, ind(c(n))= n. - Emeric Deutsch, Jan 23 2018
  • Mathematica
    Table[Length /@ Split@ IntegerDigits[n, 2], {n, 38}] // Flatten (* Michael De Vlieger, Jul 11 2017 *)
  • PARI
    apply( {A101211_row(n)=Vecrev((n=vecextract([-1..exponent(n)], bitxor(2*n, bitor(n,1))))[^1]-n[^-1])}, [1..19]) \\ replacing older code by M. F. Hasler, Mar 24 2025
  • Python
    from itertools import groupby
    def arow(n): return [len(list(g)) for k, g in groupby(bin(n)[2:])]
    def auptorow(rows):
        alst = []
        for i in range(1, rows+1): alst.extend(arow(i))
        return alst
    print(auptorow(38)) # Michael S. Branicky, Oct 02 2021
    

Formula

a(n) = A227736(A227741(n)) = A227186(A056539(A227737(n)),A227740(n)) - Antti Karttunen, Jul 27 2013

Extensions

More terms from Emeric Deutsch, Apr 12 2005

A030341 Triangle T(n,k): write n in base 3, reverse order of digits.

Original entry on oeis.org

0, 1, 2, 0, 1, 1, 1, 2, 1, 0, 2, 1, 2, 2, 2, 0, 0, 1, 1, 0, 1, 2, 0, 1, 0, 1, 1, 1, 1, 1, 2, 1, 1, 0, 2, 1, 1, 2, 1, 2, 2, 1, 0, 0, 2, 1, 0, 2, 2, 0, 2, 0, 1, 2, 1, 1, 2, 2, 1, 2, 0, 2, 2, 1, 2, 2, 2, 2, 2, 0, 0, 0, 1, 1, 0, 0, 1, 2, 0, 0, 1, 0, 1, 0, 1, 1, 1, 0, 1, 2, 1, 0, 1
Offset: 0

Views

Author

Keywords

Examples

			Triangle begins :
0
1
2
0, 1
1, 1
2, 1
0, 2
1, 2
2, 2
0, 0, 1
1, 0, 1
2, 0, 1
0, 1, 1
1, 1, 1
2, 1, 1 ...
		

Crossrefs

Cf. A081604 (row lengths), A053735 (row sums), A007089, A003137.
Cf. A030308, A030386, A031235, A030567, A031007, A031045, A031087, A031298 for the base-2 to base-10 analogs.

Programs

  • Haskell
    a030341 n k = a030341_tabf !! n !! k
    a030341_row n = a030341_tabf !! n
    a030341_tabf = iterate succ [0] where
       succ []     = [1]
       succ (2:ts) = 0 : succ ts
       succ (t:ts) = (t + 1) : ts
    -- Reinhard Zumkeller, Feb 21 2013
    
  • Maple
    A030341_row := n -> op(convert(n, base, 3)):
    seq(A030341_row(n), n=0..32); # Peter Luschny, Nov 28 2017
  • Mathematica
    Flatten[Table[Reverse[IntegerDigits[n,3]],{n,0,40}]] (* Harvey P. Dale, Oct 20 2014 *)
  • PARI
    A030341(n, k=-1)=/*k<0&&error("Flattened sequence not yet implemented.")*/n\3^k%3 \\ Assuming that columns are numbered starting with k=0 as in A030308, A030567 and others. - M. F. Hasler, Jul 21 2013

Extensions

Initial 0 and better name by Philippe Deléham, Oct 20 2011

A065359 Alternating bit sum for n: replace 2^k with (-1)^k in binary expansion of n.

Original entry on oeis.org

0, 1, -1, 0, 1, 2, 0, 1, -1, 0, -2, -1, 0, 1, -1, 0, 1, 2, 0, 1, 2, 3, 1, 2, 0, 1, -1, 0, 1, 2, 0, 1, -1, 0, -2, -1, 0, 1, -1, 0, -2, -1, -3, -2, -1, 0, -2, -1, 0, 1, -1, 0, 1, 2, 0, 1, -1, 0, -2, -1, 0, 1, -1, 0, 1, 2, 0, 1, 2, 3, 1, 2, 0, 1, -1, 0, 1, 2, 0, 1, 2, 3, 1, 2, 3, 4, 2, 3, 1, 2, 0, 1, 2, 3, 1, 2, 0, 1, -1, 0, 1, 2, 0, 1, -1, 0, -2
Offset: 0

Views

Author

Marc LeBrun, Oct 31 2001

Keywords

Comments

Notation: (2)[n](-1)
From David W. Wilson and Ralf Stephan, Jan 09 2007: (Start)
a(n) is even iff n in A001969; a(n) is odd iff n in A000069.
a(n) == 0 (mod 3) iff n == 0 (mod 3).
a(n) == 0 (mod 6) iff (n == 0 (mod 3) and n/3 not in A036556).
a(n) == 3 (mod 6) iff (n == 0 (mod 3) and n/3 in A036556). (End)
a(n) = A030300(n) - A083905(n). - Ralf Stephan, Jul 12 2003
From Robert G. Wilson v, Feb 15 2011: (Start)
First occurrence of k and -k: 0, 1, 2, 5, 10, 21, 42, 85, ..., (A000975); i.e., first 0 occurs for 0, first 1 occurs for 1, first -1 occurs at 2, first 2 occurs for 5, etc.;
a(n)=-3 only if n mod 3 = 0,
a(n)=-2 only if n mod 3 = 1,
a(n)=-1 only if n mod 3 = 2,
a(n)= 0 only if n mod 3 = 0,
a(n)= 1 only if n mod 3 = 1,
a(n)= 2 only if n mod 3 = 2,
a(n)= 3 only if n mod 3 = 0, ..., . (End)
a(n) modulo 2 is the Prouhet-Thue-Morse sequence A010060. - Philippe Deléham, Oct 20 2011
In the Koch curve, number the segments starting with n=0 for the first segment. The net direction (i.e., the sum of the preceding turns) of segment n is a(n)*60 degrees. This is since in the curve each base-4 digit 0,1,2,3 of n is a sub-curve directed respectively 0, +60, -60, 0 degrees, which is the net 0,+1,-1,0 of two bits in the sum here. - Kevin Ryde, Jan 24 2020

Examples

			Alternating bit sum for 11 = 1011 in binary is 1 - 1 + 0 - 1 = -1, so a(11) = -1.
		

Crossrefs

Cf. A005536 (partial sums), A056832 (abs first differences), A010060 (mod 2), A039004 (indices of 0's).
Cf. also A004718.
Cf. analogous sequences for bases 3-10: A065368, A346688, A346689, A346690, A346691, A346731, A346732, A055017 and also A373605 (for primorial base).

Programs

  • Haskell
    a065359 0 = 0
    a065359 n = - a065359 n' + m where (n', m) = divMod n 2
    -- Reinhard Zumkeller, Mar 20 2015
    
  • Maple
    A065359 := proc(n) local dgs ; dgs := convert(n,base,2) ; add( -op(i,dgs)*(-1)^i,i=1..nops(dgs)) ; end proc: # R. J. Mathar, Feb 04 2011
  • Mathematica
    f[0]=0; f[n_] := Plus @@ (-(-1)^Range[ Floor[ Log2@ n + 1]] Reverse@ IntegerDigits[n, 2]); Array[ f, 107, 0]
  • PARI
    a(n) = my(s=0, u=1); for(k=0,#binary(n)-1,s+=bittest(n,k)*u;u=-u);s /* Washington Bomfim, Jan 18 2011 */
    
  • PARI
    a(n) = my(b=binary(n)); b*[(-1)^k|k<-[-#b+1..0]]~; \\ Ruud H.G. van Tol, Oct 16 2023
    
  • PARI
    a(n) = if(n==0, 0, 2*hammingweight(bitand(n, ((4<<(2*logint(n,4)))-1)/3)) - hammingweight(n)) \\ Andrew Howroyd, Dec 14 2024
    
  • Python
    def a(n):
        return sum((-1)**k for k, bi in enumerate(bin(n)[2:][::-1]) if bi=='1')
    print([a(n) for n in range(107)]) # Michael S. Branicky, Jul 13 2021
    
  • Python
    from sympy.ntheory import digits
    def A065359(n): return sum((0,1,-1,0)[i] for i in digits(n,4)[1:]) # Chai Wah Wu, Jul 19 2024

Formula

G.f.: (1/(1-x)) * Sum_{k>=0} (-1)^k*x^2^k/(1+x^2^k). - Ralf Stephan, Mar 07 2003
a(0) = 0, a(2n) = -a(n), a(2n+1) = 1-a(n). - Ralf Stephan, Mar 07 2003
a(n) = Sum_{k>=0} A030308(n,k)*(-1)^k. - Philippe Deléham, Oct 20 2011
a(n) = -a(floor(n/2)) + n mod 2. - Reinhard Zumkeller, Mar 20 2015
a(n) = A139351(n) - A139352(n). - Kevin Ryde, Jan 24 2020
G.f. A(x) satisfies: A(x) = x / (1 - x^2) - (1 + x) * A(x^2). - Ilya Gutkovskiy, Jul 28 2021
a(n) = A195017(A019565(n)). - Antti Karttunen, Jun 19 2024

Extensions

More terms from Ralf Stephan, Jul 12 2003

A022290 Replace 2^k in binary expansion of n with Fibonacci(k+2).

Original entry on oeis.org

0, 1, 2, 3, 3, 4, 5, 6, 5, 6, 7, 8, 8, 9, 10, 11, 8, 9, 10, 11, 11, 12, 13, 14, 13, 14, 15, 16, 16, 17, 18, 19, 13, 14, 15, 16, 16, 17, 18, 19, 18, 19, 20, 21, 21, 22, 23, 24, 21, 22, 23, 24, 24, 25, 26, 27, 26, 27, 28, 29, 29, 30, 31, 32, 21, 22, 23, 24, 24, 25, 26
Offset: 0

Views

Author

Keywords

Examples

			n=4 = 2^2 is replaced by A000045(2+2) = 3. n=5 = 2^2 + 2^0 is replaced by A000045(2+2) + A000045(0+2) = 3+1 = 4. - _R. J. Mathar_, Jan 31 2015
From _Philippe Deléham_, Jun 05 2015: (Start)
This sequence regarded as a triangle with rows of lengths 1, 1, 2, 4, 8, 16, ...:
  0
  1
  2, 3
  3, 4, 5, 6
  5, 6, 7, 8, 8, 9, 10, 11
  8, 9, 10, 11, 11, 12, 13, 14, 13, 14, 15, 16, 16, 17, 18, 19
  ...
(End)
		

Crossrefs

Other sequences that are built by replacing 2^k in the binary representation with other numbers: A029931 (naturals), A054204 (even-indexed Fibonacci numbers), A062877 (odd-indexed Fibonacci numbers), A059590 (factorials), A089625 (primes).

Programs

  • Haskell
    a022290 0 = 0
    a022290 n = h n 0 $ drop 2 a000045_list where
       h 0 y _      = y
       h x y (f:fs) = h x' (y + f * r) fs where (x',r) = divMod x 2
    -- Reinhard Zumkeller, Oct 03 2012
    
  • Maple
    A022290 := proc(n)
        dgs := convert(n,base,2) ;
        add( op(i,dgs)*A000045(i+1),i=1..nops(dgs)) ;
    end proc: # R. J. Mathar, Jan 31 2015
    # second Maple program:
    b:= (n, i, j)-> `if`(n=0, 0, j*irem(n, 2, 'q')+b(q, j, i+j)):
    a:= n-> b(n, 1$2):
    seq(a(n), n=0..127);  # Alois P. Heinz, Jan 26 2022
  • Mathematica
    Table[Reverse[#].Fibonacci[1 + Range[Length[#]]] &@ IntegerDigits[n, 2], {n, 0, 54}] (* IWABUCHI Yu(u)ki, Aug 01 2012 *)
  • PARI
    my(m=Mod('x,'x^2-'x-1)); a(n) = subst(lift(subst(Pol(binary(n)), 'x,m)), 'x,2); \\ Kevin Ryde, Sep 22 2020
    
  • Python
    def A022290(n):
        a, b, s = 1,2,0
        for i in bin(n)[-1:1:-1]:
            s += int(i)*a
            a, b = b, a+b
        return s # Chai Wah Wu, Sep 10 2022

Formula

G.f.: (1/(1-x)) * Sum_{k>=0} F(k+2)*x^2^k/(1+x^2^k), where F = A000045.
a(n) = Sum_{k>=0} A030308(n,k)*A000045(k+2). - Philippe Deléham, Oct 15 2011
a(A003714(n)) = n. - R. J. Mathar, Jan 31 2015
a(A000225(n)) = A001911(n). - Philippe Deléham, Jun 05 2015
From Jeffrey Shallit, Jul 17 2018: (Start)
Can be computed from the recurrence:
a(4*k) = a(k) + a(2*k),
a(4*k+1) = a(k) + a(2*k+1),
a(4*k+2) = a(k) - a(2*k) + 2*a(2*k+1),
a(4*k+3) = a(k) - 2*a(2*k) + 3*a(2*k+1),
and the initial terms a(0) = 0, a(1) = 1. (End)
a(A003754(n)) = n-1. - Rémy Sigrist, Jan 28 2020
From Rémy Sigrist, Aug 04 2022: (Start)
Empirically:
- a(2*A003714(n)) = A022342(n+1),
- a(3*A003714(n)) = a(4*A003714(n)) = A026274(n) for n > 0.
(End)

A031298 Triangle T(n,k): write n in base 10, reverse order of digits.

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 0, 1, 1, 1, 2, 1, 3, 1, 4, 1, 5, 1, 6, 1, 7, 1, 8, 1, 9, 1, 0, 2, 1, 2, 2, 2, 3, 2, 4, 2, 5, 2, 6, 2, 7, 2, 8, 2, 9, 2, 0, 3, 1, 3, 2, 3, 3, 3, 4, 3, 5, 3, 6, 3, 7, 3, 8, 3, 9, 3, 0, 4, 1, 4, 2, 4, 3, 4, 4, 4, 5, 4, 6, 4, 7, 4, 8, 4, 9, 4, 0
Offset: 0

Views

Author

Keywords

Comments

The length of n-th row is given in A055642(n). - Reinhard Zumkeller, Jul 04 2012
According to the formula for T(n,1), columns are numbered starting with 1. One might also number columns starting with the offset 0, as to have the coefficient of 10^k in column k. - M. F. Hasler, Jul 21 2013

Crossrefs

Cf. A030308, A030341, A030386, A031235, A030567, A031007, A031045, A031087 for the base-2 to base-9 analogs.

Programs

  • Haskell
    a031298 n k = a031298_tabf !! n !! k
    a031298_row n = a031298_tabf !! n
    a031298_tabf = iterate succ [0] where
       succ []     = [1]
       succ (9:ds) = 0 : succ ds
       succ (d:ds) = (d + 1) : ds
    -- Reinhard Zumkeller, Jul 04 2012
    
  • Mathematica
    Table[Reverse[IntegerDigits[n]],{n,0,50}]//Flatten (* Harvey P. Dale, Mar 07 2023 *)
  • PARI
    T(n,k)=n\10^(k-1)%10 \\ M. F. Hasler, Jul 21 2013

Formula

T(n,1) = A010879(n); T(n,A055642(n)) = A000030(n). - Reinhard Zumkeller, Jul 04 2012

Extensions

Initial 0 and better name by Philippe Deléham, Oct 20 2011
Edited by M. F. Hasler, Jul 21 2013

A283477 If 2n = 2^e1 + 2^e2 + ... + 2^ek [e1 .. ek distinct], then a(n) = A002110(e1) * A002110(e2) * ... * A002110(ek).

Original entry on oeis.org

1, 2, 6, 12, 30, 60, 180, 360, 210, 420, 1260, 2520, 6300, 12600, 37800, 75600, 2310, 4620, 13860, 27720, 69300, 138600, 415800, 831600, 485100, 970200, 2910600, 5821200, 14553000, 29106000, 87318000, 174636000, 30030, 60060, 180180, 360360, 900900, 1801800, 5405400, 10810800, 6306300, 12612600, 37837800, 75675600
Offset: 0

Views

Author

Antti Karttunen, Mar 16 2017

Keywords

Comments

a(n) = Product of distinct primorials larger than one, obtained as Product_{i} A002110(1+i), where i ranges over the zero-based positions of the 1-bits present in the binary representation of n.
This sequence can be represented as a binary tree. Each child to the left is obtained as A283980(k), and each child to the right is obtained as 2*A283980(k), when their parent contains k:
1
|
...................2....................
6 12
30......../ \........60 180......../ \......360
/ \ / \ / \ / \
/ \ / \ / \ / \
/ \ / \ / \ / \
210 420 1260 2520 6300 12600 37800 75600
etc.

Crossrefs

Programs

  • Mathematica
    Table[Times @@ Map[#1^#2 & @@ # &, FactorInteger[#] /. {p_, e_} /; e == 1 :> {Times @@ Prime@ Range@ PrimePi@ p, e}] &[Times @@ Prime@ Flatten@ Position[#, 1] &@ Reverse@ IntegerDigits[n, 2]], {n, 0, 43}] (* Michael De Vlieger, Mar 18 2017 *)
  • PARI
    A283477(n) = prod(i=0,exponent(n),if(bittest(n,i),vecprod(primes(1+i)),1)) \\ Edited by M. F. Hasler, Nov 11 2019
    
  • Python
    from sympy import prime, primerange, factorint
    from operator import mul
    from functools import reduce
    def P(n): return reduce(mul, [i for i in primerange(2, n + 1)])
    def a108951(n):
        f = factorint(n)
        return 1 if n==1 else reduce(mul, [P(i)**f[i] for i in f])
    def a019565(n): return reduce(mul, (prime(i+1) for i, v in enumerate(bin(n)[:1:-1]) if v == '1')) if n > 0 else 1 # after Chai Wah Wu
    def a(n): return a108951(a019565(n))
    print([a(n) for n in range(101)]) # Indranil Ghosh, Jun 22 2017
    
  • Python
    from sympy import primorial
    from math import prod
    def A283477(n): return prod(primorial(i) for i, b in enumerate(bin(n)[:1:-1],1) if b =='1') # Chai Wah Wu, Dec 08 2022
  • Scheme
    (define (A283477 n) (A108951 (A019565 n)))
    ;; Recursive "binary tree" implementation, using memoization-macro definec:
    (definec (A283477 n) (cond ((zero? n) 1) ((even? n) (A283980 (A283477 (/ n 2)))) (else (* 2 (A283980 (A283477 (/ (- n 1) 2)))))))
    

Formula

a(0) = 1; a(2n) = A283980(a(n)), a(2n+1) = 2*A283980(a(n)).
Other identities. For all n >= 0 (or for n >= 1):
a(2n+1) = 2*a(2n).
a(n) = A108951(A019565(n)).
A097248(a(n)) = A283475(n).
A007814(a(n)) = A051903(a(n)) = A000120(n).
A001221(a(n)) = A070939(n).
A001222(a(n)) = A029931(n).
A048675(a(n)) = A005187(n).
A248663(a(n)) = A006068(n).
A090880(a(n)) = A283483(n).
A276075(a(n)) = A283984(n).
A276085(a(n)) = A283985(n).
A046660(a(n)) = A124757(n).
A056169(a(n)) = A065120(n). [seems to be]
A005361(a(n)) = A284001(n).
A072411(a(n)) = A284002(n).
A007913(a(n)) = A284003(n).
A000005(a(n)) = A284005(n).
A324286(a(n)) = A324287(n).
A276086(a(n)) = A324289(n).
A267263(a(n)) = A324341(n).
A276150(a(n)) = A324342(n). [subsequences in the latter are converging towards this sequence]
G.f.: Product_{k>=0} (1 + prime(k + 1)# * x^(2^k)), where prime()# = A002110. - Ilya Gutkovskiy, Aug 19 2019

Extensions

More formulas and the binary tree illustration added by Antti Karttunen, Mar 19 2017
Four more linking formulas added by Antti Karttunen, Feb 25 2019

A008851 Congruent to 0 or 1 mod 5.

Original entry on oeis.org

0, 1, 5, 6, 10, 11, 15, 16, 20, 21, 25, 26, 30, 31, 35, 36, 40, 41, 45, 46, 50, 51, 55, 56, 60, 61, 65, 66, 70, 71, 75, 76, 80, 81, 85, 86, 90, 91, 95, 96, 100, 101, 105, 106, 110, 111, 115, 116, 120, 121, 125, 126, 130, 131, 135, 136, 140, 141, 145, 146, 150, 151
Offset: 1

Views

Author

Keywords

Comments

Numbers k that have the same last digit as k^2.

References

  • L. E. Dickson, History of the Theory of Numbers, I, p. 459.

Crossrefs

Programs

  • Haskell
    a008851 n = a008851_list !! (n-1)
    a008851_list = [10*n + m | n <- [0..], m <- [0,1,5,6]]
    -- Reinhard Zumkeller, Jul 27 2011
    
  • Magma
    [n: n in [0..200] | n mod 5 in {0, 1}]; // Vincenzo Librandi, Nov 17 2014
  • Maple
    a[0]:=0:a[1]:=1:for n from 2 to 100 do a[n]:=a[n-2]+5 od: seq(a[n], n=0..61); # Zerinvary Lajos, Mar 16 2008
  • Mathematica
    Select[Range[0, 151], MemberQ[{0, 1}, Mod[#, 5]] &] (* T. D. Noe, Mar 31 2013 *)
  • PARI
    a(n) = 5*(n\2)+bitand(n,1); /* Joerg Arndt, Mar 31 2013 */
    
  • PARI
    a(n) = floor((5/3)*floor(3*(n-1)/2)); /* Joerg Arndt, Mar 31 2013 */
    

Formula

a(n) = 5*n - a(n-1) - 9, n >= 2. - Vincenzo Librandi, Nov 18 2010 [Corrected for offset by David Lovler, Oct 10 2022]
G.f.: x^2*(1+4*x) / ( (1+x)*(x-1)^2 ). - R. J. Mathar, Oct 07 2011
a(n+1) = Sum_{k>=0} A030308(n,k)*A146523(k). - Philippe Deléham, Oct 17 2011
a(n) = floor((5/3)*floor(3*(n-1)/2)). - Clark Kimberling, Jul 04 2012
a(n) = (10*n - 13 - 3*(-1)^n)/4. - Robert Israel, Nov 17 2014 [Corrected by David Lovler, Sep 21 2022]
E.g.f.: 4 + ((10*x - 13)*exp(x) - 3*exp(-x))/4. - David Lovler, Sep 11 2022
Sum_{n>=2} (-1)^n/a(n) = sqrt(1+2/sqrt(5))*Pi/10 + log(phi)/(2*sqrt(5)) + log(5)/4, where phi is the golden ratio (A001622). - Amiram Eldar, Oct 12 2022

Extensions

Offset corrected by Reinhard Zumkeller, Jul 27 2011

A020330 Numbers whose base-2 representation is the juxtaposition of two identical strings.

Original entry on oeis.org

3, 10, 15, 36, 45, 54, 63, 136, 153, 170, 187, 204, 221, 238, 255, 528, 561, 594, 627, 660, 693, 726, 759, 792, 825, 858, 891, 924, 957, 990, 1023, 2080, 2145, 2210, 2275, 2340, 2405, 2470, 2535, 2600, 2665, 2730, 2795, 2860, 2925, 2990, 3055, 3120, 3185, 3250
Offset: 1

Views

Author

David W. Wilson, Melia Aldridge (ma38(AT)spruce.evansville.edu)

Keywords

Comments

All differences are in union of A000051 and A001576. - Vladimir Shevelev, Dec 07 2013

Examples

			36 is a term because 36 = 100100_2, which is 100 followed by 100.
		

Crossrefs

Subsequence of A121016.
Column k=0 of A246830, column k=1 of A246834.

Programs

  • Haskell
    a020330 n = foldr (\d v -> 2 * v + d) 0 (bs ++ bs) where
       bs = a030308_row n
    -- Reinhard Zumkeller, Feb 19 2013
    
  • Magma
    [n+2*n*2^Floor(Log(2, n)): n in [1..50]]; // Vincenzo Librandi, Apr 05 2018
    
  • Maple
    a:= n-> (l-> Bits[Join]([l[],l[]]))(Bits[Split](n)):
    seq(a(n), n=1..50);  # Alois P. Heinz, Aug 24 2024
  • Mathematica
    Table[n + 2 n 2^Floor[Log[2, n]], {n, 50}] (* T. D. Noe, Dec 10 2013 *)
    FromDigits[#, 2] & /@ (# <> # & /@ IntegerString[Range@100, 2]) (* Hans Rudolf Widmer, Aug 24 2024 *)
  • PARI
    a(n)=n+n<<#binary(n) \\ Charles R Greathouse IV, Mar 29 2013
    
  • PARI
    is(n)=my(L=#binary(n)\2); n>>L==bitand(n,2^L-1) \\ Charles R Greathouse IV, Mar 29 2013
    
  • Python
    def a(n): return int(bin(n)[2:]*2, 2)
    print([a(n) for n in range(1, 51)]) # Michael S. Branicky, Mar 10 2021
    
  • Python
    def A020330(n): return (n<Chai Wah Wu, Feb 28 2023

Formula

a(n) = n + 2*n*2^floor(log_2(n)). - Ralf Stephan, Dec 07 2004
Sum_{n>=1} 1/a(n) = A330157. - Amiram Eldar, Oct 22 2020
a(n) = n * (2^A070939(n) + 1). - Jianing Song, Apr 10 2021
Previous Showing 41-50 of 228 results. Next