cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 33 results. Next

A055251 Eighth column of triangle A055249.

Original entry on oeis.org

1, 10, 57, 244, 874, 2772, 8054, 21920, 56751, 141326, 341303, 804276, 1858080, 4223784, 9474444, 21018144, 46195149, 100734354, 218190469, 469866964, 1006759110, 2147634364, 4563581746, 9663887808, 20401343003, 42949963286, 90194651043, 188978952404
Offset: 0

Views

Author

Wolfdieter Lang, May 26 2000

Keywords

Comments

A045618 Partial sums of A000337(n+4),n>=0,
A045889 Partial sums of A045618,
A034009 Partial sums of A045889,
(A055250 Seventh column of triangle A055249) Partial sums of A034009,
(A055251 Eighth column of triangle A055249) Partial sums of A055250. - Vladimir Joseph Stephan Orlovsky, Jul 09 2011

Crossrefs

Cf. A055249, A035039, partial sums of A055250.

Programs

  • Maple
    a:= n-> (Matrix(8, (i,j)-> if (i=j-1) then 1 elif j=1 then [10,-43,104,-155, 146,-85,28,-4][i] else 0 fi)^(n))[1,1]: seq(a(n), n=0..25); # Alois P. Heinz, Aug 05 2008
  • Mathematica
    Table[Sum[(-1)^(n - k) k (-1)^(n - k) Binomial[n + 6, k + 6], {k, 0, n}], {n, 1, 26}] (* Zerinvary Lajos, Jul 08 2009 *)
  • PARI
    Vec(1 / ((1 - x)^6*(1 - 2*x)^2) + O(x^30)) \\ Colin Barker, Sep 20 2017

Formula

G.f.: 1 / (((1-2*x)^2)*(1-x)^6).
a(n) = A055249(n+7, 7).
For n >= 1, a(n) = A035039(n+7) + Sum_{j=0..n-1} a(j).
a(n) = Sum_{k=0..n+6} Sum_{i=0..n+6} (i-k) * C(n-k+6,i+4). - Wesley Ivan Hurt, Sep 19 2017
a(n) = (1/120)*(38520 - 75*2^(9+n) + 2*(9637 + 15*2^(8+n))*n + 4285*n^2 + 525*n^3 + 35*n^4 + n^5). - Colin Barker, Sep 20 2017

A213747 Rectangular array: (row n) = b**c, where b(h) = -1 + 2^h, c(h) = b(n-1+h), n>=1, h>=1, and ** = convolution.

Original entry on oeis.org

1, 6, 3, 23, 16, 7, 72, 57, 36, 15, 201, 170, 125, 76, 31, 522, 459, 366, 261, 156, 63, 1291, 1164, 975, 758, 533, 316, 127, 3084, 2829, 2448, 2007, 1542, 1077, 636, 255, 7181, 6670, 5905, 5016, 4071, 3110, 2165, 1276, 511, 16398, 15375, 13842
Offset: 1

Views

Author

Clark Kimberling, Jun 19 2012

Keywords

Comments

Principal diagonal: A213748.
Antidiagonal sums: A213749.
Row 1, (1,3,7,15,31,...)**(1,3,7,15,31,...): A045618.
Row 2, (1,3,7,15,31,...)**(3,7,15,31,...).
Row 3, (1,3,7,15,31,...)**(7,15,31,...).
For a guide to related arrays, see A213500.

Examples

			Northwest corner (the array is read by falling antidiagonals):
1....6.....23....72.....201
3....16....57....170....459
7....36....125...366....975
15...76....261...758....1007
31...156...533...1542...4071
		

Crossrefs

Cf. A213500.

Programs

  • Mathematica
    b[n_] := -1 + 2^n; c[n_] := -1 + 2^n;
    t[n_, k_] := Sum[b[k - i] c[n + i], {i, 0, k - 1}]
    TableForm[Table[t[n, k], {n, 1, 10}, {k, 1, 10}]]
    Flatten[Table[t[n - k + 1, k], {n, 12}, {k, n, 1, -1}]]
    r[n_] := Table[t[n, k], {k, 1, 60}]  (* A213747 *)
    Table[t[n, n], {n, 1, 40}] (* A213748 *)
    s[n_] := Sum[t[i, n + 1 - i], {i, 1, n}]
    Table[s[n], {n, 1, 50}] (* A213749 *)

Formula

T(n,k) = 6*T(n,k-1)-13*T(n,k-2)+12*T(n,k-3)-4*T(n,k-4).
G.f. for row n: f(x)/g(x), where f(x) = -1 + 2^n - (-2 - 2^n)*x and g(x) = (1 - 3*x + 2*x^2 )^2.

A053219 Reverse of triangle A053218, read by rows.

Original entry on oeis.org

1, 3, 2, 8, 5, 3, 20, 12, 7, 4, 48, 28, 16, 9, 5, 112, 64, 36, 20, 11, 6, 256, 144, 80, 44, 24, 13, 7, 576, 320, 176, 96, 52, 28, 15, 8, 1280, 704, 384, 208, 112, 60, 32, 17, 9, 2816, 1536, 832, 448, 240, 128, 68, 36, 19, 10, 6144, 3328, 1792, 960, 512, 272, 144, 76, 40
Offset: 1

Views

Author

Asher Auel, Jan 01 2000

Keywords

Comments

First element in each row gives A001792. Difference between center element of row 2n-1 and row sum of row n (A053220(n+4) - A053221(n+4)) gives A045618(n).
Subtriangle of triangle in A062111. - Philippe Deléham, Nov 21 2011
Can be seen as the transform of 1, 2, 3, 4, 5, ... by a variant of the boustrophedon algorithm (see the Sage implementation). - Peter Luschny, Oct 30 2014

Examples

			Triangle begins:
1
3, 2
8, 5, 3
20, 12, 7, 4
48, 28, 16, 9, 5 ...
		

Crossrefs

Cf. A053218 (reverse of this triangle), A053220 (center elements), A053221 (row sums), A001792, A045618, A062111.

Programs

  • Mathematica
    Map[Reverse,NestList[FoldList[Plus,#[[1]]+1,#]&,{1},10]]//Grid (* Geoffrey Critzer, Jun 27 2013 *)
  • Sage
    def u():
        for n in PositiveIntegers():
            yield n
    def bous_variant(f):
        k = 0
        am = next(f)
        a = [am]
        while True:
            yield list(a)
            am = next(f)
            a.append(am)
            for m in range(k,-1,-1):
                am += a[m]
                a[m] = am
            k += 1
    b = bous_variant(u())
    [next(b) for  in range(8)] # _Peter Luschny, Oct 30 2014

A058394 A square array based on natural numbers (A000027) with each term being the sum of 2 consecutive terms in the previous row.

Original entry on oeis.org

1, 0, 1, 2, 1, 1, 0, 2, 2, 1, 3, 2, 3, 3, 1, 0, 3, 4, 5, 4, 1, 4, 3, 5, 7, 8, 5, 1, 0, 4, 6, 9, 12, 12, 6, 1, 5, 4, 7, 11, 16, 20, 17, 7, 1, 0, 5, 8, 13, 20, 28, 32, 23, 8, 1, 6, 5, 9, 15, 24, 36, 48, 49, 30, 9, 1, 0, 6, 10, 17, 28, 44, 64, 80, 72, 38, 10, 1, 7, 6, 11, 19, 32, 52, 80, 112, 129
Offset: 0

Views

Author

Henry Bottomley, Nov 24 2000

Keywords

Comments

Changing the formula by replacing T(2n,0)=T(n,2) by T(2n,0)=T(n,m) for some other value of m, would make the generating function change to coefficient of x^n in expansion of (1+x)^k/(1-x^2)^m. This would produce A058393, A058395, A057884 (and effectively A007318).

Examples

			Rows are (1,0,2,0,3,0,4,...), (1,1,2,2,3,3,...), (1,2,3,4,5,6,...), (1,3,5,7,9,11,...), etc.
		

Crossrefs

Rows are A027656 (A000027 with zeros), A008619, A000027, A005408, A008574 etc. Columns are A000012, A001477, A022856 etc. Diagonals include A034007, A045891, A045623, A001792, A001787, A000337, A045618, A045889, A034009, A055250, A055251 etc. The triangle A055249 also appears in half of the array.

Formula

T(n, k)=T(n-1, k-1)+T(n, k-1) with T(0, k)=1, T(2n, 0)=T(n, 2) and T(2n+1, 0)=0. Coefficient of x^n in expansion of (1+x)^k/(1-x^2)^2.

A086804 a(0)=0; for n > 0, a(n) = (n+1)^(n-2)*2^(n^2).

Original entry on oeis.org

0, 1, 16, 2048, 1638400, 7247757312, 164995463643136, 18446744073709551616, 9803356117276277820358656, 24178516392292583494123520000000, 271732164163901599116133024293512544256
Offset: 0

Views

Author

Yuval Dekel (dekelyuval(AT)hotmail.com), Aug 05 2003

Keywords

Comments

Discriminant of Chebyshev polynomial U_n (x) of second kind.
Chebyshev second kind polynomials are defined by U(0)=0, U(1)=1 and U(n) = 2xU(n-1) - U(n-2) for n > 1.
The absolute value of the discriminant of Pell polynomials is a(n-1).
Pell polynomials are defined by P(0)=0, P(1)=1 and P(n) = 2x P(n-1) + P(n-2) if n > 1. - Rigoberto Florez, Sep 01 2018

References

  • Theodore J. Rivlin, Chebyshev polynomials: from approximation theory to algebra and number theory, 2. ed., Wiley, New York, 1990; p. 219, 5.1.2.

Crossrefs

Programs

  • Magma
    [0] cat [(n+1)^(n-2)*2^(n^2): n in [1..10]]; // G. C. Greubel, Nov 11 2018
  • Mathematica
    Join[{0},Table[(n+1)^(n-2) 2^n^2,{n,10}]] (* Harvey P. Dale, May 01 2015 *)
  • PARI
    a(n)=if(n<1,0,(n+1)^(n-2)*2^(n^2))
    
  • PARI
    a(n)=if(n<1,0,n++; poldisc(poltchebi(n)'/n))
    

Formula

a(n) = ((n+1)^(n-2))*2^(n^2), n >= 1, a(0):=0.
a(n) = ((2^(2*(n-1)))*Det(Vn(xn[1],...,xn[n])))^2, n >= 1, with the determinant of the Vandermonde matrix Vn with elements (Vn)i,j:= xn[i]^j, i=1..n, j=0..n-1 and xn[i]:=cos(Pi*i/(n+1)), i=1..n, are the zeros of the Chebyshev U(n,x) polynomials.
a(n) = ((-1)^(n*(n-1)/2))*(2^(n*(n-2)))*Product_{i=1..n}((d/dx)U(n,x)|_{x=xn[i]}), n >= 1, with the zeros xn[i], i=1..n, given above.

Extensions

Formula and more terms from Vladeta Jovovic, Aug 07 2003

A193605 Triangle: (row n) = partial sums of partial sums of row n of Pascal's triangle.

Original entry on oeis.org

1, 1, 3, 1, 4, 8, 1, 5, 12, 20, 1, 6, 17, 32, 48, 1, 7, 23, 49, 80, 112, 1, 8, 30, 72, 129, 192, 256, 1, 9, 38, 102, 201, 321, 448, 576, 1, 10, 47, 140, 303, 522, 769, 1024, 1280, 1, 11, 57, 187, 443, 825, 1291, 1793, 2304, 2816, 1, 12, 68, 244, 630, 1268, 2116, 3084, 4097, 5120, 6144
Offset: 0

Views

Author

Clark Kimberling, Jul 31 2011

Keywords

Comments

The n-th row is contains the partial sums of the n-th row of the array interpretation of A052509. - R. J. Mathar, Apr 22 2013

Examples

			First 5 rows of A193605:
1
1....3
1....4....8
1....5....12....20
1....6....17....32....48
		

Crossrefs

Cf. A193606.

Programs

  • Maple
    A052509 := proc(n,k)
        if k = 0 then
            1;
        else
            procname(n,k-1)+binomial(n,k) ;
        end if;
    end proc:
    A193605 := proc(n,k)
        if k = 0 then
            1;
        else
            procname(n,k-1)+A052509(n,k) ;
        end if;
    end proc: # R. J. Mathar, Apr 22 2013
    # Alternative after Vladimir Kruchinin:
    gf := ((x*y-1)/(1-2*x*y))^2/(1-x*y-x): ser := series(gf, x, 12):
    p := n -> coeff(ser,x,n): row := n -> seq(coeff(p(n),y,k), k=0..n):
    seq(row(n), n=0..10); # Peter Luschny, Aug 19 2019
  • Mathematica
    u[n_, k_] := Sum[Binomial[n, h], {h, 0, k}]
    p[n_, k_] := Sum[u[n, h], {h, 0, k}]
    Table[p[n, k], {n, 0, 12}, {k, 0, n}]
    Flatten[%]   (* A193605 as a sequence *)
    TableForm[Table[p[n, k], {n, 0, 12}, {k, 0, n}]]  (* A193605 as a triangle *)
  • Maxima
    T(n,k):=sum(((i+3)*2^(i-2))*binomial(n-i,k-i),i,1,min(n,k))+binomial(n,k);
    /* Vladimir Kruchinin, Aug 20 2019 */

Formula

Writing the general term as T(n,k), for 0<=k<=n:
T(n,n)=A001792, T(n,n-1)=A001787, T(n,n-2)=A000337, T(n,n-3)=A045618.
T(n-1,k-1) + T(n-1,k) = T(n,k). - David A. Corneth, Oct 18 2016
G.f.: -(1-x*y)^2/(4*x^3*y^3+(4*x^3-8*x^2)*y^2+(5*x-4*x^2)*y+x-1). - Vladimir Kruchinin, Aug 19 2019
T(n,k) = C(n,k)+Sum_{i=1..n} (i+3)*2^(i-2)*C(n-i,k-i), - Vladimir Kruchinin, Aug 20 2019

Extensions

More terms from David A. Corneth, Oct 18 2016

A246118 T(n,k), for n,k >= 1, is the number of partitions of the set [n] into k blocks, where, if the blocks are arranged in order of their minimal element, the odd-indexed blocks are all singletons.

Original entry on oeis.org

1, 0, 1, 0, 1, 1, 0, 1, 2, 1, 0, 1, 3, 4, 1, 0, 1, 4, 11, 6, 1, 0, 1, 5, 26, 23, 9, 1, 0, 1, 6, 57, 72, 50, 12, 1, 0, 1, 7, 120, 201, 222, 86, 16, 1, 0, 1, 8, 247, 522, 867, 480, 150, 20, 1, 0, 1, 9, 502, 1291, 3123, 2307, 1080, 230, 25, 1, 0, 1, 10, 1013, 3084, 10660, 10044, 6627, 2000, 355, 30, 1
Offset: 1

Views

Author

Peter Bala, Aug 14 2014

Keywords

Comments

Unsigned matrix inverse of A246117. Analog of the Stirling numbers of the second kind, A048993.
This is the triangle of connection constants between the monomial polynomials x^n and the polynomial sequence [x, x^2, x^2*(x - 1), x^2*(x - 1)^2, x^2*(x - 1)^2*(x - 2), x^2*(x - 1)^2*(x - 2)^2, ...]. An example is given below.
Except for differences in offset, this triangle is the Galton array G(floor(k/2),1) in the notation of Neuwirth with inverse array G(-floor(n/2),1).
Essentially the same as A256161. - Peter Bala, Apr 14 2018
From Peter Bala, Feb 10 2020: (Start)
The sums S(n):= Sum_{k >= 0} k^n*(x^k/k!)^2, n = 2,3,4,..., can be expressed as a linear combination of the sums S(0) and S(1) with polynomial coefficients, namely, S(n) = E(n,x)*S(0) + (1/x)*O(n,x)* S(1,x), where E(n,x) = Sum_{k >= 1} T(n,2*k)*x^(2*k) and O(n,x) = Sum_{k >= 0} T(n,2*k+1)*x^(2*k+1) are the even and odd parts of the n-th row polynomial of this array. This result is the analog of the Dobinski formula Sum_{k >= 0} (k^n)*x^k/k! = exp(x)*Bell(n,x), where Bell(n,x) is the n-th row polynomial of A048993.
For example, for n = 6 we have S(6) = Sum_{k >= 1} k^6*(x^k/k!)^2 = (x^2 + 11*x^4 + x^6) * Sum_{k >= 0} (x^k/k!)^2 + (1/x)*(4*x^3 + 6*x^5) * Sum_{k >= 1} k*(x^k/k!)^2.
Setting x = 1 in the above result gives Sum_{k >= 0} k^n*/k!^2 = A000994(n)*Sum_{k >= 0} 1/k!^2 + A000995(n)*Sum_{k >= 1} k/k!^2. See A086880. (End)

Examples

			Triangle begins
n\k| 1    2    3    4    5    6    7    8
1  | 1
2  | 0    1
3  | 0    1    1
4  | 0    1    2    1
5  | 0    1    3    4    1
6  | 0    1    4   11    6    1
7  | 0    1    5   26   23    9    1
8  | 0    1    6   57   72   50   12    1
...
Connection constants: Row 6 = (0, 1, 4, 11, 6, 1) so
x^6 = x^2 + 4*x^2*(x - 1) + 11*x^2*(x - 1)^2 + 6*x^2*(x - 1)^2*(x - 2) + x^2*(x - 1)^2*(x - 2)^2.
Row 5 = [0, 1, 3, 4, 1]. There are 9 set partitions of {1,2,3,4,5} of the type described in the Name section:
= = = = = = = = = = = = = = = = = = = = = = = = = = = = =
Number of      Set partitions                Count
blocks
= = = = = = = = = = = = = = = = = = = = = = = = = = = = =
2                {1}{2,3,4,5}                   1
3           {1}{2,4,5}{3}, {1}{2,3,5}{4},
            {1}{2,3,4}{5}                       3
4          {1}{2,3}{4}{5}, {1}{2,4}{3}{5},
           {1}{2,5}{3}{4}, {1}{2}{3}{4,5}       4
5          {1}{2}{3}{4}{5}                      1
		

Crossrefs

Cf. A000295 (column 4), A007476 (row sums), A008277, A045618 (column 5), A048993, A246117 (unsigned matrix inverse), A256161, A000994, A000995, A086880.

Programs

  • Mathematica
    Flatten[Table[Table[Sum[StirlingS2[j,Floor[k/2]] * StirlingS2[n-j-1,Floor[(k-1)/2]],{j,0,n-1}],{k,1,n}],{n,1,12}]] (* Vaclav Kotesovec, Feb 09 2015 *)

Formula

T(n,k) = Sum_{i = 0..n-1} Stirling2(i, floor(k/2))*Stirling2(n-i-1, floor((k - 1)/2)) for n,k >= 1.
Recurrence equation: T(1,1) = 1, T(n,1) = 0 for n >= 2; T(n,k) = 0 for k > n; otherwise T(n,k) = floor(k/2)*T(n-1,k) + T(n-1,k-1).
O.g.f. (with an extra 1): A(z) = 1 + Sum_{k >= 1} (x*z)^k/( ( Product_{i = 1..floor((k-1)/2)} (1 - i*z) ) * ( Product_{i = 1..floor(k/2)} (1 - i*z) ) ) = 1 + x*z + x^2*z^2 + (x^2 + x^3)*z^3 + (x^2 + 2*x^3 + x^4)*z^4 + .... satisfies A(z) = 1 + x*z + x^2*z^2/(1 - z)*A(z/(1 - z)).
k-th column generating function z^k/( ( Product_{i = 1..floor((k-1)/2)} (1 - i*z) ) * ( Product_{i = 1..floor(k/2)} (1 - i*z) ) ).
Recurrence for row polynomials: R(n,x) = x^2*Sum_{k = 0..n-2} binomial(n-2,k)*R(k,x) with initial conditions R(0,x) = 1 and R(1,x) = x. Compare with the recurrence satisfied by the Bell polynomials: Bell(n,x) = x*Sum_{k = 0..n-1} binomial(n-1,k) * Bell(k,x).
Row sums are A007476.

A383843 Square array A(n,k), n>=0, k>=0, read by antidiagonals downwards, where column k is the expansion of 1/Product_{j=0..k} (1 - j*x)^2.

Original entry on oeis.org

1, 1, 0, 1, 2, 0, 1, 6, 3, 0, 1, 12, 23, 4, 0, 1, 20, 86, 72, 5, 0, 1, 30, 230, 480, 201, 6, 0, 1, 42, 505, 2000, 2307, 522, 7, 0, 1, 56, 973, 6300, 14627, 10044, 1291, 8, 0, 1, 72, 1708, 16464, 65002, 95060, 40792, 3084, 9, 0, 1, 90, 2796, 37632, 227542, 587580, 567240, 157440, 7181, 10, 0
Offset: 0

Views

Author

Seiichi Manyama, May 12 2025

Keywords

Examples

			Square array begins:
  1, 1,    1,     1,      1,       1,        1, ...
  0, 2,    6,    12,     20,      30,       42, ...
  0, 3,   23,    86,    230,     505,      973, ...
  0, 4,   72,   480,   2000,    6300,    16464, ...
  0, 5,  201,  2307,  14627,   65002,   227542, ...
  0, 6,  522, 10044,  95060,  587580,  2725380, ...
  0, 7, 1291, 40792, 567240, 4817990, 29331038, ...
		

Crossrefs

Columns k=0..4 give A000007, A000027(n+1), A045618, A383841, A383842.
Main diagonal gives A350376.
A(n,n-1) gives A383880.

Programs

  • PARI
    a(n, k) = sum(j=0, n, stirling(j+k, k, 2)*stirling(n-j+k, k, 2));

Formula

A(n,k) = Sum_{j=0..n} Stirling2(j+k,k) * Stirling2(n-j+k,k).

A110952 Triangle read by rows: T(n,k) = number of permutations of [n] where the first increasing run has length k and the last increasing run has length n-k-1, 0

Original entry on oeis.org

1, 3, 3, 6, 11, 6, 10, 26, 26, 10, 15, 50, 71, 50, 15, 21, 85, 155, 155, 85, 21, 28, 133, 295, 379, 295, 133, 28, 36, 196, 511, 799, 799, 511, 196, 36, 45, 276, 826, 1519, 1849, 1519, 826, 276, 45, 55, 375, 1266, 2674, 3829, 3829, 2674, 1266, 375, 55, 66, 495, 1860
Offset: 3

Views

Author

David Scambler, Nov 22 2006

Keywords

Comments

Permutations of [n] with exactly 2 descents and the descents are adjacent. Adjusting for initial index: row sums are A045618; first diagonal is A000217, the triangular numbers; 2nd diagonal is A051925; and 3rd diagonal is A001701, generalized Stirling numbers.

Examples

			Triangle (beginning with n=3, k=1) is:
   1
   3  3
   6 11  6
  10 26 26 10
  15 50 71 50 15
  ...
For n=5, k = 2: T(5,2) = 11 = permutations of [5] with first run 2 long and last run 5-2-1 = 2 long, namely {14325, 15324, 15423, 24315, 25314, 25413, 34215, 35214, 35412, 45213, 45312}.
		

Crossrefs

Formula

T(n,k) = k*C(n,k+1) - C(n,k) + 1.

A143088 Triangle T(n,m) = (2^(m+1) - 1) * (2^(n-m+1) - 1), read by rows, 0 <= m <= n.

Original entry on oeis.org

1, 3, 3, 7, 9, 7, 15, 21, 21, 15, 31, 45, 49, 45, 31, 63, 93, 105, 105, 93, 63, 127, 189, 217, 225, 217, 189, 127, 255, 381, 441, 465, 465, 441, 381, 255, 511, 765, 889, 945, 961, 945, 889, 765, 511, 1023, 1533, 1785, 1905, 1953, 1953, 1905, 1785, 1533, 1023, 2047
Offset: 0

Views

Author

Roger L. Bagula and Gary W. Adamson, Oct 16 2008

Keywords

Comments

Row sums are A045618.
Considered as a square array A(m,n) = (2^m - 1)(2^n - 1), (m, n >= 1), read by rising antidiagonals, this gives the number of m X n matrices of rank 1 over the field F_2. For a different field F_q, that number would be A(m,n) = (q^m - 1)(q^n - 1)/(q - 1). It satisfies the recurrence relation A(m,n) = A(m,n-1)*q + A(m,1). - M. F. Hasler, Sep 12 2024

Examples

			1;
3, 3;
7, 9, 7;
15, 21, 21, 15;
31, 45, 49, 45, 31;
63, 93, 105, 105, 93, 63;
127, 189, 217, 225, 217, 189, 127;
255, 381, 441, 465, 465, 441, 381, 255;
511, 765, 889, 945, 961, 945, 889, 765, 511;
1023, 1533, 1785, 1905, 1953, 1953, 1905, 1785, 1533, 1023;
2047, 3069, 3577, 3825, 3937, 3969, 3937, 3825, 3577, 3069, 2047;
...
From _M. F. Hasler_, Sep 12 2024: (Start)
Considered as a square array A(m,n), read by antidiagonals, with m, n >= 1, this represents the following matrix A:
    m \ n: 1  |  2  |  3  |  4  |  5  | ...
  -----+------+-----+-----+-----+-----+-----
    1  |   1  |  3  |   7 |  15 |  31 | ...
    2  |   3  |  9  |  21 |  45 |  93 | ...
    3  |   7  | 21  |  49 | 105 | 217 | ...
    4  |  15  | 45  | 105 | 225 | 465 | ...
   ...
Here each row equals twice the previous row plus the first row, and likewise for columns. See my comment relating this to rank 1 matrices over F_2. (End)
		

Crossrefs

Cf. A000225 (first column), A068156 (second column).

Programs

  • Mathematica
    Table[Table[(2^(m + 1) - 1)*(2^(n - m + 1) - 1), {m, 0, n}], {n, 0, 10}]; Flatten[%]
  • PARI
    T(n,m) = (2^(m+1) - 1) * (2^(n-m+1) - 1) \\ M. F. Hasler, Sep 12 2024

Formula

T(n,m) = T(n,n-m).
T(n,0) = T(n,n) = 2^(n+1) - 1. - M. F. Hasler, Sep 12 2024
Previous Showing 11-20 of 33 results. Next