Original entry on oeis.org
0, 1, 3, 8, 21, 54, 137, 344, 856, 2113, 5179, 12614, 30548, 73595, 176455, 421215, 1001388, 2371678, 5597245, 13166069, 30873728, 72185937, 168313391, 391428622, 908058205, 2101629502, 4853215947, 11183551059, 25718677187, 59030344851, 135237134812
Offset: 0
Let {} denote a set, [] a list and Z an unlabeled element.
a(3) = 8 because we have {[[Z]],[[Z]],[[Z]]}, {[[Z],[Z]],[[Z]]}, {[[Z],[Z],[Z]]}, {[[Z],[Z,Z]]}, {[[Z,Z],[Z]]}, {[[Z,Z]],[[Z]]}, {[[Z]],[[Z,Z]]}, {[[Z,Z,Z]]}.
-
with(combstruct); SubSetSeqU := [T,{T=Subst(U,S),S=Set(U,card>=1),U=Sequence(Z,card>=1)},unlabeled]; [seq(count(SubSetSeqU, size=n), n=0..30)];
allstructs(SubSetSeq,size=3); # to get the structures for n=3 - this output is shown in the example lines.
-
Flatten[{0, Table[Sum[Binomial[n-1,k]*PartitionsP[k+1],{k,0,n-1}],{n,1,30}]}] (* Vaclav Kotesovec, Jun 25 2015 *)
-
{a(n)=if(n<1,0,polcoeff(exp(sum(m=1,n,sigma(m)*x^m/(1-x+x*O(x^n))^m/m)),n))} \\ Paul D. Hanna, Apr 21 2010
-
{a(n)=if(n<1,0,polcoeff(exp(sum(m=1,n,x^m/m*sum(k=1,m,binomial(m,k)*sigma(k)))+x*O(x^n)),n))} \\ Paul D. Hanna, Feb 04 2012
-
Vec(1/eta('x/(1-'x)+O('x^66))) \\ Joerg Arndt, Jul 30 2011
I can confirm that the terms shown are the binomial transform of the partition sequence 1, 2, 3, 5, 7, 11, 15, 22, 30, 42, 56, 77, 101, ... (
A000041 without the a(0) term). -
N. J. A. Sloane, May 18 2007
A052897
Expansion of e.g.f.: exp(2*x/(1-x)).
Original entry on oeis.org
1, 2, 8, 44, 304, 2512, 24064, 261536, 3173888, 42483968, 621159424, 9841950208, 167879268352, 3065723549696, 59651093528576, 1231571119812608, 26883546193002496, 618463501807058944
Offset: 0
encyclopedia(AT)pommard.inria.fr, Jan 25 2000
-
m:=25; R:=PowerSeriesRing(Rationals(), m); b:=Coefficients(R!(Exp(2*x/(1 - x)))); [Factorial(n-1)*b[n]: n in [1..m]]; // G. C. Greubel, May 15 2018
-
[Factorial(n)*Evaluate(LaguerrePolynomial(n, -1), -2): n in [0..25]]; // G. C. Greubel, Feb 23 2021
-
L := proc(n,a,x) if n=0 then 1 elif n=1 then a+1-x else (2*n+a-1-x)/n*L(n-1,a,x) - (n+a-1)/n*L(n-2,a,x) fi end: A052897 := n -> n!*L(n,-1,-2): seq(A052897(n),n=0..17); # Peter Luschny, Nov 20 2011
spec := [S,{B=Set(C),C=Sequence(Z,1 <= card),S=Prod(B,B)},labeled]: seq(combstruct[count](spec,size=n), n=0..20);
-
Range[0, 19]! CoefficientList[ Series[E^(2*x/(1 - x)), {x, 0, 19}], x] (* Zerinvary Lajos, Mar 21 2007 *)
Table[n!*LaguerreL[n, -1, -2], {n,0,30}] (* G. C. Greubel, Feb 23 2021 *)
-
a=Vec(exp(2*x/(1-x)));for(n=2,#a-1,a[n+1]*=n!);a \\ Charles R Greathouse IV, Nov 20 2011
-
[factorial(n)*gen_laguerre(n, -1, -2) for n in (0..25)] # G. C. Greubel, Feb 23 2021
A025167
E.g.f: exp(x/(1-2*x))/(1-2*x).
Original entry on oeis.org
1, 3, 17, 139, 1473, 19091, 291793, 5129307, 101817089, 2250495523, 54780588561, 1455367098923, 41888448785857, 1298019439099059, 43074477771208913, 1523746948247663611, 57229027745514785793, 2274027983943883110467
Offset: 0
Since a(2) = 17, there are 17 signed permutations of 4 that are equal to their reverse-complements and avoid (-2,-1). Some of these are: (+1,+3,+2,+4), (+2,-1,-4,+3), (+3,-1,-4,+2), (-1,-2,-3,-4). - _Justin M. Troyka_, Aug 05 2011
-
a := n -> (-2)^n*KummerU(-n, 1, -1/2):
seq(simplify(a(n)), n=0..17); # Peter Luschny, Feb 12 2020
-
Table[ n! 2^n LaguerreL[ n, -1/2 ], {n, 0, 12} ]
f[n_] := Sum[k!*2^k*Binomial[n, k]^2, {k, 0, n}]; Table[ f[n], {n, 0, 17}] (* Robert G. Wilson v, Mar 16 2005 *)
a = {1, 3}; For[n = 2, n < 13, n++, a = Append[a, (4 n - 1) a[[n]] - 4 (n - 1)^2 a[[n - 1]]]]; a (* Justin M. Troyka, Aug 05 2011 *)
-
{a(n)=n!^2*polcoeff(exp(2*x+x*O(x^n))*sum(m=0,n,x^m/m!^2),n)}
A321837
Expansion of e.g.f.: exp(x/(1-3*x)).
Original entry on oeis.org
1, 1, 7, 73, 1009, 17341, 355951, 8488117, 230439553, 7013527129, 236419161751, 8740611892321, 351566026652017, 15280473017519893, 713558666964639679, 35623071889296787981, 1893073661362838712961, 106682309871314293118257
Offset: 0
Cf.
A000262,
A025168,
A321847,
A321848,
A321849,
A321850 (analogs for k=1,2,4,5,6,7).
-
Concatenation([1], List([1..25], n-> Sum([1..n], k-> 3^(n-k)*(Factorial(n)/Factorial(k))*Binomial(n-1, k-1)))); # G. C. Greubel, Dec 14 2018
-
[1] cat [&+[3^(n-k)*Factorial(n) div Factorial(k)*Binomial(n-1, k-1): k in [0..n]]: n in [1.. 18]]; // Vincenzo Librandi, Dec 08 2018
-
seq(coeff(series(factorial(n)*exp(x/(1-3*x)),x,n+1), x, n), n = 0 .. 17); # Muniru A Asiru, Nov 24 2018
-
a[n_] := Sum[3^(n - k)*n!/k!*Binomial[n - 1, k - 1], {k, 0, n}]; Array[a, 20, 0] (* or *) a[0] = a[1] = 1; a[n_] := a[n] = (6n - 5)*a[n - 1] - 9(n - 2)(n - 1)*a[n - 2]; Array[a, 20, 0] (* Amiram Eldar, Nov 19 2018 *)
-
my(x='x + O('x^20)); Vec(serlaplace(exp(x/(1-3*x)))) \\ Michel Marcus, Nov 25 2018
-
{c[1]:c[0]*factorial(c[1]) for c in (exp(x/(1-3*x))).taylor(x,0,25).coefficients()} # G. C. Greubel, Dec 14 2018
A321847
E.g.f.: exp(x/(1 - 4*x)).
Original entry on oeis.org
1, 1, 9, 121, 2161, 48081, 1279801, 39631369, 1398961761, 55422807841, 2434261023721, 117366299630361, 6161301265353169, 349768597919934961, 21347094823271661081, 1393695557886847095721, 96910923898115717350081, 7149718240571434690591809
Offset: 0
-
seq(coeff(series(factorial(n)*exp(x/(1-4*x)),x,n+1), x, n), n = 0 .. 17); # Muniru A Asiru, Nov 24 2018
-
a[n_] := Sum[4^(n - k)*n!/k!*Binomial[n - 1, k - 1], {k, 0, n}]; Array[a, 20, 0] (* or *) a[0] = a[1] = 1; a[n_] := a[n] = (8n - 7)*a[n - 1] - 16(n - 2)(n - 1) *a[n - 2]; Array[a, 20, 0] (* Amiram Eldar, Nov 19 2018 *)
CoefficientList[Series[Exp[x/(1 - 4*x)], {x, 0, 20}], x]*Table[n!, {n, 0, 20}] (* Stefano Spezia, Dec 07 2018 *)
-
(a[0] : 1, a[1] : 1, a[n] := (8*n - 7)*a[n-1] - 16*(n-2)*(n-1)*a[n-2], makelist(a[n], n, 0, 20)); /* Franck Maminirina Ramaharo, Nov 27 2018 */
-
my(x='x + O('x^20)); Vec(serlaplace(exp(x/(1-4*x)))) \\ Michel Marcus, Nov 25 2018
A321848
E.g.f.: exp(x/(1-5*x)).
Original entry on oeis.org
1, 1, 11, 181, 3961, 108101, 3532651, 134415961, 5834249681, 284391878761, 15378011541451, 913297438474301, 59086483931657161, 4135583008765323181, 311324086814794408811, 25079793551003791168801, 2152597370423901820231201, 196089415332225446044417361
Offset: 0
-
seq(coeff(series(factorial(n)*exp(x/(1-5*x)),x,n+1), x, n), n = 0 .. 17); # Muniru A Asiru, Nov 24 2018
-
a[n_] := Sum[5^(n - k)*n!/k!*Binomial[n - 1, k - 1], {k, 0, n}]; Array[a, 20, 0] (* or *) a[0] = a[1] = 1; a[n_] := a[n] = (10 n - 9)*a[n - 1] - 25(n - 2)(n - 1)*a[n - 2]; Array[a, 20, 0] (* Amiram Eldar, Nov 19 2018 *)
With[{nn=20},CoefficientList[Series[Exp[x/(1-5x)],{x,0,nn}],x] Range[0,nn]!] (* Harvey P. Dale, Oct 19 2024 *)
-
my(x='x + O('x^20)); Vec(serlaplace(exp(x/(1-5*x)))) \\ Michel Marcus, Nov 25 2018
A321849
Expansion of e.g.f.: exp(x/(1-6*x)).
Original entry on oeis.org
1, 1, 13, 253, 6553, 211801, 8201701, 369979093, 19047250993, 1101705494833, 70715424362941, 4987040544656941, 383243311962126793, 31871863566298601353, 2851588139929576342933, 273093945561709965890821, 27871997808801906673665121
Offset: 0
-
m:=25; R:=PowerSeriesRing(Rationals(), m); b:=Coefficients(R!(Exp(x/(1-6*x)))); [Factorial(n-1)*b[n]: n in [1..m]]; // G. C. Greubel, Dec 08 2018
-
[1] cat [&+[6^(n-k)* Factorial(n)/Factorial(k)*Binomial(n-1, k-1): k in [0..n]]: n in [1.. 18]]; // Vincenzo Librandi, Dec 08 2018
-
seq(coeff(series(factorial(n)*exp(x/(1-6*x)),x,n+1), x, n), n = 0 .. 17); # Muniru A Asiru, Nov 24 2018
-
a[n_] := Sum[6^(n - k)*n!/k!*Binomial[n - 1, k - 1], {k, 0, n}]; Array[a, 20, 0] (* or *) a[0] = a[1] = 1; a[n_] := a[n] = (12n - 11)*a[n - 1] - 36(n - 2)(n - 1)*a[n - 2]; Array[a, 20, 0] (* Amiram Eldar, Nov 19 2018 *)
-
my(x='x + O('x^20)); Vec(serlaplace(exp(x/(1-6*x)))) \\ Michel Marcus, Nov 25 2018
-
f= exp(x/(1-6*x))
g=f.taylor(x,0,13)
L=g.coefficients()
coeffs={c[1]:c[0]*factorial(c[1]) for c in L}
coeffs # G. C. Greubel, Dec 08 2018
A321850
E.g.f.: exp(x/(1-7*x)).
Original entry on oeis.org
1, 1, 15, 337, 10081, 376461, 16849351, 878797165, 52324954977, 3501300491641, 260062721279551, 21228108532279881, 1888618754806601665, 181873163575529411077, 18846187172580219099831, 2090754000231731874682021, 247221828043044971020645441
Offset: 0
-
[1] cat [&+[7^(n-k)*Factorial(n)/Factorial(k)*Binomial(n-1, k-1): k in [0..n]]: n in [1.. 18]]; // Vincenzo Librandi, Dec 08 2018
-
seq(coeff(series(factorial(n)*exp(x/(1-7*x)),x,n+1), x, n), n = 0 .. 17); # Muniru A Asiru, Nov 24 2018
-
a[n_] := Sum[7^(n - k)*n!/k!*Binomial[n - 1, k - 1], {k, 0, n}]; Array[a, 20, 0] (* or *) a[0] = a[1] = 1; a[n_] := a[n] = (14n - 13)*a[n - 1] - 49(n - 2)(n - 1)*a[n - 2]; Array[a, 20, 0] (* Amiram Eldar, Nov 19 2018 *)
-
my(x='x + O('x^20)); Vec(serlaplace(exp(x/(1-7*x)))) \\ Michel Marcus, Nov 25 2018
A293146
a(n) = n! * [x^n] exp(x/(1 - n*x)).
Original entry on oeis.org
1, 1, 5, 73, 2161, 108101, 8201701, 878797165, 126422091713, 23514740267401, 5492576235204901, 1574136880033408241, 543143967119720304625, 222106209904092987888013, 106221716052645457812866501, 58741017143127754662557082901, 37194600833984874761008613195521
Offset: 0
-
S:=series(exp(x/(1-n*x)),x,31):
seq(coeff(S,x,n)*n!,n=0..30); # Robert Israel, Oct 01 2017
-
Table[n! SeriesCoefficient[Exp[x/(1 - n x)], {x, 0, n}], {n, 0, 16}]
Join[{1}, Table[n! SeriesCoefficient[Product[Exp[n^k x^(k + 1)], {k, 0, n}], {x, 0, n}], {n, 1, 16}]]
Join[{1}, Table[Sum[n^(n - k) n!/k! Binomial[n - 1, k - 1], {k, n}], {n, 1, 16}]]
Join[{1}, Table[n^n (n - 1)! Hypergeometric1F1[1 - n, 2, -1/n], {n, 1, 16}]]
-
{a(n) = if(n==0, 1, n!*sum(k=1, n, n^(n-k)*binomial(n-1, k-1)/k!))} \\ Seiichi Manyama, Feb 03 2021
A025166
E.g.f.: -exp(-x/(1-2*x))/(1-2*x).
Original entry on oeis.org
-1, -1, -1, 7, 127, 1711, 23231, 334391, 5144063, 84149983, 1446872959, 25661798119, 454494403199, 7489030040207, 89680375568447, -759618144120809, -127049044802971649, -7480338932613448769, -369274690558092738817, -17262533154073740329017
Offset: 0
-
a := n -> -(-2)^n*KummerU(-n, 1, 1/2):
seq(simplify(a(n)), n=0..19); # Peter Luschny, Feb 12 2020
-
Table[ -n! 2^n LaguerreL[ n, 1/2 ], {n, 0, 12} ]
Showing 1-10 of 17 results.
Comments