A025168
Expansion of e.g.f.: exp(x/(1-2*x)).
Original entry on oeis.org
1, 1, 5, 37, 361, 4361, 62701, 1044205, 19748177, 417787921, 9770678101, 250194150581, 6959638411705, 208919770666777, 6729933476435261, 231512615111396221, 8469125401589550241, 328241040596380393505, 13434223364220816489637, 578931271898150002093381
Offset: 0
- Robert Israel, Table of n, a(n) for n = 0..400
- Norihiro Nakashima and Shuhei Tsujie, Enumeration of Flats of the Extended Catalan and Shi Arrangements with Species, arXiv:1904.09748 [math.CO], 2019.
- K. A. Penson, P. Blasiak, G. Duchamp, A. Horzela and A. I. Solomon, Hierarchical Dobinski-type relations via substitution and the moment problem, arXiv:quant-ph/0312202, 2003; J. Phys. A 37 (2004), 3475-3487.
- N. J. A. Sloane, Transforms
- N. J. A. Sloane and Thomas Wieder, The Number of Hierarchical Orderings, arXiv:math/0307064 [math.CO], 2003; Order 21 (2004), 83-89.
- Thomas Wieder, Expanded definitions of A103446 and A025168
-
with(combstruct); SetSeqSeqL := [T, {T=Set(S), S=Sequence(U,card >= 1), U=Sequence(Z,card >=1)},labeled];
f:= gfun:-rectoproc({a(n) = (4*n-3)*a(n-1) - 4*(n-2)*(n-1)*a(n-2),a(0)=1,a(1)=1},a(n),remember):
map(f, [$0..30]); # Robert Israel, Nov 21 2017
-
Table[ n! 2^n LaguerreL[ n, 1, -1/2 ], {n, 0, 12} ]
With[{nn=20},CoefficientList[Series[Exp[x/(1-2x)],{x,0,nn}],x] Range[0,nn]!] (* Harvey P. Dale, Aug 12 2012 *)
-
A025168 = lambda n: hypergeometric([-n,-n+1], [], 2)
[Integer(A025168(n).n(100)) for n in range(20)] # Peter Luschny, Sep 22 2014
A051188
Sept-factorial numbers.
Original entry on oeis.org
1, 7, 98, 2058, 57624, 2016840, 84707280, 4150656720, 232436776320, 14643516908160, 1025046183571200, 78928556134982400, 6629998715338521600, 603329883095805465600, 59126328543388935628800
Offset: 0
Cf.
A000142,
A000165,
A032031,
A045754,
A047053,
A047058,
A049209,
A051186,
A052562,
A053106,
A084947,
A092516,
A092750,
A144827,
A144739,
A147585.
A167546
The ED1 array read by antidiagonals.
Original entry on oeis.org
1, 1, 1, 2, 4, 1, 6, 12, 7, 1, 24, 48, 32, 10, 1, 120, 240, 160, 62, 13, 1, 720, 1440, 960, 384, 102, 16, 1, 5040, 10080, 6720, 2688, 762, 152, 19, 1, 40320, 80640, 53760, 21504, 6144, 1336, 212, 22, 1
Offset: 1
The ED1 array begins with:
1, 1, 1, 1, 1, 1, 1, 1, 1, 1
1, 4, 7, 10, 13, 16, 19, 22, 25, 28
2, 12, 32, 62, 102, 152, 212, 282, 362, 452
6, 48, 160, 384, 762, 1336, 2148, 3240, 4654, 6432
24, 240, 960, 2688, 6144, 12264, 22200, 37320, 59208, 89664
120, 1440, 6720, 21504, 55296, 122880, 245640, 452880, 783144, 1285536
- B. de Smit and H.W. Lenstra, The Mathematical Structure of Escher's Print Gallery, Notices of the AMS, Volume 50, Number 4, pp. 446-457, April 2003.
- Johannes W. Meijer, The four Escher-Droste arrays, jpg image, Mar 08 2013.
- A. Ryabov, P. Chvosta, Tracer dynamics in a single-file system with absorbing boundary, arXiv preprint arXiv:1402.1949 [cond-mat.stat-mech], 2014.
A000142 equals the first column of the array.
A167550 equals the a(n, n+1) diagonal of the array.
A047053 equals the a(n, n) diagonal of the array.
A167558 equals the a(n+1, n) diagonal of the array.
A167551 equals the row sums of the ED1 array read by antidiagonals.
A167552 is a triangle related to the a(n) formulas of rows of the ED1 array.
A167556 is a triangle related to the GF(z) formulas of the rows of the ED1 array.
A167557 is the lower left triangle of the ED1 array.
Cf.
A068424 (the (m-1)!/(m-n-1)! factor),
A007680 (the (2*n-1)*(n-1)! factor).
-
nmax:=10; mmax:=10; for n from 1 to nmax do for m from 1 to n do a(n,m) := 4^(m-1)*(m-1)!*(n-1+m-1)!/(2*m-2)! od; for m from n+1 to mmax do a(n,m):= (2*n-1)*(n-1)! + sum((-1)^(k-1)*binomial(n-1,k)*a(n,m-k),k=1..n-1) od; od: for n from 1 to nmax do for m from 1 to n do d(n,m):=a(n-m+1,m) od: od: T:=1: for n from 1 to nmax do for m from 1 to n do a(T):= d(n,m): T:=T+1: od: od: seq(a(n),n=1..T-1);
-
nmax = 10; mmax = 10; For[n = 1, n <= nmax, n++, For[m = 1, m <= n, m++, a[n, m] = 4^(m - 1)*(m - 1)!*((n - 1 + m - 1)!/(2*m - 2)!)]; For[m = n + 1, m <= mmax, m++, a[n, m] = (2*n - 1)*(n - 1)! + Sum[(-1)^(k - 1)*Binomial[n - 1, k]*a[n, m - k], {k, 1, n - 1}]]; ]; For[n = 1, n <= nmax, n++, For[m = 1, m <= n, m++, d[n, m] = a[n - m + 1, m]]; ]; t = 1; For[n = 1, n <= nmax, n++, For[m = 1, m <= n, m++, a[t] = d[n, m]; t = t + 1]]; Table[a[n], {n, 1, t - 1}] (* Jean-François Alcover, Dec 20 2011, translated from Maple *)
A144828
Partial products of successive terms of A017113; a(0)=1.
Original entry on oeis.org
1, 4, 48, 960, 26880, 967680, 42577920, 2214051840, 132843110400, 9033331507200, 686533194547200, 57668788341964800, 5305528527460761600, 530552852746076160000, 57299708096576225280000, 6646766139202842132480000, 824199001261152424427520000, 108794268166472120024432640000
Offset: 0
a(0)=1, a(1)=4, a(2)=4*12=48, a(3)=4*12*20=960, a(4)=4*12*20*28=26880, ...
Since a(1) = 4, there are 4 signed permutations of 4 that are equal to their reverse-inverses. These are: (+2,+4,+1,+3), (+3,+1,+4,+2), (-2,-4,-1,-3), (-3,-1,-4,-2). - _Justin M. Troyka_, Aug 11 2011
G.f. = 1 + 4*x + 48*x^2 + 960*x^3 + 26880*x^4 + 967680*x^5 + 42577920*x^6 + ...
-
[2^k *Factorial(2*k) / Factorial(k): k in [0..20]]; // Vincenzo Librandi, Aug 11 2011
-
A144828:= n-> 2^n*n!*binomial(2*n,n); seq(A144828(n), n=0..30); # G. C. Greubel, Apr 02 2021
-
Table[4^n (2 n - 1)!!, {n, 0, 15}] (* Vincenzo Librandi, May 14 2015 *)
Join[{1},FoldList[Times,(8*Range[0,20]+4)]] (* Harvey P. Dale, Dec 01 2015 *)
-
a(n)=binomial(2*n,n)*n!<Charles R Greathouse IV, Jan 17 2012
-
{a(n) = if( n<0, (-1)^n / a(-n), 2^n *(2*n)! / n!)}; /* Michael Somos, Jan 06 2017 */
-
[2^n*factorial(n+1)*catalan_number(n) for n in (0..30)] # G. C. Greubel, Apr 02 2021
A075499
Stirling2 triangle with scaled diagonals (powers of 4).
Original entry on oeis.org
1, 4, 1, 16, 12, 1, 64, 112, 24, 1, 256, 960, 400, 40, 1, 1024, 7936, 5760, 1040, 60, 1, 4096, 64512, 77056, 22400, 2240, 84, 1, 16384, 520192, 989184, 435456, 67200, 4256, 112, 1, 65536, 4177920, 12390400, 7956480, 1779456, 169344, 7392, 144, 1
Offset: 1
[1]; [4,1]; [16,12,1]; ...; p(3,x) = x(16 + 12*x + x^2).
From _Andrew Howroyd_, Mar 25 2017: (Start)
Triangle starts
* 1
* 4 1
* 16 12 1
* 64 112 24 1
* 256 960 400 40 1
* 1024 7936 5760 1040 60 1
* 4096 64512 77056 22400 2240 84 1
* 16384 520192 989184 435456 67200 4256 112 1
(End)
-
Table[(4^(n - m)) StirlingS2[n, m], {n, 9}, {m, n}] // Flatten (* Michael De Vlieger, Dec 31 2015 *)
-
for(n=1, 11, for(m=1, n, print1(4^(n - m) * stirling(n, m, 2),", ");); print();) \\ Indranil Ghosh, Mar 25 2017
-
# uses[inverse_bell_transform from A265605]
# Adds a column 1,0,0,... at the left side of the triangle.
multifact_4_4 = lambda n: prod(4*k + 4 for k in (0..n-1))
inverse_bell_matrix(multifact_4_4, 9) # Peter Luschny, Dec 31 2015
A114799
Septuple factorial, 7-factorial, n!7, n!!!!!!!, a(n) = n*a(n-7) if n > 1, else 1.
Original entry on oeis.org
1, 1, 2, 3, 4, 5, 6, 7, 8, 18, 30, 44, 60, 78, 98, 120, 288, 510, 792, 1140, 1560, 2058, 2640, 6624, 12240, 19800, 29640, 42120, 57624, 76560, 198720, 379440, 633600, 978120, 1432080, 2016840, 2756160, 7352640, 14418720, 24710400, 39124800
Offset: 0
a(40) = 40 * a(40-7) = 40 * a(33) = 40 * (33*a(26)) = 40 * 33 * (26*a(19)) = 40 * 33 * 26 * (19*a(12)) = 40 * 33 * 26 * 19 * (12*a(5)) = 40 * 33 * 26 * 19 * 12 5 = 39124800.
Cf. k-fold factorials:
A000142,
A001147 (and
A000165,
A006882),
A007559 (and
A032031,
A008544,
A007661),
A007696 (and
A001813,
A008545,
A047053,
A007662),
A008548 (and
A052562,
A047055,
A085157),
A085158 (and
A008542,
A047058,
A047657),
A045755.
-
a:= function(n)
if n<1 then return 1;
else return n*a(n-7);
fi;
end;
List([0..40], n-> a(n) ); # G. C. Greubel, Aug 20 2019
-
b:= func< n | (n lt 8) select n else n*Self(n-7) >;
[1] cat [b(n): n in [1..40]]; // G. C. Greubel, Aug 20 2019
-
A114799 := proc(n)
option remember;
if n < 1 then
1;
else
n*procname(n-7) ;
end if;
end proc:
seq(A114799(n),n=0..40) ; # R. J. Mathar, Jun 23 2014
A114799 := n -> product(n-7*k,k=0..(n-1)/7); # M. F. Hasler, Feb 23 2018
-
a[n_]:= If[n<1, 1, n*a[n-7]]; Table[a[n], {n,0,40}] (* G. C. Greubel, Aug 20 2019 *)
-
A114799(n,k=7)=prod(j=0,(n-1)\k,n-j*k) \\ M. F. Hasler, Feb 23 2018
-
def a(n):
if (n<1): return 1
else: return n*a(n-7)
[a(n) for n in (0..40)] # G. C. Greubel, Aug 20 2019
A167560
The ED2 array read by ascending antidiagonals.
Original entry on oeis.org
1, 2, 1, 6, 4, 1, 24, 16, 6, 1, 120, 80, 32, 8, 1, 720, 480, 192, 54, 10, 1, 5040, 3360, 1344, 384, 82, 12, 1, 40320, 26880, 10752, 3072, 680, 116, 14, 1, 362880, 241920, 96768, 27648, 6144, 1104, 156, 16, 1
Offset: 1
The ED2 array begins with:
1, 1, 1, 1, 1, 1, 1, 1, 1, 1
2, 4, 6, 8, 10, 12, 14, 16, 18, 20
6, 16, 32, 54, 82, 116, 156, 202, 254, 312
24, 80, 192, 384, 680, 1104, 1680, 2432, 3384, 4560
120, 480, 1344, 3072, 6144, 11160, 18840, 30024, 45672, 66864
720, 3360, 10752, 27648, 61440, 122880, 226800, 392832, 646128, 1018080
A000142 equals the first column of the array.
A047053 equals the a(n, n) diagonal of the array.
2*
A034177 equals the a(n+1, n) diagonal of the array.
A167570 equals the a(n+2, n) diagonal of the array,
A167564 equals the row sums of the ED2 array read by antidiagonals.
A167565 is a triangle related to the a(n) formulas of the rows of the ED2 array.
A167568 is a triangle related to the GF(z) formulas of the rows of the ED2 array.
A167569 is the lower left triangle of the ED2 array.
-
nmax:=10; mmax:=10; for n from 1 to nmax do for m from 1 to n do a(n,m) := 4^(m-1)*(m-1)!*(n+m-1)!/(2*m-1)! od; for m from n+1 to mmax do a(n,m):= n! + sum((-1)^(k-1)*binomial(n-1,k)*a(n,m-k),k=1..n-1) od; od: for n from 1 to nmax do for m from 1 to n do d(n,m):=a(n-m+1,m) od: od: T:=1: for n from 1 to nmax do for m from 1 to n do a(T):= d(n,m): T:=T+1: od: od: seq(a(n),n=1..T-1);
# alternative
A167560 := proc(n,m)
option remember ;
if m > n then
n!+add( (-1)^(k-1)*binomial(n-1,k)*procname(n,m-k),k=1..n-1) ;
else
4^(m-1)*(m-1)!*(n+m-1)!/(2*m-1)! ;
end if;
end proc:
seq( seq(A167560(d-m,m),m=1..d-1),d=2..12) ; # R. J. Mathar, Jun 28 2024
-
nmax = 10; mmax = 10; For[n = 1, n <= nmax, n++, For[m = 1, m <= n, m++, a[n, m] = 4^(m - 1)*(m - 1)!*((n + m - 1)!/(2*m - 1)!)]; For[m = n + 1, m <= mmax, m++, a[n, m] = n! + Sum[(-1)^(k - 1)*Binomial[n - 1, k]*a[n, m - k], {k, 1, n - 1}]]; ]; For[n = 1, n <= nmax, n++, For[m = 1, m <= n, m++, d[n, m] = a[n - m + 1, m]]; ]; t = 1; For[n = 1, n <= nmax, n++, For[m = 1, m <= n, m++, a[t] = d[n, m]; t = t + 1]]; Table[a[n], {n, 1, t - 1}] (* Jean-François Alcover, Dec 20 2011, translated from Maple *)
A144827
Partial products of successive terms of A017029; a(0)=1.
Original entry on oeis.org
1, 4, 44, 792, 19800, 633600, 24710400, 1136678400, 60243955200, 3614637312000, 242180699904000, 17921371792896000, 1451631115224576000, 127743538139762688000, 12135636123277455360000, 1237834884574300446720000, 134924002418598748692480000, 15651184280557454848327680000
Offset: 0
a(0)=1, a(1)=4, a(2)=4*11=44, a(3)=4*11*18=792, a(4)=4*11*18*25=19800, ...
-
[ 1 ] cat [ &*[ (7*k+4): k in [0..n] ]: n in [0..14] ]; // Klaus Brockhaus, Nov 10 2008
-
FoldList[Times,1,Range[4,150,7]] (* Harvey P. Dale, Apr 25 2014 *)
-
[1]+[4*7^(n-1)*rising_factorial(11/7, n-1) for n in (1..30)] # G. C. Greubel, Feb 22 2022
A051142
Generalized Stirling number triangle of first kind.
Original entry on oeis.org
1, -4, 1, 32, -12, 1, -384, 176, -24, 1, 6144, -3200, 560, -40, 1, -122880, 70144, -14400, 1360, -60, 1, 2949120, -1806336, 415744, -47040, 2800, -84, 1, -82575360, 53526528, -13447168, 1732864, -125440, 5152, -112, 1, 2642411520, -1795424256, 483835904
Offset: 1
Triangle a(n,m) (with rows n >= 1 and columns m = 1..n) begins:
1;
-4, 1;
32, -12, 1;
-384, 176, -24, 1;
6144, -3200, 560, -40, 1,
-122880, 70144, -14400, 1360, -60, 1;
...
3rd row o.g.f.: E(3,x) = 32*x - 12*x^2 + x^3.
- Richell O. Celeste, Roberto B. Corcino, and Ken Joffaniel M. Gonzales, Two Approaches to Normal Order Coefficients, Journal of Integer Sequences, Vol. 20 (2017), Article 17.3.5.
- Wolfdieter Lang, First 10 rows.
- D. S. Mitrinovic, Sur une classe de nombres reliés aux nombres de Stirling, Comptes rendus de l'Académie des sciences de Paris, t. 252 (1961), 2354-2356.
- D. S. Mitrinovic and M. S. Mitrinovic, Tableaux d'une classe de nombres reliés aux nombres de Stirling, Univ. Beograd. Publ. Elektrotehn. Fak. Ser. Mat. Fiz., No. 77 (1962), 1-77.
- D. S. Mitrinovic and R. S. Mitrinovic, Tableaux d'une classe de nombres reliés aux nombres de Stirling, Univ. Beograd. Publ. Elektrotehn. Fak. Ser. Mat. Fiz., No. 77 (1962), 1-77 [jstor stable version].
First (m=1) column sequence is:
A047053(n-1).
Row sums (signed triangle):
A008545(n-1)*(-1)^(n-1).
Row sums (unsigned triangle):
A007696(n).
-
Table[StirlingS1[n, m] 4^(n - m), {n, 9}, {m, n}] // Flatten (* Michael De Vlieger, Dec 31 2015 *)
-
# uses[bell_transform from A264428]
# Unsigned values and an additional first column (1,0,0,0, ...).
def A051142_row(n):
multifact_4_4 = lambda n: prod(4*k + 4 for k in (0..n-1))
mfact = [multifact_4_4(k) for k in (0..n)]
return bell_transform(n, mfact)
[A051142_row(n) for n in (0..9)] # Peter Luschny, Dec 31 2015
A245244
Triangle of coefficients of the Pbar polynomials, read by rows.
Original entry on oeis.org
1, -3, 4, 25, -56, 32, -427, 1228, -1184, 384, 12465, -41840, 52416, -29184, 6144, -555731, 2079892, -3076288, 2258688, -829440, 122880, 35135945, -142843304, 237829600, -208562688, 102279168, -26787840, 2949120, -2990414715, 12987478876, -23672564832, 23581133952, -13947525120, 4929576960, -970260480
Offset: 0
Pbar(1,n) = 4*n-3, Pbar(2,n) = 32*n^2 - 56*n + 25.
Triangle begins:
1,
-3, 4,
25, -56, 32,
-427, 1228, -1184, 384,
12465, -41840, 52416, -29184, 6144,
...
From _Peter Bala_, Jan 22 2018: (Start)
The polynomials Pbar(r,n) as hypergeometric series:
r = 0: n*Pbar(0,n) = n = 1 + 3*(n-1)/(n+1) + 5*(n-1)*(n-2)/((n+1)*(n+2)) + 7*(n-1)*(n-2)*(n-3)/((n+1)*(n+2)*(n+3)) + ..., for n a positive integer (when the series terminates). The identity is also valid for complex n with real part greater than 1/2.
r = 1: n*Pbar(1,n) = n*(4*n - 3) = 1 + 3^3*(n-1)/(n+1) + 5^3*(n-1)*(n-2)/((n+1)*(n+2)) + 7^3*(n-1)*(n-2)*(n-3)/((n+1)*(n+2)*(n+3)) + ..., for n a positive integer (when the series terminates). The identity is also valid for complex n with real part greater than 3/2.
r = 2: n*Pbar(2,n) = n*(32*n^2 - 56*n + 25) = 1 + 3^5*(n-1)/(n+1) + 5^5*(n-1)*(n-2)/((n+1)*(n+2)) + 7^5*(n-1)*(n-2)*(n-3)/((n+1)*(n+2)*(n+3)) + ..., for n a positive integer (when the series terminates). The identity is also valid for complex n with real part greater than 5/2.
The above identities when r = 0 and r = 1 were found by Ramanujan. See Example 5 and Example 13 in Chapter 10 of Berndt. (End)
- B. C. Berndt, Ramanujan's Notebooks Part II, Springer-Verlag, Chapter 10, p. 20 and p. 23.
- P. Bala, A245244 and A160485 and some hypergeometric series evaluations of Ramanujan
- R. P. Brent, Generalising Tuenter's binomial sums, arXiv:1407.3533 [math.CO], 2014.
- R. P. Brent, Generalizing Tuenter's binomial sums, Journal of Integer Sequences, 18 (2015), Article 15.3.2.
- L. Carlitz, Explicit formulas for the Dumont-Foata polynomials, Discrete Mathematics, 30 (1980), 211-255.
- H. J. H. Tuenter, Walking into an absolute sum, The Fibonacci Quarterly, 40 (2002), 175-180.
(-1)^r Pbar(r,0) is sequence
A009843. The leading coefficient of Pbar(r,n) is sequence
A047053. Cf. also
A036970,
A083061,
A160485 for analogous moments of Bernoulli random walks.
-
N=10; P=vector(N+2); P[1]=1;
Pbar(r)=P[r+1];
for (r=0, N, P[r+2] = (2*n-1)^2 * Pbar(r) - 4*(n-1)^2 * subst(Pbar(r),n,n-1) );
seq=[]; for(r=1,N, seq=concat(seq, Vecrev(P[r])); ); seq
\\ Joerg Arndt, Jan 27 2015
Comments