cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 51-60 of 228 results. Next

A033042 Sums of distinct powers of 5.

Original entry on oeis.org

0, 1, 5, 6, 25, 26, 30, 31, 125, 126, 130, 131, 150, 151, 155, 156, 625, 626, 630, 631, 650, 651, 655, 656, 750, 751, 755, 756, 775, 776, 780, 781, 3125, 3126, 3130, 3131, 3150, 3151, 3155, 3156, 3250, 3251, 3255, 3256, 3275, 3276, 3280, 3281, 3750, 3751
Offset: 0

Views

Author

Keywords

Comments

Numbers without any base-5 digits larger than 1.
a(n) modulo 2 is the Prouhet-Thue-Morse sequence A010060. - Philippe Deléham, Oct 17 2011
Values of k where A008977(k) does not end with 0. - Henry Bottomley, Nov 09 2022

Crossrefs

For generating functions Product_{k>=0} (1 + a*x^(b^k)) for the following values of (a,b) see: (1,2) A000012 and A000027, (1,3) A039966 and A005836, (1,4) A151666 and A000695, (1,5) A151667 and A033042, (2,2) A001316, (2,3) A151668, (2,4) A151669, (2,5) A151670, (3,2) A048883, (3,3) A117940, (3,4) A151665, (3,5) A151671, (4,2) A102376, (4,3) A151672, (4,4) A151673, (4,5) A151674.
Row 5 of array A104257.

Programs

  • Julia
    function a(n)
        m, r, b = n, 0, 1
        while m > 0
            m, q = divrem(m, 2)
            r += b * q
            b *= 5
        end
    r end; [a(n) for n in 0:49] |> println # Peter Luschny, Jan 03 2021
    
  • Maple
    a:= proc(n) local m, r, b; m, r, b:= n, 0, 1;
          while m>0 do r:= r+b*irem(m, 2, 'm'); b:= b*5 od; r
        end:
    seq(a(n), n=0..100);  # Alois P. Heinz, Mar 16 2013
  • Mathematica
    t = Table[FromDigits[RealDigits[n, 2], 5], {n, 1, 100}]
    (* Clark Kimberling, Aug 02 2012 *)
    FromDigits[#,5]&/@Tuples[{0,1},7] (* Harvey P. Dale, May 22 2018 *)
  • PARI
    a(n) = subst(Pol(binary(n)), 'x, 5);
    vector(50, i, a(i-1))  \\ Gheorghe Coserea, Sep 15 2015
    
  • PARI
    a(n)=fromdigits(binary(n),5) \\ Charles R Greathouse IV, Jan 11 2017
    
  • Python
    def A033042(n): return int(bin(n)[2:],5) # Chai Wah Wu, Oct 30 2024

Formula

a(n) = Sum_{i=0..m} d(i)*5^i, where Sum_{i=0..m} d(i)*2^i is the base-2 representation of n.
Numbers j such that the coefficient of x^j is > 0 in Product_{k>=0} (1 + x^(5^k)). - Benoit Cloitre, Jul 29 2003
a(n) = A097251(n)/4.
a(2n) = 5*a(n), a(2n+1) = a(2n)+1.
a(n) = Sum_{k>=0} A030308(n,k)*5^k. - Philippe Deléham, Oct 17 2011
liminf a(n)/n^(log(5)/log(2)) = 1/4 and limsup a(n)/n^(log(5)/log(2)) = 1. - Gheorghe Coserea, Sep 15 2015
G.f.: (1/(1 - x))*Sum_{k>=0} 5^k*x^(2^k)/(1 + x^(2^k)). - Ilya Gutkovskiy, Jun 04 2017

Extensions

Extended by Ray Chandler, Aug 03 2004

A047218 Numbers that are congruent to {0, 3} mod 5.

Original entry on oeis.org

0, 3, 5, 8, 10, 13, 15, 18, 20, 23, 25, 28, 30, 33, 35, 38, 40, 43, 45, 48, 50, 53, 55, 58, 60, 63, 65, 68, 70, 73, 75, 78, 80, 83, 85, 88, 90, 93, 95, 98, 100, 103, 105, 108, 110, 113, 115, 118, 120, 123, 125, 128, 130, 133, 135, 138, 140, 143, 145, 148
Offset: 1

Views

Author

Keywords

Comments

Multiples of 5 interleaved with 2 less than multiples of 5. - Wesley Ivan Hurt, Oct 19 2013
Numbers k such that k^2/5 + k*(k + 1)/10 = k*(3*k + 1)/10 is a nonnegative integer. - Bruno Berselli, Feb 14 2017

Crossrefs

Programs

Formula

a(n) = 2*n - 5 + ceiling(n/2). - Jesus De Loera (deloera(AT)math.ucdavis.edu)
a(n) = 5*n - a(n-1) - 7 for n>1, a(1)=0. - Vincenzo Librandi, Aug 05 2010
From Bruno Berselli, Jun 28 2011: (Start)
G.f.: (2*x + 3)*x^2/((x + 1)*(x - 1)^2).
a(n) = (10*n + (-1)^n - 9)/4.
a(n) = a(n-1) + a(n-2) - a(n-3). (End)
a(n+1) = Sum_{k>=0} A030308(n,k)*b(k) with b(0)=3 and b(k)=A020714(k-1)=5*2^(k-1) for k>0. - Philippe Deléham, Oct 17 2011
a(n) = n + ceiling(3*(n-1)/2) - 1. - Arkadiusz Wesolowski, Sep 18 2012
a(n) = floor(5*n/2)-2 = 3*n - 3 - floor((n-1)/2). - Wesley Ivan Hurt, Oct 14 2013
a(n+1) = n + (n + (n + (n mod 2))/2). - Wesley Ivan Hurt, Oct 19 2013
Sum_{n>=2} (-1)^n/a(n) = log(5)/4 - sqrt(5)*log(phi)/10 - sqrt(1-2/sqrt(5))*Pi/10, where phi is the golden ratio (A001622). - Amiram Eldar, Dec 07 2021
E.g.f.: 2 + ((5*x - 9/2)*exp(x) + (1/2)*exp(-x))/2. - David Lovler, Aug 22 2022

A076478 The binary Champernowne sequence: concatenate binary vectors of lengths 1, 2, 3, ... in numerical order.

Original entry on oeis.org

0, 1, 0, 0, 0, 1, 1, 0, 1, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 1, 1, 1, 0, 0, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 1, 0, 1, 0, 0, 0, 1, 0, 1, 0, 1, 1, 0, 0, 1, 1, 1, 1, 0, 0, 0, 1, 0, 0, 1, 1, 0, 1, 0, 1, 0, 1, 1, 1, 1, 0, 0, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0
Offset: 0

Views

Author

N. J. A. Sloane, Nov 10 2002

Keywords

Comments

Can also be seen as triangle where row n contains all binary vectors of length n+1. - Reinhard Zumkeller, Aug 18 2015
From Clark Kimberling, Jul 18 2021: (Start)
In the following list, W represents the sequence of words w(n) represented by A076478. The list includes five partitions and two self-inverse permutations of the positive integers.
length of w(n): A000523
positions in W of words w(n) such that # 0's = # 1's: A258410;
positions in W of words w(n) such that # 0's < # 1's: A346299;
positions in W of words w(n) such that # 0's > # 1's: A346300;
positions in W of words w(n) that end with 0: A005498;
positions in W of words w(n) that end with 1: A005843;
positions in W of words w(n) such that first digit = last digit: A346301;
positions in W of words w(n) such that first digit != last digit: A346302;
positions in W of words w(n) such that 1st digit = 0 and last digit 0: A171757;
positions in W of words w(n) such that 1st digit = 0 and last digit 1: A346303;
positions in W of words w(n) such that 1st digit = 1 and last digit 0: A346304;
positions in W of words w(n) such that 1st digit = 1 and last digit 1: A346305;
position in W of n-th positive integer (base 2): A206332;
positions in W of binary complement of w(n): A346306;
sum of digits in w(n): A048881;
number of runs in w(n): A346307;
positions in W of palindromes: A346308;
positions in W of words such that #0's - #1's is odd: A346309;
positions in W of words such that #0's - #1's is even: A346310;
positions in W of the reversal of the n-th word in W: A081241. (End)

Examples

			0,
1,
0,0,
0,1,
1,0,
1,1,
0,0,0,
0,0,1,
0,1,0,
0,1,1,
1,0,0,
1,0,1,
...
		

References

  • Bodil Branner, Dynamics, Chap. IV.14 of The Princeton Companion to Mathematics, ed. T. Gowers, p. 499.
  • K. Dajani and C. Kraaikamp, Ergodic Theory of Numbers, Math. Assoc. America, 2002, p. 72.

Crossrefs

Programs

  • Haskell
    import Data.List (unfoldr)
    a076478 n = a076478_list !! n
    a076478_list = concat $ tail $ map (tail . reverse . unfoldr
       (\x -> if x == 0 then Nothing else Just $ swap $ divMod x 2 )) [1..]
    -- Reinhard Zumkeller, Feb 08 2012
    
  • Haskell
    a076478_row n = a076478_tabf !! n :: [[Int]]
    a076478_tabf = tail $ iterate (\bs -> map (0 :) bs ++ map (1 :) bs) [[]]
    a076478_list' = concat $ concat a076478_tabf
    -- Reinhard Zumkeller, Aug 18 2015
    
  • Mathematica
    d[n_] := Rest@IntegerDigits[n + 1, 2] + 1; -1 + Flatten[Array[d, 50]] (* Clark Kimberling, Feb 07 2012 *)
    z = 1000;
    t1 = Table[Tuples[{0, 1}, n], {n, 1, 10}];
    "All binary words, lexicographic order:"
    tt = Flatten[t1, 1]; (* all binary words, lexicographic order *)
    "All binary words, flattened:"
    Flatten[tt];
    w[n_] := tt[[n]];
    "List tt of all binary words:"
    tt = Table[w[n], {n, 1, z}]; (*  all the binary words *)
    u1 = Flatten[tt]; (* words, concatenated, A076478, binary Champernowne sequence *)
    u2 = Map[Length, tt];
    "Positions of 0^n:"
    Flatten[Position[Map[Union, tt], {0}]]
    "Positions of 1^n:"
    Flatten[Position[Map[Union, tt], {1}]]
    "Positions of words in which #0's = #1's:"  (* A258410 *)
    "This and the next two sequences partition N."
    u3 = Select[Range[Length[tt]], Count[tt[[#]], 0] == Count[tt[[#]], 1] &]
    "Positions of words in which #0's < #1's:"  (* A346299 *)
    u4 = Select[Range[Length[tt]], Count[tt[[#]], 0] < Count[tt[[#]], 1] &]
    "Positions of words in which #0's > #1's:"  (* A346300 *)
    u5 = Select[Range[Length[tt]], Count[tt[[#]], 0] > Count[tt[[#]], 1] &]
    "Positions of words ending with 0:" (* A005498 *)
    u6 = Select[Range[Length[tt]], Last[tt[[#]]] == 0 &]
    "Positions of words ending with 1:" (* A005843 *)
    u7 = Select[Range[Length[tt]], Last[tt[[#]]] == 1 &]
    "Positions of words starting and ending with same digit:" (* A346301 *)
    u8 = Select[Range[Length[tt]], First[tt[[#]]] == Last[tt[[#]]] &]
    "Positions of words starting and ending with opposite digits:" (* A346302  *)
    u9 = Select[Range[Length[tt]], First[tt[[#]]] != Last[tt[[#]]] &]
    "Positions of words starting with 0 and ending with 0:" (* A346303 *)
    "This and the next three sequences partition N."
    u10 = Select[Range[Length[tt]], First[tt[[#]]] == 0 && Last[tt[[#]]] == 0 &]
    "Positions of words starting with 0 and ending with 1:" (* A171757 *)
    u11 = Select[Range[Length[tt]], First[tt[[#]]] == 0 && Last[tt[[#]]] == 1 &]
    "Positions of words starting with 1 and ending with 0:" (* A346304 *)
    u12 = Select[Range[Length[tt]], First[tt[[#]]] == 1 && Last[tt[[#]]] == 0 &]
    "Positions of words starting with 1 and ending with 1:" (* A346305 *)
    u13 = Select[Range[Length[tt]], First[tt[[#]]] == 1 && Last[tt[[#]]] == 1 &]
    "Position of n-th positive integer (base 2) in tt:"
    d[n_] := If[First[w[n]] == 1, FromDigits[w[n], 2]];
    u14 = Flatten[Table[Position[Table[d[n], {n, 1, 200}], n], {n, 1, 200}]] (* A206332 *)
    "Position of binary complement of w(n):"
    u15 = comp = Flatten[Table[Position[tt, 1 - w[n]], {n, 1, 50}]] (* A346306 *)
    "Sum of digits of w(n):"
    u16 = Table[Total[w[n]], {n, 1, 100}] (* A048881 *)
    "Number of runs in w(n):"
    u17 = Map[Length, Table[Map[Length, Split[w[n]]], {n, 1, 100}]] (* A346307 *)
    "Palindromes:"
    Select[tt, # == Reverse[#] &]
    "Positions of palindromes:"
    u18 = Select[Range[Length[tt]], tt[[#]] == Reverse[tt[[#]]] &] (* A346308 *)
    "Positions of words in which #0's - #1's is odd:"
    u19 = Select[Range[Length[tt]], OddQ[Count[w[#], 0] - Count[w[#], 1]] &] (* A346309 *)
    "Positions of words in which #0's - #1's is even:"
    u20 = Select[Range[Length[tt]], EvenQ[Count[w[#], 0] - Count[w[#], 1]] &] (* A346310 *)
    "Position of the reversal of the n-th word:"  (* A081241 *)
    u21 = Flatten[Table[Position[tt, Reverse[w[n]]], {n, 1, 150}]]
    (* Clark Kimberling, Jul 18 2011 *)
  • PARI
    {m=5; for(d=1,m, for(k=0,2^d-1,v=binary(k); while(matsize(v)[2]
    				
  • PARI
    listn(n)= my(a=List(), i=0, s=0); while(s<=n, listput(~a, binary(i++)[^1]); s+=#a[#a]); concat(a)[1..n+1]; \\ Ruud H.G. van Tol, Mar 17 2025
    
  • Python
    from itertools import count, product
    def agen():
        for digits in count(1):
            for b in product([0, 1], repeat=digits):
                yield from b
    g = agen()
    print([next(g) for n in range(105)]) # Michael S. Branicky, Jul 18 2021

Formula

To get the m-th binary vector, write m+1 in base 2 and remove the initial 1. - Clark Kimberling, Feb 07 2010

Extensions

Extended by Klaus Brockhaus, Nov 11 2002

A047215 Numbers that are congruent to {0, 2} mod 5.

Original entry on oeis.org

0, 2, 5, 7, 10, 12, 15, 17, 20, 22, 25, 27, 30, 32, 35, 37, 40, 42, 45, 47, 50, 52, 55, 57, 60, 62, 65, 67, 70, 72, 75, 77, 80, 82, 85, 87, 90, 92, 95, 97, 100, 102, 105, 107, 110, 112, 115, 117, 120, 122, 125, 127, 130, 132, 135, 137, 140, 142, 145, 147, 150, 152, 155, 157
Offset: 0

Views

Author

Keywords

Comments

Number of partitions of 5n into exactly 2 parts. - Colin Barker, Mar 23 2015
Numbers k such that k^2/5 + k*(k + 1)/5 = k*(2*k + 1)/5 is a nonnegative integer. - Bruno Berselli, Feb 14 2017

Crossrefs

Different from A038126.
Cf. A249547 (partial sums), A010693 (1st differences).

Programs

Formula

a(n) = floor(5*n/2).
From R. J. Mathar, Sep 23 2008: (Start)
G.f.: x*(2 + 3*x)/((1 + x)*(1 - x)^2).
a(n) = 5*n/2 + ((-1)^n-1)/4.
a(n+1) - a(n) = A010693(n+1). (End)
a(n) = 5*n - a(n-1) - 8 with a(1)=0. - Vincenzo Librandi, Aug 05 2010
a(n+1) = Sum_{k>=0} A030308(n,k)*A084215(k+1). - Philippe Deléham, Oct 17 2011
a(n) = 2*n + floor(n/2). - Arkadiusz Wesolowski, Sep 19 2012
Sum_{n>=1} (-1)^(n+1)/a(n) = log(5)/4 - sqrt(5)*log(phi)/10 + sqrt(1-2/sqrt(5))*Pi/10, where phi is the golden ratio (A001622). - Amiram Eldar, Dec 07 2021
E.g.f.: (5*x*exp(x) - sinh(x))/2. - David Lovler, Aug 22 2022

A077643 Number of squarefree integers in closed interval [2^n, -1 + 2*2^n], i.e., among 2^n consecutive numbers beginning with 2^n.

Original entry on oeis.org

1, 2, 3, 5, 9, 19, 39, 79, 157, 310, 621, 1246, 2491, 4980, 9958, 19924, 39844, 79672, 159365, 318736, 637457, 1274916, 2549816, 5099651, 10199363, 20398663, 40797299, 81594571, 163189087, 326378438, 652756861, 1305513511, 2611026987, 5222053970, 10444108084
Offset: 0

Views

Author

Labos Elemer, Nov 14 2002

Keywords

Comments

Number of squarefree numbers with binary expansion of length n, or with n bits. The sum of these numbers is given by A373123. - Gus Wiseman, Jun 02 2024

Examples

			For n=4: among the 16 numbers of {16, ..., 31}, nine are squarefree [17, 19, 21, 22, 23, 26, 29, 30, 31], so a(4) = 9.
		

Crossrefs

Partial sums (except first term) are A143658.
Run-lengths of A372475.
The minimum is A372683, delta A373125, indices A372540.
The maximum is A372889 (except at n=1), delta A373126, indices A143658.
Row-sums are A373123.
A005117 lists squarefree numbers, first differences A076259.
A053797 gives nonempty lengths of exclusive gaps between squarefree numbers.
A029837 counts bits, row-lengths of A030190 and A030308.
For primes between powers of 2:
- sum A293697
- length A036378 or A162145
- min A104080 or A014210, delta A092131, indices A372684
- max A014234, delta A013603, indices A007053
For squarefree numbers between primes:
- sum A373197
- length A373198 = A061398 - 1
- min A000040
- max A112925 (delta A240473), opposite A112926 (delta A240474)
Cf. A010036, A029931, A035100, A049093-A049096, A372473 (firsts of A372472), A372541 (firsts of A372433).

Programs

  • Mathematica
    Table[Apply[Plus, Table[Abs[MoebiusMu[2^w+j]], {j, 0, 2^w-1}]], {w, 0, 15}]
    (* second program *)
    Length/@Split[IntegerLength[Select[Range[10000],SquareFreeQ],2]]//Most (* Gus Wiseman, Jun 02 2024 *)
  • PARI
    { a(n) = sum(m=1,sqrtint(2^(n+1)-1), moebius(m) * ((2^(n+1)-1)\m^2 - (2^n-1)\m^2) ) } \\ Max Alekseyev, Oct 18 2008

Formula

a(n) = Sum_{j=0..-1+2^n} abs(mu(2^n + j)).
a(n)/2^n approaches 1/zeta(2), so limiting sequence is floor(2^n/zeta(2)), n >= 0. - Wouter Meeussen, May 25 2003

Extensions

More terms from Mark Hudson (mrmarkhudson(AT)hotmail.com), Feb 12 2003
More terms from Wouter Meeussen, May 25 2003
a(25)-a(32) from Max Alekseyev, Oct 18 2008
a(33)-a(34) from Amiram Eldar, Jul 17 2024

A133457 Irregular triangle read by rows: row n gives exponents in expression for n as a sum of powers of 2.

Original entry on oeis.org

0, 1, 0, 1, 2, 0, 2, 1, 2, 0, 1, 2, 3, 0, 3, 1, 3, 0, 1, 3, 2, 3, 0, 2, 3, 1, 2, 3, 0, 1, 2, 3, 4, 0, 4, 1, 4, 0, 1, 4, 2, 4, 0, 2, 4, 1, 2, 4, 0, 1, 2, 4, 3, 4, 0, 3, 4, 1, 3, 4, 0, 1, 3, 4, 2, 3, 4, 0, 2, 3, 4, 1, 2, 3, 4, 0, 1, 2, 3, 4, 5, 0, 5, 1, 5, 0, 1, 5, 2, 5, 0, 2, 5, 1, 2, 5, 0, 1, 2, 5, 3, 5, 0, 3, 5
Offset: 1

Views

Author

Masahiko Shin, Nov 27 2007

Keywords

Comments

This sequence contains every increasing finite sequence. For example, the finite sequence {0,2,3,5} arises from n = 45.
Essentially A030308(n,k)*k, then entries removed where A030308(n,k)=0. - R. J. Mathar, Nov 30 2007
In the corresponding irregular triangle {a(n)+1}, the m-th row gives all positive integer roots m_i of polynomial {m,k}. - see link [Shevelev]; see also A264613. - Vladimir Shevelev, Dec 13 2015

Examples

			1 = 2^0.
2 = 2^1.
3 = 2^0 + 2^1.
4 = 2^2.
5 = 2^0 + 2^2.
etc. and reading the exponents gives the rows of the triangle.
		

Crossrefs

Cf. A073642 (row sums), A272011 (rows reversed).

Programs

  • Haskell
    a133457 n k = a133457_tabf !! (n-1) !! n
    a133457_row n = a133457_tabf !! (n-1)
    a133457_tabf = map (fst . unzip . filter ((> 0) . snd) . zip [0..]) $
                       tail a030308_tabf
    -- Reinhard Zumkeller, Oct 28 2013, Feb 06 2013
  • Maple
    A133457 := proc(n) local a,bdigs,i ; a := [] ; bdigs := convert(n,base,2) ; for i from 1 to nops(bdigs) do if op(i,bdigs) <> 0 then a := [op(a),i-1] ; fi ; od: a ; end: seq(op(A133457(n)),n=1..80) ; # R. J. Mathar, Nov 30 2007
  • Mathematica
    Array[Join @@ Position[#, 1] - 1 &@ Reverse@ IntegerDigits[#, 2] &, 41] // Flatten (* Michael De Vlieger, Oct 08 2017 *)

Formula

a(n) = A048793(n) - 1.

Extensions

More terms from R. J. Mathar, Nov 30 2007

A038554 Derivative of n: write n in binary, replace each pair of adjacent bits with their mod 2 sum (a(0)=a(1)=0 by convention). Also n XOR (n shift 1).

Original entry on oeis.org

0, 0, 1, 0, 2, 3, 1, 0, 4, 5, 7, 6, 2, 3, 1, 0, 8, 9, 11, 10, 14, 15, 13, 12, 4, 5, 7, 6, 2, 3, 1, 0, 16, 17, 19, 18, 22, 23, 21, 20, 28, 29, 31, 30, 26, 27, 25, 24, 8, 9, 11, 10, 14, 15, 13, 12, 4, 5, 7, 6, 2, 3, 1, 0, 32, 33, 35, 34, 38, 39, 37, 36, 44, 45, 47, 46, 42, 43, 41, 40, 56, 57
Offset: 0

Views

Author

Keywords

Comments

From Antti Karttunen: this is also a version of A003188: a(n) = A003188(n) - 2^floor(log_2(A003188(n))), that is, the corresponding Gray code expansion, but with highest 1-bit turned off. Also a(n) = A003188(n) - 2^floor(log_2(n)).
From John W. Layman: {a(n)} is a self-similar sequence under Kimberling's "upper-trimming" operation.
a(A000225(n)) = 0; a(A062289(n)) > 0; a(A038558(n)) = n. - Reinhard Zumkeller, Mar 06 2013

Examples

			If n = 18 = 10010_2, derivative is (1+0)(0+0)(0+1)(1+0) = 1011_2, so a(18)=11.
		

References

  • Hsien-Kuei Hwang, S Janson, TH Tsai, Exact and asymptotic solutions of the recurrence f(n) = f(floor(n/2)) + f(ceiling(n/2)) + g(n): theory and applications, Preprint, 2016; http://140.109.74.92/hk/wp-content/files/2016/12/aat-hhrr-1.pdf. Also Exact and Asymptotic Solutions of a Divide-and-Conquer Recurrence Dividing at Half: Theory and Applications, ACM Transactions on Algorithms, 13:4 (2017), #47; DOI: 10.1145/3127585

Crossrefs

Cf. A038570, A038571. See A003415 for another definition of the derivative of a number.
Cf. A038556 (rotates n instead of shifting).
Cf. A000035.
Cf. A030308.

Programs

  • Haskell
    import Data.Bits (xor)
    a038554 n = foldr (\d v -> v * 2 + d) 0 $ zipWith xor bs $ tail bs
       where bs = a030308_row n
    -- Reinhard Zumkeller, May 26 2013, Mar 06 2013
    
  • Maple
    A038554 := proc(n) local i,b,ans; ans := 0; b := convert(n,base,2); for i to nops(b)-1 do ans := ans+((b[ i ]+b[ i+1 ]) mod 2)*2^(i-1); od; RETURN(ans); end; [ seq(A038554(i),i=0..100) ];
  • Mathematica
    a[0] = a[1] = 0; a[n_ /; Mod[n, 4] == 0] := a[n] = 2*a[n/2]; a[n_ /; Mod[n, 4] == 1] := a[n] =  2*a[(n-1)/2] + 1; a[n_ /; Mod[n, 4] == 2] := a[n] = 2*a[n/2] + 1; a[n_ /; Mod[n, 4] == 3] := a[n] = 2*a[(n-1)/2]; Table[a[n], {n, 0, 81}] (* Jean-François Alcover, Jul 13 2012, after Ralf Stephan *)
    Table[FromDigits[Mod[Total[#],2]&/@Partition[IntegerDigits[n,2],2,1],2],{n,0,90}] (* Harvey P. Dale, Oct 27 2015 *)
  • PARI
    a003188(n)=bitxor(n, n>>1);
    a(n)=if(n<2, 0, a003188(n) - 2^logint(a003188(n), 2)); \\ Indranil Ghosh, Apr 26 2017
    
  • Python
    import math
    def a003188(n): return n^(n>>1)
    def a(n): return 0 if n<2 else a003188(n) - 2**int(math.floor(math.log(a003188(n), 2))) # Indranil Ghosh, Apr 26 2017

Formula

If 2*2^k <= n < 3*2^k then a(n) = 2^k + a(2^(k+2)-n-1); if 3*2^k <= n < 4*2^k then a(n) = a(n-2^(k+1)). - Henry Bottomley, May 11 2000
G.f.: (1/(1-x)) * Sum_{k>=0} 2^k*(t^4-t^3+t^2)/(1+t^2), t=x^2^k. - Ralf Stephan, Sep 10 2003
a(0)=0, a(2n) = 2*a(n) + [n odd], a(2n+1) = 2*a(n) + [n>0 even]. - Ralf Stephan, Oct 20 2003
a(0) = a(1) = 0, a(4n) = 2*a(2n), a(4n+2) = 2*a(2n+1)+1, a(4n+1) = 2*a(2n)+1, a(4n+3) = 2*a(2n+1). Proof by Nikolaus Meyberg following a conjecture by Ralf Stephan.

Extensions

More terms from Erich Friedman

A245563 Table read by rows: row n gives list of lengths of runs of 1's in binary expansion of n, starting with low-order bits.

Original entry on oeis.org

0, 1, 1, 2, 1, 1, 1, 2, 3, 1, 1, 1, 1, 1, 2, 1, 2, 1, 2, 3, 4, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 2, 1, 3, 1, 2, 1, 2, 1, 2, 2, 2, 3, 1, 3, 4, 5, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 2, 1, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 3, 1, 4, 1, 2, 1, 2, 1, 2, 2, 2, 1, 2, 1, 1, 2, 2, 2, 3, 2, 3, 1, 3, 1, 3, 2, 3, 4, 1, 4, 5, 6, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 2, 1, 3, 1, 1, 1, 1, 1, 1, 1
Offset: 0

Views

Author

N. J. A. Sloane, Aug 10 2014

Keywords

Comments

A formula for A071053(n) depends on this table.

Examples

			Here are the run lengths for the numbers 0 through 21:
0, []
1, [1]
2, [1]
3, [2]
4, [1]
5, [1, 1]
6, [2]
7, [3]
8, [1]
9, [1, 1]
10, [1, 1]
11, [2, 1]
12, [2]
13, [1, 2]
14, [3]
15, [4]
16, [1]
17, [1, 1]
18, [1, 1]
19, [2, 1]
20, [1, 1]
21, [1, 1, 1]
		

Crossrefs

Row sums = A000120 (the binary weight).
Row lengths are A069010.
The version for prime indices (instead of binary indices) is A124010.
Numbers with distinct run-lengths are A328592.
Numbers with equal run-lengths are A164707.

Programs

  • Haskell
    import Data.List (group)
    a245563 n k = a245563_tabf !! n !! k
    a245563_row n = a245563_tabf !! n
    a245563_tabf = [0] : map
       (map length . (filter ((== 1) . head)) . group) (tail a030308_tabf)
    -- Reinhard Zumkeller, Aug 10 2014
    
  • Maple
    for n from 0 to 128 do
    lis:=[]; t1:=convert(n,base,2); L1:=nops(t1); out1:=1; c:=0;
    for i from 1 to L1 do
    if out1 = 1 and t1[i] = 1 then out1:=0; c:=c+1;
    elif out1 = 0 and t1[i] = 1 then c:=c+1;
    elif out1 = 1 and t1[i] = 0 then c:=c;
    elif out1 = 0 and t1[i] = 0 then lis:=[op(lis),c]; out1:=1; c:=0;
    fi;
    if i = L1 and c>0 then lis:=[op(lis),c]; fi;
    od:
    lprint(n,lis);
    od:
  • Mathematica
    Join@@Table[Length/@Split[Join@@Position[Reverse[IntegerDigits[n,2]],1],#2==#1+1&],{n,0,100}] (* Gus Wiseman, Nov 03 2019 *)
  • Python
    from re import split
    A245563_list = [0]
    for n in range(1,100):
        A245563_list.extend(len(d) for d in split('0+',bin(n)[:1:-1]) if d != '')
    # Chai Wah Wu, Sep 07 2014

A165413 a(n) is the number of distinct lengths of runs in the binary representation of n.

Original entry on oeis.org

1, 1, 1, 2, 1, 2, 1, 2, 2, 1, 2, 1, 2, 2, 1, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 3, 2, 2, 2, 3, 2, 2, 1, 2, 2, 2, 2, 2, 2, 3, 2, 1, 2, 2, 2, 3, 1, 3, 2, 3, 2, 2, 2, 1, 2, 2, 2, 3, 3, 2, 3, 2, 3, 2, 2, 2, 2, 2, 3, 3, 2, 2, 2, 2, 2, 1, 2, 2, 3, 2, 2, 2, 3, 2, 2, 2, 2, 3, 3, 2, 2, 2, 2, 2, 3, 2
Offset: 1

Views

Author

Leroy Quet, Sep 17 2009

Keywords

Comments

Least k whose value is n: 1, 4, 35, 536, 16775, 1060976, ..., = A165933. - Robert G. Wilson v, Sep 30 2009

Examples

			92 in binary is 1011100. There is a run of one 1, followed by a run of one 0, then a run of three 1's, then finally a run of two 0's. The run lengths are therefore (1,1,3,2). The distinct values of these run lengths are (1,3,2). Since there are 3 distinct values, then a(92) = 3.
		

Crossrefs

Cf. A140690 (locations of 1's), A165933 (locations of new highs).

Programs

  • Haskell
    import Data.List (group, nub)
    a165413 = length . nub . map length . group . a030308_row
    -- Reinhard Zumkeller, Mar 02 2013
    
  • Mathematica
    f[n_] := Length@ Union@ Map[ Length, Split@ IntegerDigits[n, 2]]; Array[f, 105] (* Robert G. Wilson v, Sep 30 2009 *)
  • PARI
    binruns(n) = {
      if (n == 0, return([1, 0]));
      my(bag = List(), v=0);
      while(n != 0,
            v = valuation(n,2); listput(bag, v); n >>= v; n++;
            v = valuation(n,2); listput(bag, v); n >>= v; n--);
      return(Vec(bag));
    };
    a(n) = #Set(select(k->k, binruns(n)));
    vector(105, i, a(i))  \\ Gheorghe Coserea, Sep 17 2015
    
  • Python
    from itertools import groupby
    def a(n): return len(set([len(list(g)) for k, g in groupby(bin(n)[2:])]))
    print([a(n) for n in range(1, 106)]) # Michael S. Branicky, Jan 04 2021

Formula

a(n) = 1 for n in A140690. - Robert G. Wilson v, Sep 30 2009

Extensions

More terms from Robert G. Wilson v, Sep 30 2009

A030567 Triangle T(n,k): Write n in base 6 and reverse order of digits to get row n.

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 0, 1, 1, 1, 2, 1, 3, 1, 4, 1, 5, 1, 0, 2, 1, 2, 2, 2, 3, 2, 4, 2, 5, 2, 0, 3, 1, 3, 2, 3, 3, 3, 4, 3, 5, 3, 0, 4, 1, 4, 2, 4, 3, 4, 4, 4, 5, 4, 0, 5, 1, 5, 2, 5, 3, 5, 4, 5, 5, 5, 0, 0, 1, 1, 0, 1, 2, 0, 1, 3, 0, 1, 4, 0, 1, 5, 0, 1, 0, 1, 1, 1, 1, 1, 2
Offset: 0

Views

Author

Keywords

Comments

If columns are numbered starting with k=0, then T(n,k) contains the coefficient of 6^k in n's base-6 expansion. - M. F. Hasler, Jul 21 2013

Crossrefs

See A030548 for a quite complete list of crossreferences.
Cf. A030568 - A030573 for positions of a given digit.
Cf. A030575 - A030580 for run lengths, A030581 - A030585 for more.
Row sums (same as those of A030548) are in A053827.
Cf. A030308, A030341, A030386, A031235, A031007, A031045, A031087, A031298 for the base-2 to base-10 analogs.

Programs

  • Mathematica
    Flatten[Table[Reverse[IntegerDigits[n,6]],{n,0,50}]] (* Harvey P. Dale, Sep 27 2015 *)
  • PARI
    A030567(n,k=-1)=/*k<0&&error("Flattened sequence not yet implemented.")*/n\6^k%6 \\ Assuming that columns start with k=0, cf. comment. TO DO: implement flattened sequence, such that A030567(n)=a(n). - M. F. Hasler, Jul 21 2013

Extensions

Initial 0 and better name from Philippe Deléham, Oct 20 2011
Edited and crossrefs added by M. F. Hasler, Jul 21 2013
Previous Showing 51-60 of 228 results. Next