cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 45 results. Next

A054567 a(n) = 4*n^2 - 7*n + 4.

Original entry on oeis.org

1, 6, 19, 40, 69, 106, 151, 204, 265, 334, 411, 496, 589, 690, 799, 916, 1041, 1174, 1315, 1464, 1621, 1786, 1959, 2140, 2329, 2526, 2731, 2944, 3165, 3394, 3631, 3876, 4129, 4390, 4659, 4936, 5221, 5514, 5815, 6124, 6441, 6766, 7099, 7440, 7789, 8146, 8511, 8884
Offset: 1

Views

Author

Keywords

Comments

The number 1 is placed in the middle of a sheet of squared paper and the numbers 2, 3, 4, 5, 6, etc. are written in a clockwise spiral around 1, as in A068225 etc. This sequence is read off along one of the rays from 1.
Ulam's spiral (W spoke of A054552). - Robert G. Wilson v, Oct 31 2011
Also, numbers of the form m*(4*m+1)+1 for nonnegative m. - Bruno Berselli, Jan 06 2016
The sequence forms the 1x2 diagonal of the square maze arrangement in A081344. - Jarrod G. Sage, Jul 17 2024

Crossrefs

Cf. A266883: m*(4*m+1)+1 for m = 0,-1,1,-2,2,-3,3,...
Sequences on the four axes of the square spiral: Starting at 0: A001107, A033991, A007742, A033954; starting at 1: A054552, A054556, A054567, A033951.
Sequences on the four diagonals of the square spiral: Starting at 0: A002939 = 2*A000384, A016742 = 4*A000290, A002943 = 2*A014105, A033996 = 8*A000217; starting at 1: A054554, A053755, A054569, A016754.
Sequences obtained by reading alternate terms on the X and Y axes and the two main diagonals of the square spiral: Starting at 0: A035608, A156859, A002378 = 2*A000217, A137932 = 4*A002620; starting at 1: A317186, A267682, A002061, A080335.

Programs

Formula

a(n) = 8*n+a(n-1)-11 for n>1, a(1)=1. - Vincenzo Librandi, Aug 07 2010
a(n) = A204674(n-1) / n. - Reinhard Zumkeller, Jan 18 2012
From Colin Barker, Oct 25 2014: (Start)
a(n) = 3*a(n-1)-3*a(n-2)+a(n-3).
G.f.: -x*(4*x^2+3*x+1) / (x-1)^3. (End)
E.g.f.: exp(x)*(4 - 3*x + 4*x^2) - 4. - Stefano Spezia, Apr 24 2024
a(n) = A016742(n-1) + n. - Jarrod G. Sage, Jul 17 2024

Extensions

Edited by Frank Ellermann, Feb 24 2002
Typo fixed by Charles R Greathouse IV, Oct 28 2009

A006578 Triangular numbers plus quarter squares: n*(n+1)/2 + floor(n^2/4) (i.e., A000217(n) + A002620(n)).

Original entry on oeis.org

0, 1, 4, 8, 14, 21, 30, 40, 52, 65, 80, 96, 114, 133, 154, 176, 200, 225, 252, 280, 310, 341, 374, 408, 444, 481, 520, 560, 602, 645, 690, 736, 784, 833, 884, 936, 990, 1045, 1102, 1160, 1220, 1281, 1344, 1408, 1474, 1541, 1610, 1680, 1752, 1825, 1900, 1976, 2054
Offset: 0

Views

Author

Keywords

Comments

Equals (1, 2, 3, 4, ...) convolved with (1, 2, 1, 2, ...). a(4) = 14 = (1, 2, 3, 4) dot (2, 1, 2, 1) = (2 + 2 + 6 + 4). - Gary W. Adamson, May 01 2009
We observe that is the transform of A032766 by the following transform T: T(u_0,u_1,u_2,u_3,...) = (u_0, u_0+u_1, u_0+u_1+u_2, u_0+u_1+u_2+u_3+u_4,...). In other words, v_p = Sum_{k=0..p} u_k and the g.f. phi_v of is given by phi_v = phi_u/(1-z). - Richard Choulet, Jan 28 2010
Equals row sums of a triangle with (1, 4, 7, 10, ...) in every column, shifted down twice for columns > 1. - Gary W. Adamson, Mar 03 2010
Number of pairs (x,y) with x in {0,...,n}, y odd in {0,...,2n}, and x < y. - Clark Kimberling, Jul 02 2012
Also A049451 and positives A000567 interleaved. - Omar E. Pol, Aug 03 2012
Similar to A001082. Members of this family are A093005, A210977, this sequence, A210978, A181995, A210981, A210982. - Omar E. Pol, Aug 09 2012

Examples

			G.f. = x + 4*x^2 + 8*x^3 + 14*x^4 + 21*x^5 + 30*x^6 + 40*x^7 + 52*x^8 + 65*x^9 + ...
		

References

  • Marc LeBrun, personal communication.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Row sums of A104567.
Cf. A051125.

Programs

  • Magma
    [(6*n^2+4*n-1+(-1)^n)/8: n in [0..50] ]; // Vincenzo Librandi, Aug 20 2011
  • Maple
    with (combinat): seq(count(Partition((3*n+1)), size=3), n=0..52); # Zerinvary Lajos, Mar 28 2008
    # 2nd program
    A006578 := proc(n)
        (6*n^2 + 4*n - 1 + (-1)^n)/8 ;
    end proc: # R. J. Mathar, Apr 28 2017
  • Mathematica
    Accumulate[LinearRecurrence[{1,1,-1}, {0,1,3}, 100]] (* Harvey P. Dale, Sep 29 2013 *)
    a[ n_] := Quotient[n + 1, 2] (Quotient[n, 2] 3 + 1); (* Michael Somos, Jun 09 2014 *)
    a[ n_] := Quotient[3 (n + 1)^2 + 1, 4] - (n + 1); (* Michael Somos, Jun 10 2015 *)
    LinearRecurrence[{2, 0, -2, 1},{0, 1, 4, 8},53] (* Ray Chandler, Aug 03 2015 *)
  • PARI
    {a(n) = (3*(n+1)^2 + 1)\4 - n - 1}; /* Michael Somos, Mar 10 2006 */
    

Formula

Expansion of x*(1+2*x) / ((1-x)^2*(1-x^2)). - Simon Plouffe in his 1992 dissertation
a(n) + A002620(n) = A002378(n) = n*(n+1).
Partial sums of A032766. - Paul Barry, May 30 2003
a(n) = a(n-1) + a(n-2) - a(n-3) + 3 = A002620(n) + A004526(n) = A001859(n) - A004526(n+1). - Henry Bottomley, Mar 08 2000
a(n) = (6*n^2 + 4*n - 1 + (-1)^n)/8. - Paul Barry, May 30 2003
a(n) = A001859(-1-n) for all n in Z. - Michael Somos, May 10 2006
a(n) = (A002378(n)/2 + A035608(n))/2. - Reinhard Zumkeller, Feb 07 2010
a(n) = (3*n^2 + 2*n - (n mod 2))/4. - Ctibor O. Zizka, Mar 11 2012
a(n) = Sum_{i=1..n} floor(3*i/2) = Sum_{i=0..n} (i + floor(i/2)). - Enrique Pérez Herrero, Apr 21 2012
a(n) = 3*n*(n+1)/2 - A001859(n). - Clark Kimberling, Jul 02 2012
a(n) = Sum_{i=1..n} (n - i + 1) * 2^( (i+1) mod 2 ). - Wesley Ivan Hurt, Mar 30 2014
a(n) = A002717(n) - A002717(n-1). - Michael Somos, Jun 09 2014
a(n) = Sum_{k=1..n} floor((n+k+1)/2). - Wesley Ivan Hurt, Mar 31 2017
a(n) = A002620(n+1)+2*A002620(n). - R. J. Mathar, Apr 28 2017
Sum_{n>=1} 1/a(n) = 3 - Pi/(4*sqrt(3)) - 3*log(3)/4. - Amiram Eldar, May 28 2022
E.g.f.: (x*(5 + 3*x)*cosh(x) - (1 - 5*x - 3*x^2)*sinh(x))/4. - Stefano Spezia, Aug 22 2023

Extensions

Offset and description changed by N. J. A. Sloane, Nov 30 2006

A080335 Diagonal in square spiral or maze arrangement of natural numbers.

Original entry on oeis.org

1, 5, 9, 17, 25, 37, 49, 65, 81, 101, 121, 145, 169, 197, 225, 257, 289, 325, 361, 401, 441, 485, 529, 577, 625, 677, 729, 785, 841, 901, 961, 1025, 1089, 1157, 1225, 1297, 1369, 1445, 1521, 1601, 1681, 1765, 1849, 1937, 2025, 2117, 2209, 2305, 2401, 2501
Offset: 0

Views

Author

Paul Barry, Mar 19 2003

Keywords

Comments

Interleaves the odd squares A016754 with (1+4n^2), A053755.
Squares of positive integers (plus 1 if n is odd). - Wesley Ivan Hurt, Oct 10 2013
a(n) is the maximum total number of queens that can coexist without attacking each other on an [n+3] X [n+3] chessboard, when the lone queen is in the most vulnerable position on the board. Specifically, the lone queen will placed in any center position, facing an opponent's "army" of size a(n)-1 == A137932(n+2). - Bob Selcoe, Feb 12 2015
a(n) is also the edge chromatic number of the complement of the (n+2) X (n+2) rook graph. - Eric W. Weisstein, Jan 31 2024

Crossrefs

Sequences on the four axes of the square spiral: Starting at 0: A001107, A033991, A007742, A033954; starting at 1: A054552, A054556, A054567, A033951.
Sequences on the four diagonals of the square spiral: Starting at 0: A002939 = 2*A000384, A016742 = 4*A000290, A002943 = 2*A014105, A033996 = 8*A000217; starting at 1: A054554, A053755, A054569, A016754.
Sequences obtained by reading alternate terms on the X and Y axes and the two main diagonals of the square spiral: Starting at 0: A035608, A156859, A002378 = 2*A000217, A137932 = 4*A002620; starting at 1: A317186, A267682, A002061, A080335.

Programs

Formula

a(n) = (3 + 4*n + 2*n^2 - (-1)^n)/2.
a(2*n) = A016754(n), a(2*n+1) = A053755(n+1).
E.g.f.: exp(x)*(2 + 3*x + x^2) - cosh(x). The sequence 1,1,5,9,... is given by n^2+(1+(-1)^n)/2 with e.g.f. exp(1+x+x^2)*exp(x)-sinh(x). - Paul Barry, Sep 02 2003 and Sep 19 2003
a(0)=1, a(1)=5, a(2)=9, a(3)=17, a(n) = 2*a(n-1) - 2*a(n-3) + a(n-4). - Harvey P. Dale, Jan 29 2012
a(n)+(-1)^n = A137928(n+1). - Philippe Deléham, Feb 17 2012
G.f.: (1 + 3*x - x^2 + x^3)/((1-x)^3*(1+x)). - Colin Barker, Mar 18 2012
a(n) = A000035(n) + A000290(n+1). - Wesley Ivan Hurt, Oct 10 2013
From Bob Selcoe, Feb 12 2015: (Start)
a(n) = A137932(n+2) + 1.
a(n) = (n+1)^2 when n is even; a(n) = (n+1)^2 + 1 when n is odd.
a(n) = A002378(n+2) - A047238(n+3) + 1.
(End)
Sum_{n>=0} 1/a(n) = Pi*coth(Pi/2)/4 + Pi^2/8 - 1/2. - Amiram Eldar, Jul 07 2022

A137932 Terms in an n X n spiral that do not lie on its principal diagonals.

Original entry on oeis.org

0, 0, 0, 4, 8, 16, 24, 36, 48, 64, 80, 100, 120, 144, 168, 196, 224, 256, 288, 324, 360, 400, 440, 484, 528, 576, 624, 676, 728, 784, 840, 900, 960, 1024, 1088, 1156, 1224, 1296, 1368, 1444, 1520, 1600, 1680, 1764, 1848, 1936, 2024, 2116, 2208, 2304, 2400, 2500, 2600, 2704, 2808
Offset: 0

Views

Author

William A. Tedeschi, Feb 29 2008

Keywords

Comments

The count of terms not on the principal diagonals is always even.
The last digit is the repeating pattern 0,0,0,4,8,6,4,6,8,4, which is palindromic if the leading 0's are removed, 4864684.
The sum of the last digits is 40, which is the count of the pattern times 4.
A 4 X 4 spiral is the only spiral, aside from a 0 X 0, whose count of terms that do not lie on its principal diagonals equal the count of terms that do [A137932(4) = A042948(4)] making the 4 X 4 the "perfect spiral".
Yet another property is mod(a(n), A042948(n)) = 0 iff n is even. This is a large family that includes the 4 X 4 spiral.
a(n) is the maximum number of queens of one color that can coexist without attacking one queen of the opponent's color on an [n+1] X [n+1] chessboard, when the lone queen is in the most vulnerable position on the board, i.e., on a center square. - Bob Selcoe, Feb 12 2015
Also the circumference of the (n-1) X (n-1) grid graph for n > 2. - Eric W. Weisstein, Mar 25 2018
Also the crossing number of the complete bipartite graph K_{5,n}. - Eric W. Weisstein, Sep 11 2018

Examples

			a(0) = 0^2 - (2(0) - mod(0,2)) = 0.
a(3) = 3^2 - (2(3) - mod(3,2)) = 4.
		

Crossrefs

Cf. A042948.
Sequences on the four axes of the square spiral: Starting at 0: A001107, A033991, A007742, A033954; starting at 1: A054552, A054556, A054567, A033951.
Sequences on the four diagonals of the square spiral: Starting at 0: A002939 = 2*A000384, A016742 = 4*A000290, A002943 = 2*A014105, A033996 = 8*A000217; starting at 1: A054554, A053755, A054569, A016754.
Sequences obtained by reading alternate terms on the X and Y axes and the two main diagonals of the square spiral: Starting at 0: A035608, A156859, A002378 = 2*A000217, A137932 = 4*A002620; starting at 1: A317186, A267682, A002061, A080335.

Programs

Formula

a(n) = n^2 - (2*n - mod(n,2)) = n^2 - A042948(n).
a(n) = 2*A007590(n-1). - Enrique Pérez Herrero, Jul 04 2012
G.f.: -4*x^3 / ( (1+x)*(x-1)^3 ). a(n) = 4*A002620(n-1). - R. J. Mathar, Jul 06 2012
From Bob Selcoe, Feb 12 2015: (Start)
a(n) = (n-1)^2 when n is odd; a(n) = (n-1)^2 - 1 when n is even.
a(n) = A002378(n) - A047238(n+1). (End)
From Amiram Eldar, Mar 20 2022: (Start)
Sum_{n>=3} 1/a(n) = Pi^2/24 + 1/4.
Sum_{n>=3} (-1)^(n+1)/a(n) = Pi^2/24 - 1/4. (End)
E.g.f.: x*(x - 1)*cosh(x) + (x^2 - x + 1)*sinh(x). - Stefano Spezia, Oct 17 2022

A156859 The main column of a version of the square spiral.

Original entry on oeis.org

0, 3, 7, 14, 22, 33, 45, 60, 76, 95, 115, 138, 162, 189, 217, 248, 280, 315, 351, 390, 430, 473, 517, 564, 612, 663, 715, 770, 826, 885, 945, 1008, 1072, 1139, 1207, 1278, 1350, 1425, 1501, 1580, 1660, 1743, 1827, 1914, 2002, 2093, 2185, 2280, 2376, 2475, 2575
Offset: 0

Views

Author

Emilio Apricena (emilioapricena(AT)yahoo.it), Feb 17 2009

Keywords

Comments

This spiral is sometimes called an Ulam spiral, but square spiral is a better name. - N. J. A. Sloane, Jul 27 2018
It is easy to see that the only two primes in the sequence are 3, 7. Therefore the primes of the version of Ulam spiral are divided into four parts (see also A035608): northeast (NE), northwest (NW), southwest (SW), and southeast (SE).
Number of pairs (x,y) having x and y of opposite parity with x in {0,...,n} and y in {0,...,2n}. - Clark Kimberling, Jul 02 2012
Partial Sums of A014601(n). - Wesley Ivan Hurt, Oct 11 2013

Crossrefs

Cf. A000290, A000384, A004526, A014601 (first differences), A115258.
Sequences on the four axes of the square spiral: Starting at 0: A001107, A033991, A007742, A033954; starting at 1: A054552, A054556, A054567, A033951.
Sequences on the four diagonals of the square spiral: Starting at 0: A002939 = 2*A000384, A016742 = 4*A000290, A002943 = 2*A014105, A033996 = 8*A000217; starting at 1: A054554, A053755, A054569, A016754.
Sequences obtained by reading alternate terms on the X and Y axes and the two main diagonals of the square spiral: Starting at 0: A035608, A156859, A002378 = 2*A000217, A137932 = 4*A002620; starting at 1: A317186, A267682, A002061, A080335.

Programs

Formula

a(n) = n^2 + n + floor((n+1)/2) = A002378(n) + A004526(n+1) = A002620(n+1) + 3*A002620(n).
From R. J. Mathar, Feb 20 2009: (Start)
G.f.: x*(3+x)/((1+x)*(1-x)^3).
a(n) = 2*a(n-1) - 2*a(n-3) + a(n-4). (End)
a(n-1) = floor(n/(e^(1/n)-1)). - Richard R. Forberg, Jun 19 2013
a(n) = A000290(n+1) + A004526(-n-1). - Wesley Ivan Hurt, Jul 15 2013
a(n) + a(n+1) = A014105(n+1). - R. J. Mathar, Jul 15 2013
a(n) = floor(A000384(n+1)/2). - Bruno Berselli, Nov 11 2013
E.g.f.: (x*(5 + 2*x)*cosh(x) + (1 + 5*x + 2*x^2)*sinh(x))/2. - Stefano Spezia, Apr 24 2024
Sum_{n>=1} 1/a(n) = 4/9 + 2*log(2) - Pi/3. - Amiram Eldar, Apr 26 2024

Extensions

More terms added by Wesley Ivan Hurt, Oct 11 2013

A317186 One of many square spiral sequences: a(n) = n^2 + n - floor((n-1)/2).

Original entry on oeis.org

1, 2, 6, 11, 19, 28, 40, 53, 69, 86, 106, 127, 151, 176, 204, 233, 265, 298, 334, 371, 411, 452, 496, 541, 589, 638, 690, 743, 799, 856, 916, 977, 1041, 1106, 1174, 1243, 1315, 1388, 1464, 1541, 1621, 1702, 1786, 1871, 1959, 2048, 2140, 2233, 2329, 2426
Offset: 0

Views

Author

N. J. A. Sloane, Jul 27 2018

Keywords

Comments

Draw a square spiral on a piece of graph paper, and label the cells starting at the center with the positive (resp. nonnegative) numbers. This produces two versions of the labeled square spiral, shown in the Example section below.
The spiral may proceed clockwise or counterclockwise, and the first arm of the spiral may be along any of the four axes, so there are eight versions of each spiral. However, this has no effect on the resulting sequences, and it is enough to consider just two versions of the square spiral (starting at 1 or starting at 0).
The present sequence is obtained by reading alternate entries on the X-axis (say) of the square spiral started at 1.
The cross-references section lists many sequences that can be read directly off the two spirals. Many other sequences can be obtained from them by using them to extract subsequences from other important sequences. For example, the subsequence of primes indexed by the present sequence gives A317187.
a(n) is also the number of free polyominoes with n + 4 cells whose difference between length and width is n. In this comment the length is the longer of the two dimensions and the width is the shorter of the two dimensions (see the examples of polyominoes). Hence this is also the diagonal 4 of A379625. - Omar E. Pol, Jan 24 2025
From John Mason, Feb 19 2025: (Start)
The sequence enumerates polyominoes of width 2 having precisely 2 horizontal bars. By classifying such polyominoes according to the following templates, it is possible to define a formula that reduces to the one below:
.
OO O O
O OO OO
O O O
O O OO
OO OO O
.
(End)

Examples

			The square spiral when started with 1 begins:
.
  100--99--98--97--96--95--94--93--92--91
                                        |
   65--64--63--62--61--60--59--58--57  90
    |                               |   |
   66  37--36--35--34--33--32--31  56  89
    |   |                       |   |   |
   67  38  17--16--15--14--13  30  55  88
    |   |   |               |   |   |   |
   68  39  18   5---4---3  12  29  54  87
    |   |   |   |       |   |   |   |   |
   69  40  19   6   1---2  11  28  53  86
    |   |   |   |           |   |   |   |
   70  41  20   7---8---9--10  27  52  85
    |   |   |                   |   |   |
   71  42  21--22--23--24--25--26  51  84
    |   |                           |   |
   72  43--44--45--46--47--48--49--50  83
    |                                   |
   73--74--75--76--77--78--79--80--81--82
.
For the square spiral when started with 0, subtract 1 from each entry. In the following diagram this spiral has been reflected and rotated, but of course that makes no difference to the sequences:
.
   99  64--65--66--67--68--69--70--71--72
    |   |                               |
   98  63  36--37--38--39--40--41--42  73
    |   |   |                       |   |
   97  62  35  16--17--18--19--20  43  74
    |   |   |   |               |   |   |
   96  61  34  15   4---5---6  21  44  75
    |   |   |   |   |       |   |   |   |
   95  60  33  14   3   0   7  22  45  76
    |   |   |   |   |   |   |   |   |   |
   94  59  32  13   2---1   8  23  46  77
    |   |   |   |           |   |   |   |
   93  58  31  12--11--10---9  24  47  78
    |   |   |                   |   |   |
   92  57  30--29--28--27--26--25  48  79
    |   |                           |   |
   91  56--55--54--53--52--51--50--49  80
    |                                   |
   90--89--88--87--86--85--84--83--82--81
.
From _Omar E. Pol_, Jan 24 2025: (Start)
For n = 0 there is only one free polyomino with 0 + 4 = 4 cells whose difference between length and width is 0 as shown below, so a(0) = 1.
   _ _
  |_|_|
  |_|_|
.
For n = 1 there are two free polyominoes with 1 + 4 = 5 cells whose difference between length and width is 1 as shown below, so a(1) = 2.
   _ _     _ _
  |_|_|   |_|_|
  |_|_|   |_|_
  |_|     |_|_|
.
(End)
		

Crossrefs

Sequences on the four axes of the square spiral: Starting at 0: A001107, A033991, A007742, A033954; starting at 1: A054552, A054556, A054567, A033951.
Sequences on the four diagonals of the square spiral: Starting at 0: A002939 = 2*A000384, A016742 = 4*A000290, A002943 = 2*A014105, A033996 = 8*A000217; starting at 1: A054554, A053755, A054569, A016754.
Sequences obtained by reading alternate terms on the X and Y axes and the two main diagonals of the square spiral: Starting at 0: A035608, A156859, A002378 = 2*A000217, A137932 = 4*A002620; starting at 1: A317186, A267682, A002061, A080335.
Filling in these two squares spirals with greedy algorithm: A274640, A274641.
Cf. also A317187.

Programs

  • Mathematica
    a[n_] := n^2 + n - Floor[(n - 1)/2]; Array[a, 50, 0] (* Robert G. Wilson v, Aug 01 2018 *)
    LinearRecurrence[{2, 0, -2 , 1},{1, 2, 6, 11},50] (* or *)
    CoefficientList[Series[(- x^3 - 2 * x^2 - 1) / ((x - 1)^3 * (x + 1)), {x, 0, 50}], x] (* Stefano Spezia, Sep 02 2018 *)

Formula

From Daniel Forgues, Aug 01 2018: (Start)
a(n) = (1/4) * (4 * n^2 + 2 * n + (-1)^n + 3), n >= 0.
a(0) = 1; a(n) = - a(n-1) + 2 * n^2 - n + 2, n >= 1.
a(0) = 1; a(1) = 2; a(2) = 6; a(3) = 11; a(n) = 2 * a(n-1) - 2 * a(n-3) + a(n-4), n >= 4.
G.f.: (- x^3 - 2 * x^2 - 1) / ((x - 1)^3 * (x + 1)). (End)
E.g.f.: ((2 + 3*x + 2*x^2)*cosh(x) + (1 + 3*x + 2*x^2)*sinh(x))/2. - Stefano Spezia, Apr 24 2024
a(n)+a(n+1)=A033816(n). - R. J. Mathar, Mar 21 2025
a(n)-a(n-1) = A042948(n), n>=1. - R. J. Mathar, Mar 21 2025

A011848 a(n) = floor(binomial(n, 2)/2).

Original entry on oeis.org

0, 0, 0, 1, 3, 5, 7, 10, 14, 18, 22, 27, 33, 39, 45, 52, 60, 68, 76, 85, 95, 105, 115, 126, 138, 150, 162, 175, 189, 203, 217, 232, 248, 264, 280, 297, 315, 333, 351, 370, 390, 410, 430, 451, 473, 495, 517, 540, 564, 588, 612, 637, 663, 689, 715, 742, 770, 798
Offset: 0

Views

Author

N. J. A. Sloane, Dec 11 1996

Keywords

Comments

Column sums of an array of the odd numbers repeatedly shifted 4 places to the right:
1 3 5 7 9 11 13 15 17...
1 3 5 7 9...
1...
.........................
-------------------------
1 3 5 7 10 14 18 22 27...
Floor of the area under the polygon connecting the lattice points (n, floor(n/2)) from 0..n. - Wesley Ivan Hurt, Jun 09 2014
Beginning with a(4)=3, the sequence might be called the "off-axis" Ulam-Spiral numbers because they are the numbers in ascending order on the horizontal and vertical spokes (heading outward) starting with the first turning points on the spiral (i.e., 3, 5, 7 and 10). That is, starting with: 3 (upward); 5 (leftward); 7 (downward) and 10 (rightward). These are A033991 (starting at a(1)), A007742 (starting at a(1)), A033954 (starting at a(1)) and A001107 (starting at a(2)), respectively. These quadri-sections are summarized in the formulas of Sep 26 2015. - Bob Selcoe, Oct 05 2015
Conjecture: For n = 2, a(n) is the greatest k such that A123663(k) < A000217(n - 2). - Peter Kagey, Nov 18 2016
a(n) is also the matching number of the n-triangular graph, (n-1)-triangular honeycomb queen graph, (n-1)-triangular honeycomb bishop graphs, and (for n > 7) (n-1)-triangular honeycomb obtuse knight graphs. - Eric W. Weisstein, Jun 02 2017 and Apr 03 2018
After 0, 0, 0, add 1, then add 2 three times, then add 3, then add 4 three times, then add 5, etc.; i.e., first differences are A004524 = (0, 0, 0, 1, 2, 2, 2, 3, 4, 4, 4, 5, ...). - M. F. Hasler, May 09 2018
Let s(0) = s(1) = 1, s(-1) = s(2) = x, and s(n+2)*s(n-2) = s(n+1)*s(n-1) + s(n)^2 for all n in Z. Then s(n) = p(n) / x^e(n) is a Laurent polynomial in x with p(n) a polynomial with nonnegative integer coefficients of degree a(n) for all n in Z. If x = 1, then s(n) = p(n) = A006720(n+1). - Michael Somos, Mar 22 2023

Examples

			G.f. = x^3 + 3*x^4 + 5*x^5 + 7*x^6 + 10*x^7 + 14*x^8 + 18*x^9 + 22*x^10 + ...
p(0) = p(1) = 1, p(2) = 1 + x, p(3) = 1 + x + x^3, p(4) = 1 + 2*x + 2*x^2 + x^3 + x^5. - _Michael Somos_, Mar 22 2023
		

Crossrefs

A column of triangle A011857.
First differences are in A004524.
Cf. A007318, A033991, A007742, A033954, A001107, A006720, A035608 (bisection), A156859 (bisection).

Programs

  • GAP
    List([0..60],n->Int(Binomial(n,2)/2)); # Muniru A Asiru, Apr 05 2018
    
  • Haskell
    a011848 n = if n < 2 then 0 else flip div 2 $ a007318 n 2
    -- Reinhard Zumkeller, Mar 04 2015
    
  • Magma
    [ Floor(n*(n-1)/4) : n in [0..50] ]; // Wesley Ivan Hurt, Jun 09 2014
    
  • Maple
    seq(floor(binomial(n,2)/2), n=0..57); # Zerinvary Lajos, Jan 12 2009
  • Mathematica
    Table[Floor[n (n - 1)/4], {n, 0, 100}] (* Vladimir Joseph Stephan Orlovsky, Jun 28 2011 *)
    CoefficientList[Series[x^3/((1 + x^2) (1 - x)^3), {x, 0, 70}], x] (* Vincenzo Librandi, Jun 21 2013 *)
    LinearRecurrence[{3, -4, 4, -4, 1}, {0, 0, 1, 3, 5}, {0, 20}] (* Eric W. Weisstein, Jun 02 2017 *)
    Table[Floor[Binomial[n, 2]/2], {n, 0, 20}] (* Eric W. Weisstein, Jun 02 2017 *)
    Table[1/4 (-1 + (-1 + n) n + Cos[n Pi/2] + Sin[n Pi/2]), {n, 0, 20}] (* Eric W. Weisstein, Jun 02 2017 *)
    Floor[Binomial[Range[0, 20], 2]/2] (* Eric W. Weisstein, Apr 03 2018 *)
  • PARI
    a(n) = binomial(n, 2)\2;
    
  • PARI
    vector(100, n, n--; floor(n*(n-1)/4)) \\ Altug Alkan, Sep 30 2015
    
  • Python
    def a(n): return n*(n-1)//4 # Christoph B. Kassir, Oct 07 2022
  • Sage
    [floor(binomial(n,2)/2) for n in range(0,58)] # Zerinvary Lajos, Dec 01 2009
    

Formula

G.f.: x^3*(1-x^2)/((1-x)^3*(1-x^4)).
G.f.: x^3/((1+x^2)*(1-x)^3). - Jon Perry, Mar 31 2004
a(n) = +3*a(n-1) -4*a(n-2) +4*a(n-3) -3*a(n-4) +a(n-5). - R. J. Mathar, Apr 15 2010
a(n) = floor((n/(1+e^(1/n)))^2). - Richard R. Forberg, Jun 19 2013
a(n) = floor(n*(n-1)/4). - T. D. Noe, Jun 20 2013
a(n) = (1/4) * ( n^2 - n - 1 + (-1)^floor(n/2) ). - Ralf Stephan, Aug 11 2013
a(n) = A054925(n) - A133872(n+2). - Wesley Ivan Hurt, Jun 09 2014
a(4*n) = A033991(n). a(4*n+1) = A007742(n). a(4*n+2) = A033954(n). a(4*n+3) = A001107(n+1). - Bob Selcoe, Sep 26 2015
E.g.f.: (sin(x) + cos(x) + (x^2 - 1)*exp(x))/4. - Ilya Gutkovskiy, Nov 18 2016
A054925(n) = a(-n). A035608(n) = a(2*n+1). Wesley Ivan Hurt, Jun 09 2014
A156859(n) = a(2*n+2). - Michael Somos, Nov 18 2016
Euler transform of length 4 sequence [ 3, -1, 0, 1]. - Michael Somos, Nov 18 2016
From Amiram Eldar, Mar 18 2022: (Start)
Sum_{n>=3} 1/a(n) = 40/9 - 2*Pi/3.
Sum_{n>=3} (-1)^(n+1)/a(n) = 32/9 - 4*log(2). (End)
0 = a(n+2)*(a(n)*(a(n) -6*a(n+1) +4*a(n+2)) +a(n+1)*(8*a(n+1) -10*a(n+2)) + 3*a(n+2)^2) +a(n+3)*(a(n)*(+a(n) -2*a(n+1)) +a(n+2)*(2*a(n+1) -a(n+2))) for all n in Z. - Michael Somos, Mar 22 2023
2*a(n) + 2*a(n-2) = (n-1)*(n-2). - R. J. Mathar, Feb 12 2024

A267682 a(n) = 2*a(n-1) - 2*a(n-3) + a(n-4) for n > 3, with initial terms 1, 1, 4, 8.

Original entry on oeis.org

1, 1, 4, 8, 15, 23, 34, 46, 61, 77, 96, 116, 139, 163, 190, 218, 249, 281, 316, 352, 391, 431, 474, 518, 565, 613, 664, 716, 771, 827, 886, 946, 1009, 1073, 1140, 1208, 1279, 1351, 1426, 1502, 1581, 1661, 1744, 1828, 1915, 2003, 2094, 2186, 2281, 2377, 2476
Offset: 0

Views

Author

Robert Price, Jan 19 2016

Keywords

Comments

Also, total number of ON (black) cells after n iterations of the "Rule 201" elementary cellular automaton starting with a single ON (black) cell.

References

  • S. Wolfram, A New Kind of Science, Wolfram Media, 2002; p. 55.

Crossrefs

Cf. A267679.
Sequences on the four axes of the square spiral: Starting at 0: A001107, A033991, A007742, A033954; starting at 1: A054552, A054556, A054567, A033951.
Sequences on the four diagonals of the square spiral: Starting at 0: A002939 = 2*A000384, A016742 = 4*A000290, A002943 = 2*A014105, A033996 = 8*A000217; starting at 1: A054554, A053755, A054569, A016754.
Sequences obtained by reading alternate terms on the X and Y axes and the two main diagonals of the square spiral: Starting at 0: A035608, A156859, A002378 = 2*A000217, A137932 = 4*A002620; starting at 1: A317186, A267682, A002061, A080335.

Programs

  • Mathematica
    rule=201; rows=20; ca=CellularAutomaton[rule,{{1},0},rows-1,{All,All}]; (* Start with single black cell *) catri=Table[Take[ca[[k]],{rows-k+1,rows+k-1}],{k,1,rows}]; (* Truncated list of each row *) nbc=Table[Total[catri[[k]]],{k,1,rows}]; (* Number of Black cells in stage n *) Table[Total[Take[nbc,k]],{k,1,rows}] (* Number of Black cells through stage n *)
    LinearRecurrence[{2, 0, -2, 1}, {1, 1, 4, 8}, 60] (* Vincenzo Librandi, Jan 19 2016 *)
  • PARI
    Vec((1-x+2*x^2+2*x^3)/((1-x)^3*(1+x)) + O(x^100)) \\ Colin Barker, Jan 19 2016
    
  • Python
    print([n*(n-1)+n//2+1 for n in range(51)]) # Karl V. Keller, Jr., Jul 14 2021

Formula

G.f.: (1 - x + 2*x^2 + 2*x^3) / ((1-x)^3*(1+x)). - Colin Barker, Jan 19 2016
a(n) = n*(n-1) + floor(n/2) + 1. - Karl V. Keller, Jr., Jul 14 2021
E.g.f.: (exp(x)*(2 + x + 2*x^2) - sinh(x))/2. - Stefano Spezia, Jul 16 2021

Extensions

Edited by N. J. A. Sloane, Jul 25 2018, replacing definition with simpler formula provided by Colin Barker, Jan 19 2016.

A139592 A033585(n) followed by A139271(n+1).

Original entry on oeis.org

0, 2, 10, 20, 36, 54, 78, 104, 136, 170, 210, 252, 300, 350, 406, 464, 528, 594, 666, 740, 820, 902, 990, 1080, 1176, 1274, 1378, 1484, 1596, 1710, 1830, 1952, 2080, 2210, 2346, 2484, 2628, 2774, 2926, 3080, 3240, 3402, 3570, 3740
Offset: 0

Views

Author

Omar E. Pol, May 03 2008

Keywords

Comments

Sequence found by reading the line from 0, in the direction 0, 2,... and the same line from 0, in the direction 0, 10,..., in the square spiral whose vertices are the triangular numbers A000217.
a(n) = 2*A006578(n) - A002378(n)/2 = 2*A035608(n). [From Reinhard Zumkeller, Feb 07 2010]

Examples

			Array begins:
0, 2
10, 20
36, 54
78, 104
		

Crossrefs

Formula

Array read by rows: row n gives 8*n^2 + 2n, 8*(n+1)^2 - 6(n+1).
a(n) = 2*floor((n + 1/4)^2). [From Reinhard Zumkeller, Feb 07 2010]
G.f.: 2*x*(1+3*x)/((1-x)^3*(1+x)). [Colin Barker, Apr 26 2012]

A266180 Decimal representation of the n-th iteration of the "Rule 6" elementary cellular automaton starting with a single ON (black) cell.

Original entry on oeis.org

1, 6, 16, 96, 256, 1536, 4096, 24576, 65536, 393216, 1048576, 6291456, 16777216, 100663296, 268435456, 1610612736, 4294967296, 25769803776, 68719476736, 412316860416, 1099511627776, 6597069766656, 17592186044416, 105553116266496, 281474976710656
Offset: 0

Views

Author

Robert Price, Dec 22 2015

Keywords

Comments

A001025 is a subsequence. - Altug Alkan, Dec 23 2015
Rules 38, 134 and 166 also generate this sequence.

References

  • S. Wolfram, A New Kind of Science, Wolfram Media, 2002; p. 55.

Crossrefs

Programs

  • Mathematica
    rule=6; rows=20; ca=CellularAutomaton[rule,{{1},0},rows-1,{All,All}]; (* Start with single black cell *) catri=Table[Take[ca[[k]],{rows-k+1,rows+k-1}],{k,1,rows}]; (* Truncated list of each row *) Table[FromDigits[catri[[k]],2],{k,1,rows}]   (* Decimal Representation of Rows *)
    LinearRecurrence[{0,16},{1,6},30] (* Harvey P. Dale, May 25 2016 *)
  • Python
    print([int(4**(n-1)*(5-(-1)**n)) for n in range(30)]) # Karl V. Keller, Jr., Jun 03 2021

Formula

From Colin Barker, Dec 23 2015 and Apr 13 2019: (Start)
a(n) = 4^(n-1)*(5-(-1)^n).
a(n) = 16*a(n-2) for n>1.
G.f.: (1+6*x) / ((1-4*x)*(1+4*x)).
(End)
Previous Showing 21-30 of 45 results. Next