cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 17 results. Next

A103446 Unlabeled analog of A025168.

Original entry on oeis.org

0, 1, 3, 8, 21, 54, 137, 344, 856, 2113, 5179, 12614, 30548, 73595, 176455, 421215, 1001388, 2371678, 5597245, 13166069, 30873728, 72185937, 168313391, 391428622, 908058205, 2101629502, 4853215947, 11183551059, 25718677187, 59030344851, 135237134812
Offset: 0

Views

Author

Thomas Wieder, Feb 06 2005; revised Feb 20 2006

Keywords

Comments

Or, if the initial 0 is omitted, this is the binomial transform of the partition numbers p(1), p(2), ... = 1, 2, 3, 5, 7, 11, 15, 22, 30, ... (A000041 without the initial 1).
The most precise definition of this sequence is the Maple combstruct command given below. See the first Wieder link for further details.
Sequence appears to have a rational o.g.f. - Ralf Stephan, May 18 2007
For n>0, row sums of triangle A137151. - Gary W. Adamson, Jan 23 2008
a(n) = A218482(n) for n>=1; see A218482 for more formulas.

Examples

			Let {} denote a set, [] a list and Z an unlabeled element.
a(3) = 8 because we have {[[Z]],[[Z]],[[Z]]}, {[[Z],[Z]],[[Z]]}, {[[Z],[Z],[Z]]}, {[[Z],[Z,Z]]}, {[[Z,Z],[Z]]}, {[[Z,Z]],[[Z]]}, {[[Z]],[[Z,Z]]}, {[[Z,Z,Z]]}.
		

Crossrefs

Programs

  • Maple
    with(combstruct); SubSetSeqU := [T,{T=Subst(U,S),S=Set(U,card>=1),U=Sequence(Z,card>=1)},unlabeled]; [seq(count(SubSetSeqU, size=n), n=0..30)];
    allstructs(SubSetSeq,size=3); # to get the structures for n=3 - this output is shown in the example lines.
  • Mathematica
    Flatten[{0, Table[Sum[Binomial[n-1,k]*PartitionsP[k+1],{k,0,n-1}],{n,1,30}]}] (* Vaclav Kotesovec, Jun 25 2015 *)
  • PARI
    {a(n)=if(n<1,0,polcoeff(exp(sum(m=1,n,sigma(m)*x^m/(1-x+x*O(x^n))^m/m)),n))} \\ Paul D. Hanna, Apr 21 2010
    
  • PARI
    {a(n)=if(n<1,0,polcoeff(exp(sum(m=1,n,x^m/m*sum(k=1,m,binomial(m,k)*sigma(k)))+x*O(x^n)),n))} \\ Paul D. Hanna, Feb 04 2012
    
  • PARI
    Vec(1/eta('x/(1-'x)+O('x^66))) \\ Joerg Arndt, Jul 30 2011

Formula

O.g.f.: exp( Sum_{n>=1} sigma(n)*x^n/(1-x)^n/n ) - 1. - Paul D. Hanna, Apr 21 2010
O.g.f.: exp( Sum_{n>=1} x^n/n * Sum_{k=1..n} binomial(n,k)*sigma(k) ) - 1. - Paul D. Hanna, Feb 04 2012
O.g.f. P(x/(1-x)), where P(x) is the o.g.f. for number of partitions (A000041) a(n)=sum_{k=1,n} ( binomial(n-1,k-1)*A000041(k)). - Vladimir Kruchinin, Aug 10 2010
a(n) ~ exp(Pi*sqrt(n/3) + Pi^2/24) * 2^(n-2) / (n*sqrt(3)). - Vaclav Kotesovec, Jun 25 2015

Extensions

I can confirm that the terms shown are the binomial transform of the partition sequence 1, 2, 3, 5, 7, 11, 15, 22, 30, 42, 56, 77, 101, ... (A000041 without the a(0) term). - N. J. A. Sloane, May 18 2007

A052897 Expansion of e.g.f.: exp(2*x/(1-x)).

Original entry on oeis.org

1, 2, 8, 44, 304, 2512, 24064, 261536, 3173888, 42483968, 621159424, 9841950208, 167879268352, 3065723549696, 59651093528576, 1231571119812608, 26883546193002496, 618463501807058944
Offset: 0

Views

Author

encyclopedia(AT)pommard.inria.fr, Jan 25 2000

Keywords

Comments

Previous name was: A simple grammar.

Crossrefs

Row sums of A059110.

Programs

  • Magma
    m:=25; R:=PowerSeriesRing(Rationals(), m); b:=Coefficients(R!(Exp(2*x/(1 - x)))); [Factorial(n-1)*b[n]: n in [1..m]]; // G. C. Greubel, May 15 2018
    
  • Magma
    [Factorial(n)*Evaluate(LaguerrePolynomial(n, -1), -2): n in [0..25]]; // G. C. Greubel, Feb 23 2021
    
  • Maple
    L := proc(n,a,x) if n=0 then 1 elif n=1 then a+1-x else (2*n+a-1-x)/n*L(n-1,a,x) - (n+a-1)/n*L(n-2,a,x) fi end: A052897 := n -> n!*L(n,-1,-2): seq(A052897(n),n=0..17); # Peter Luschny, Nov 20 2011
    spec := [S,{B=Set(C),C=Sequence(Z,1 <= card),S=Prod(B,B)},labeled]: seq(combstruct[count](spec,size=n), n=0..20);
  • Mathematica
    Range[0, 19]! CoefficientList[ Series[E^(2*x/(1 - x)), {x, 0, 19}], x] (* Zerinvary Lajos, Mar 21 2007 *)
    Table[n!*LaguerreL[n, -1, -2], {n,0,30}] (* G. C. Greubel, Feb 23 2021 *)
  • PARI
    a=Vec(exp(2*x/(1-x)));for(n=2,#a-1,a[n+1]*=n!);a \\ Charles R Greathouse IV, Nov 20 2011
    
  • Sage
    [factorial(n)*gen_laguerre(n, -1, -2) for n in (0..25)] # G. C. Greubel, Feb 23 2021

Formula

E.g.f.: exp(2*x/(1-x)). - Vladeta Jovovic, Jan 04 2001
Recurrence: {a(0)=1, a(1)=2, (n^2+n)*a(n) + (-4-2*n)*a(n+1) + a(n+2)}.
LAH transform of A000079: a(n) = Sum_{k=0..n} 2^k*n!/k!*binomial(n-1, k-1). - Vladeta Jovovic, Oct 17 2003
a(n) = n!*L(n,-1,-2). - Karol A. Penson, Oct 16 2006 [Here L(n,a,x) is the n-th generalized Laguerre polynomial with parameter a, evaluated at x. L(n,a,x) is 1 if n=0, a+1-x if n=1 and otherwise (2*n+a-1-x)/n*L(n-1,a,x)-(n+a-1)/n*L(n-2,a,x). - Peter Luschny, Nov 20 2011]
a(n) ~ 2^(-1/4)*exp(2*sqrt(2*n)-n-1)*n^(n-1/4) * (1 + 7/(48*sqrt(2*n))). - Vaclav Kotesovec, Oct 09 2012, extended Dec 01 2021
E.g.f.: 1 + 2*x/((1-x)*T(0) - x), where T(k) = 4*k+1 + x^2/((4*k+3)*(1-x)^2 + x^2/T(k+1) ); (continued fraction). - Sergei N. Gladkovskii, Nov 30 2013
E.g.f.: exp(Sum_{k>=1} 2*x^k). - Vaclav Kotesovec, Mar 07 2015
a(n) = Sum_{k=0..n} binomial(n,k)*l(k)*l(n-k), where l(m) = A000262(m). - Emanuele Munarini, Aug 31 2017

Extensions

New name using e.g.f., Vaclav Kotesovec, Feb 25 2014

A025167 E.g.f: exp(x/(1-2*x))/(1-2*x).

Original entry on oeis.org

1, 3, 17, 139, 1473, 19091, 291793, 5129307, 101817089, 2250495523, 54780588561, 1455367098923, 41888448785857, 1298019439099059, 43074477771208913, 1523746948247663611, 57229027745514785793, 2274027983943883110467
Offset: 0

Views

Author

Keywords

Comments

Polynomials in A021009 evaluated at -2.
Also, a(n) is the number of signed permutations of length 2n that are equal to their reverse-complements and avoid the pattern (-2,-1). As a result, a(n) also gives the same thing but for avoiding any one of (-1,-2), (+2,+1) or (+1,+2) instead of (-2,-1) (see the Hardt and Troyka reference). - Justin M. Troyka, Aug 05 2011

Examples

			Since a(2) = 17, there are 17 signed permutations of 4 that are equal to their reverse-complements and avoid (-2,-1).  Some of these are: (+1,+3,+2,+4), (+2,-1,-4,+3), (+3,-1,-4,+2), (-1,-2,-3,-4). - _Justin M. Troyka_, Aug 05 2011
		

Crossrefs

Programs

  • Maple
    a := n -> (-2)^n*KummerU(-n, 1, -1/2):
    seq(simplify(a(n)), n=0..17); # Peter Luschny, Feb 12 2020
  • Mathematica
    Table[ n! 2^n LaguerreL[ n, -1/2 ], {n, 0, 12} ]
    f[n_] := Sum[k!*2^k*Binomial[n, k]^2, {k, 0, n}]; Table[ f[n], {n, 0, 17}] (* Robert G. Wilson v, Mar 16 2005 *)
    a = {1, 3}; For[n = 2, n < 13, n++, a = Append[a, (4 n - 1) a[[n]] - 4 (n - 1)^2 a[[n - 1]]]]; a  (* Justin M. Troyka, Aug 05 2011 *)
  • PARI
    {a(n)=n!^2*polcoeff(exp(2*x+x*O(x^n))*sum(m=0,n,x^m/m!^2),n)}

Formula

a(n) = Sum_{k=0..n} k!*2^k*binomial(n, k)^2. - Robert G. Wilson v, Mar 16 2005 [corrected by Ilya Gutkovskiy, Oct 01 2018]
a(n) = Sum_{k=0..n-1} 2^{n-1-k}*[(n-1)! ]^2/[(k!)^2*(n-1-k)! ]. - Huajun Huang (huanghu(AT)auburn.edu), Oct 10 2005
a(0) = 1; a(1) = 3; a(n) = (4n-1) * a(n-1) - 4 (n-1)^2 * a(n-2) for n >= 2. - Justin M. Troyka, Aug 05 2011
E.g.f.: exp(2*x) * Sum_{n>=0} x^n/n!^2 = Sum_{n>=0} a(n)*x^n/n!^2. - Paul D. Hanna, Nov 18 2011
a(n) ~ n^(n+1/4)*2^(n-1/4)*exp(-n+sqrt(2*n)-1/4) * (1 + sqrt(2)/(3*sqrt(n))). - Vaclav Kotesovec, Jun 22 2013
a(n) = (-2)^n*KummerU(-n, 1, -1/2). - Peter Luschny, Feb 12 2020

Extensions

More terms from Vladeta Jovovic, Jan 29 2003

A321837 Expansion of e.g.f.: exp(x/(1-3*x)).

Original entry on oeis.org

1, 1, 7, 73, 1009, 17341, 355951, 8488117, 230439553, 7013527129, 236419161751, 8740611892321, 351566026652017, 15280473017519893, 713558666964639679, 35623071889296787981, 1893073661362838712961, 106682309871314293118257
Offset: 0

Views

Author

Ludovic Schwob, Nov 19 2018

Keywords

Comments

For k = 2,3,4,... the difference a(n+k) - a(n) is divisible by k.

Crossrefs

Cf. A000262, A025168, A321847, A321848, A321849, A321850 (analogs for k=1,2,4,5,6,7).

Programs

  • GAP
    Concatenation([1], List([1..25], n-> Sum([1..n], k-> 3^(n-k)*(Factorial(n)/Factorial(k))*Binomial(n-1, k-1)))); # G. C. Greubel, Dec 14 2018
  • Magma
    [1] cat [&+[3^(n-k)*Factorial(n) div Factorial(k)*Binomial(n-1, k-1):  k in [0..n]]: n in [1.. 18]]; // Vincenzo Librandi, Dec 08 2018
    
  • Maple
    seq(coeff(series(factorial(n)*exp(x/(1-3*x)),x,n+1), x, n), n = 0 .. 17); # Muniru A Asiru, Nov 24 2018
  • Mathematica
    a[n_] := Sum[3^(n - k)*n!/k!*Binomial[n - 1, k - 1], {k, 0, n}]; Array[a, 20, 0] (* or *) a[0] = a[1] = 1; a[n_] := a[n] = (6n - 5)*a[n - 1] - 9(n - 2)(n - 1)*a[n - 2]; Array[a, 20, 0] (* Amiram Eldar, Nov 19 2018 *)
  • PARI
    my(x='x + O('x^20)); Vec(serlaplace(exp(x/(1-3*x)))) \\ Michel Marcus, Nov 25 2018
    
  • Sage
    {c[1]:c[0]*factorial(c[1]) for c in (exp(x/(1-3*x))).taylor(x,0,25).coefficients()} # G. C. Greubel, Dec 14 2018
    

Formula

a(n) = Sum_{k=0..n} 3^(n-k)*(n!/k!)*binomial(n-1, k-1).
Recurrence: a(n) = (6*n-5)*a(n-1) - 9*(n-2)*(n-1)*a(n-2).
a(n) ~ n! * exp(2*sqrt(n/3) - 1/6) * 3^(n - 1/4) / (2 * sqrt(Pi) * n^(3/4)). - Vaclav Kotesovec, Nov 21 2018

A321847 E.g.f.: exp(x/(1 - 4*x)).

Original entry on oeis.org

1, 1, 9, 121, 2161, 48081, 1279801, 39631369, 1398961761, 55422807841, 2434261023721, 117366299630361, 6161301265353169, 349768597919934961, 21347094823271661081, 1393695557886847095721, 96910923898115717350081, 7149718240571434690591809
Offset: 0

Views

Author

Ludovic Schwob, Nov 19 2018

Keywords

Comments

For k = 2, 3, 4, ... the difference a(n+k) - a(n) is divisible by k.

Crossrefs

Programs

  • Maple
    seq(coeff(series(factorial(n)*exp(x/(1-4*x)),x,n+1), x, n), n = 0 .. 17); # Muniru A Asiru, Nov 24 2018
  • Mathematica
    a[n_] := Sum[4^(n - k)*n!/k!*Binomial[n - 1, k - 1], {k, 0, n}]; Array[a, 20, 0] (* or *) a[0] = a[1] = 1; a[n_] := a[n] = (8n - 7)*a[n - 1] - 16(n - 2)(n - 1) *a[n - 2]; Array[a, 20, 0] (* Amiram Eldar, Nov 19 2018 *)
    CoefficientList[Series[Exp[x/(1 - 4*x)], {x, 0, 20}], x]*Table[n!, {n, 0, 20}] (* Stefano Spezia, Dec 07 2018 *)
  • Maxima
    (a[0] : 1, a[1] : 1, a[n] := (8*n - 7)*a[n-1] - 16*(n-2)*(n-1)*a[n-2], makelist(a[n], n, 0, 20)); /* Franck Maminirina Ramaharo, Nov 27 2018 */
  • PARI
    my(x='x + O('x^20)); Vec(serlaplace(exp(x/(1-4*x)))) \\ Michel Marcus, Nov 25 2018
    

Formula

a(n) = Sum_{k=0..n} 4^(n - k)*(n!/k!)*binomial(n-1, k-1).
Recurrence: a(n) = (8*n - 7)*a(n-1) - 16*(n-2)*(n-1)*a(n-2).
a(n) ~ n! * exp(sqrt(n) - 1/8) * 2^(2*n - 3/2) / (sqrt(Pi) * n^(3/4)). - Vaclav Kotesovec, Nov 21 2018

A321848 E.g.f.: exp(x/(1-5*x)).

Original entry on oeis.org

1, 1, 11, 181, 3961, 108101, 3532651, 134415961, 5834249681, 284391878761, 15378011541451, 913297438474301, 59086483931657161, 4135583008765323181, 311324086814794408811, 25079793551003791168801, 2152597370423901820231201, 196089415332225446044417361
Offset: 0

Views

Author

Ludovic Schwob, Nov 19 2018

Keywords

Comments

For k = 2,3,4,... the difference a(n+k) - a(n) is divisible by k.

Crossrefs

Programs

  • Maple
    seq(coeff(series(factorial(n)*exp(x/(1-5*x)),x,n+1), x, n), n = 0 .. 17); # Muniru A Asiru, Nov 24 2018
  • Mathematica
    a[n_] := Sum[5^(n - k)*n!/k!*Binomial[n - 1, k - 1], {k, 0, n}]; Array[a, 20, 0] (* or *) a[0] = a[1] = 1; a[n_] := a[n] = (10 n - 9)*a[n - 1] - 25(n - 2)(n - 1)*a[n - 2]; Array[a, 20, 0] (* Amiram Eldar, Nov 19 2018 *)
    With[{nn=20},CoefficientList[Series[Exp[x/(1-5x)],{x,0,nn}],x] Range[0,nn]!] (* Harvey P. Dale, Oct 19 2024 *)
  • PARI
    my(x='x + O('x^20)); Vec(serlaplace(exp(x/(1-5*x)))) \\ Michel Marcus, Nov 25 2018

Formula

a(n) = Sum_{k=0..n} 5^(n-k)*(n!/k!)*binomial(n-1, k-1).
Recurrence: a(n) = (10*n-9)*a(n-1) - 25*(n-2)*(n-1)*a(n-2).
a(n) ~ n! * exp(2*sqrt(n/5) - 1/10) * 5^(n - 1/4) / (2 * sqrt(Pi) * n^(3/4)). - Vaclav Kotesovec, Nov 21 2018

A321849 Expansion of e.g.f.: exp(x/(1-6*x)).

Original entry on oeis.org

1, 1, 13, 253, 6553, 211801, 8201701, 369979093, 19047250993, 1101705494833, 70715424362941, 4987040544656941, 383243311962126793, 31871863566298601353, 2851588139929576342933, 273093945561709965890821, 27871997808801906673665121
Offset: 0

Views

Author

Ludovic Schwob, Nov 19 2018

Keywords

Comments

For k = 2,3,4,... the difference a(n+k) - a(n) is divisible by k.

Crossrefs

Programs

  • Magma
    m:=25; R:=PowerSeriesRing(Rationals(), m); b:=Coefficients(R!(Exp(x/(1-6*x)))); [Factorial(n-1)*b[n]: n in [1..m]]; // G. C. Greubel, Dec 08 2018
    
  • Magma
    [1] cat [&+[6^(n-k)* Factorial(n)/Factorial(k)*Binomial(n-1, k-1):  k in [0..n]]: n in [1.. 18]]; // Vincenzo Librandi, Dec 08 2018
  • Maple
    seq(coeff(series(factorial(n)*exp(x/(1-6*x)),x,n+1), x, n), n = 0 .. 17); # Muniru A Asiru, Nov 24 2018
  • Mathematica
    a[n_] := Sum[6^(n - k)*n!/k!*Binomial[n - 1, k - 1], {k, 0, n}]; Array[a, 20, 0] (* or *) a[0] = a[1] = 1; a[n_] := a[n] = (12n - 11)*a[n - 1] - 36(n - 2)(n - 1)*a[n - 2]; Array[a, 20, 0] (* Amiram Eldar, Nov 19 2018 *)
  • PARI
    my(x='x + O('x^20)); Vec(serlaplace(exp(x/(1-6*x)))) \\ Michel Marcus, Nov 25 2018
    
  • Sage
    f= exp(x/(1-6*x))
    g=f.taylor(x,0,13)
    L=g.coefficients()
    coeffs={c[1]:c[0]*factorial(c[1]) for c in L}
    coeffs  # G. C. Greubel, Dec 08 2018
    

Formula

a(n) = Sum_{k=0..n} 6^(n-k)*(n!/k!)*binomial(n-1, k-1).
Recurrence: a(n) = (12*n-11)*a(n-1) - 36*(n-2)*(n-1)*a(n-2).
a(n) ~ n! * exp(sqrt(2*n/3) - 1/12) * 6^(n - 1/4) / (2 * sqrt(Pi) * n^(3/4)). - Vaclav Kotesovec, Nov 21 2018

A321850 E.g.f.: exp(x/(1-7*x)).

Original entry on oeis.org

1, 1, 15, 337, 10081, 376461, 16849351, 878797165, 52324954977, 3501300491641, 260062721279551, 21228108532279881, 1888618754806601665, 181873163575529411077, 18846187172580219099831, 2090754000231731874682021, 247221828043044971020645441
Offset: 0

Views

Author

Ludovic Schwob, Nov 19 2018

Keywords

Comments

For k = 2,3,4,... the difference a(n+k) - a(n) is divisible by k.

Crossrefs

Programs

  • Magma
    [1] cat [&+[7^(n-k)*Factorial(n)/Factorial(k)*Binomial(n-1, k-1):  k in [0..n]]: n in [1.. 18]]; // Vincenzo Librandi, Dec 08 2018
  • Maple
    seq(coeff(series(factorial(n)*exp(x/(1-7*x)),x,n+1), x, n), n = 0 .. 17); # Muniru A Asiru, Nov 24 2018
  • Mathematica
    a[n_] := Sum[7^(n - k)*n!/k!*Binomial[n - 1, k - 1], {k, 0, n}]; Array[a, 20, 0] (* or *) a[0] = a[1] = 1; a[n_] := a[n] = (14n - 13)*a[n - 1] - 49(n - 2)(n - 1)*a[n - 2]; Array[a, 20, 0] (* Amiram Eldar, Nov 19 2018 *)
  • PARI
    my(x='x + O('x^20)); Vec(serlaplace(exp(x/(1-7*x)))) \\ Michel Marcus, Nov 25 2018
    

Formula

a(n) = Sum_{k=0..n} 7^(n-k)*(n!/k!)*binomial(n-1, k-1).
Recurrence: a(n) = (14*n-13)*a(n-1) - 49*(n-2)*(n-1)*a(n-2).
a(n) ~ n! * exp(2*sqrt(n/7) - 1/14) * 7^(n - 1/4) / (2 * sqrt(Pi) * n^(3/4)). - Vaclav Kotesovec, Nov 21 2018

A293146 a(n) = n! * [x^n] exp(x/(1 - n*x)).

Original entry on oeis.org

1, 1, 5, 73, 2161, 108101, 8201701, 878797165, 126422091713, 23514740267401, 5492576235204901, 1574136880033408241, 543143967119720304625, 222106209904092987888013, 106221716052645457812866501, 58741017143127754662557082901, 37194600833984874761008613195521
Offset: 0

Views

Author

Ilya Gutkovskiy, Oct 01 2017

Keywords

Crossrefs

Programs

  • Maple
    S:=series(exp(x/(1-n*x)),x,31):
    seq(coeff(S,x,n)*n!,n=0..30); # Robert Israel, Oct 01 2017
  • Mathematica
    Table[n! SeriesCoefficient[Exp[x/(1 - n x)], {x, 0, n}], {n, 0, 16}]
    Join[{1}, Table[n! SeriesCoefficient[Product[Exp[n^k x^(k + 1)], {k, 0, n}], {x, 0, n}], {n, 1, 16}]]
    Join[{1}, Table[Sum[n^(n - k) n!/k! Binomial[n - 1, k - 1], {k, n}], {n, 1, 16}]]
    Join[{1}, Table[n^n (n - 1)! Hypergeometric1F1[1 - n, 2, -1/n], {n, 1, 16}]]
  • PARI
    {a(n) = if(n==0, 1, n!*sum(k=1, n, n^(n-k)*binomial(n-1, k-1)/k!))} \\ Seiichi Manyama, Feb 03 2021

Formula

a(n) ~ BesselI(1, 2) * sqrt(2*Pi) * n^(2*n-1/2) / exp(n). - Vaclav Kotesovec, Oct 01 2017
a(n) = n! * Sum_{k=1..n} n^(n-k) * binomial(n-1,k-1)/k! for n > 0. - Seiichi Manyama, Feb 03 2021

A025166 E.g.f.: -exp(-x/(1-2*x))/(1-2*x).

Original entry on oeis.org

-1, -1, -1, 7, 127, 1711, 23231, 334391, 5144063, 84149983, 1446872959, 25661798119, 454494403199, 7489030040207, 89680375568447, -759618144120809, -127049044802971649, -7480338932613448769, -369274690558092738817, -17262533154073740329017
Offset: 0

Views

Author

Keywords

Comments

Polynomials in A021009 evaluated at 2.

Crossrefs

Programs

  • Maple
    a := n -> -(-2)^n*KummerU(-n, 1, 1/2):
    seq(simplify(a(n)), n=0..19); # Peter Luschny, Feb 12 2020
  • Mathematica
    Table[ -n! 2^n LaguerreL[ n, 1/2 ], {n, 0, 12} ]

Formula

Conjecture: a(n) + (-4*n+3)*a(n-1) + 4*(n-1)^2*a(n-2) = 0. - R. J. Mathar, Feb 05 2013
a(n) = -(-2)^n*KummerU(-n, 1, 1/2). - Peter Luschny, Feb 12 2020
Sum_{n>=0} a(n) * x^n / (n!)^2 = -exp(2*x) * BesselJ(0,2*sqrt(x)). - Ilya Gutkovskiy, Jul 17 2020

Extensions

Corrected and extended by Vladeta Jovovic, Jan 29 2003
Showing 1-10 of 17 results. Next