cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 54 results. Next

A212172 Row n of table represents second signature of n: list of exponents >= 2 in canonical prime factorization of n, in nonincreasing order, or 0 if no such exponent exists.

Original entry on oeis.org

0, 0, 0, 2, 0, 0, 0, 3, 2, 0, 0, 2, 0, 0, 0, 4, 0, 2, 0, 2, 0, 0, 0, 3, 2, 0, 3, 2, 0, 0, 0, 5, 0, 0, 0, 2, 2, 0, 0, 0, 3, 0, 0, 0, 2, 2, 0, 0, 4, 2, 2, 0, 2, 0, 3, 0, 3, 0, 0, 0, 2, 0, 0, 2, 6, 0, 0, 0, 2, 0, 0, 0, 3, 2, 0, 0, 2, 2, 0, 0, 0, 4, 4, 0, 0, 2, 0, 0
Offset: 1

Views

Author

Matthew Vandermast, Jun 03 2012

Keywords

Comments

Length of row n equals A056170(n) if A056170(n) is positive, or 1 if A056170(n) = 0.
The multiset of exponents >=2 in the prime factorization of n completely determines a(n) for over 20 sequences in the database (see crossreferences). It also determines the fractions A034444(n)/A000005(n) and A037445(n)/A000005(n).
For squarefree numbers, this multiset is { } (the empty multiset). The use of 0 in the table to represent each n with no exponents >=2 in its prime factorization accords with the usual OEIS practice of using 0 to represent nonexistent elements when possible. In comments, the second signature of squarefree numbers will be represented as { }.
For each second signature {S}, there exist values of j and k such that, if the second signature of n is {S}, then A085082(n) is congruent to j modulo k. These values are nontrivial unless {S} = { }. Analogous (but not necessarily identical) values of j and k also exist for each second signature with respect to A088873 and A181796.
Each sequence of integers with a given second signature {S} has a positive density, unlike the analogous sequences for prime signatures. The highest of these densities is 6/Pi^2 = 0.607927... for A005117 ({S} = { }).

Examples

			First rows of table read: 0; 0; 0; 2; 0; 0; 0; 3; 2; 0; 0; 2;...
12 = 2^2*3 has positive exponents 2 and 1 in its canonical prime factorization (1s are often left implicit as exponents). Since only exponents that are 2 or greater appear in a number's second signature, 12's second signature is {2}.
30 = 2*3*5 has no exponents greater than 1 in its prime factorization. The multiset of its exponents >= 2 is { } (the empty multiset), represented in the table with a 0.
72 = 2^3*3^2 has positive exponents 3 and 2 in its prime factorization, as does 108 = 2^2*3^3. Rows 72 and 108 both read {3,2}.
		

Crossrefs

A181800 gives first integer of each second signature. Also see A212171, A212173-A212181, A212642-A212644.
Functions determined by exponents >=2 in the prime factorization of n:
Additive: A046660, A056170.
Other: A007424, A051903 (for n > 1), A056626, A066301, A071325, A072411, A091050, A107078, A185102 (for n > 1), A212180.
Sequences that contain all integers of a specific second signature: A005117 (second signature { }), A060687 ({2}), A048109 ({3}).

Programs

  • Magma
    &cat[IsEmpty(e)select [0]else Reverse(Sort(e))where e is[pe[2]:pe in Factorisation(n)|pe[2]gt 1]:n in[1..102]]; // Jason Kimberley, Jun 13 2012
  • Mathematica
    row[n_] := Select[ FactorInteger[n][[All, 2]], # >= 2 &] /. {} -> 0 /. {k__} -> Sequence[k]; Table[row[n], {n, 1, 100}] (* Jean-François Alcover, Apr 16 2013 *)

Formula

For nonsquarefree n, row n is identical to row A057521(n) of table A212171.

A197680 Numbers whose exponents in their prime power factorization are squares.

Original entry on oeis.org

1, 2, 3, 5, 6, 7, 10, 11, 13, 14, 15, 16, 17, 19, 21, 22, 23, 26, 29, 30, 31, 33, 34, 35, 37, 38, 39, 41, 42, 43, 46, 47, 48, 51, 53, 55, 57, 58, 59, 61, 62, 65, 66, 67, 69, 70, 71, 73, 74, 77, 78, 79, 80, 81, 82, 83, 85, 86, 87, 89, 91, 93, 94, 95, 97, 101
Offset: 1

Views

Author

A. Neves, Oct 17 2011

Keywords

Comments

Numbers whose prime factorization has the form Product_i p_i^e_i where the e_i are all squares.
All squarefree numbers (A005117) are in the sequence. - Vladimir Shevelev, Nov 16 2015
Let h_k be the density of the subsequence of A197680 of numbers whose prime power factorization (PPF) has the form Product_i p_i^e_i where the e_i all squares <= k^2. Then for every k>1 there exists eps_k>0 such that for any x from the interval (h_k-eps_k, h_k) there is no sequence S of positive integers such that x is the density of numbers whose PPF has the form Product_i p_i^e_i where the e_i are all in S. - For a proof, see [Shevelev], second link. - Vladimir Shevelev, Nov 17 2015
Numbers with an odd number of exponential divisors (A049419). - Amiram Eldar, Nov 05 2021

Crossrefs

Programs

  • Maple
    a:= proc(n) option remember; local k; for k from 1+
          `if`(n=1, 0, a(n-1)) while 0=mul(`if`(issqr(
           i[2]), 1, 0), i=ifactors(k)[2]) do od; k
        end:
    seq(a(n), n=1..80);  # Alois P. Heinz, Jun 30 2016
  • Mathematica
    Select[Range[100], Union[IntegerQ /@ Sqrt[Transpose[FactorInteger[#]][[2]]]][[1]] &] (* T. D. Noe, Oct 18 2011 *)
  • PARI
    isok(n) = {my(f = factor(n)[,2]); #select(x->issquare(x), f) == #f; } \\ Michel Marcus, Oct 23 2015

Formula

Sum_{i<=x, i is in A197680} 1 = h*x + O(sqrt(x)*log x*e^(c*sqrt(log x)/(log(log x))), where c=4*sqrt(2.4/log 2)=7.44308... and h=Product_{prime p} (1+Sum_{i>=2} (u(i)-u(i-1))/p^i)=0.641115... where u(n) is the characteristic function of sequence A000290. The calculations of h in the formula were done independently by Juan Arias-de-Reyna and Peter J. C. Moses. For a proof of the formula, see the first Shevelev link. - Vladimir Shevelev, Nov 17 2015

Extensions

Reformulation of the name by Vladimir Shevelev, Oct 14 2015

A049599 Number of (1+e)-divisors of n: if n = Product p(i)^r(i), d = Product p(i)^s(i) and s(i) = 0 or s(i) divides r(i), then d is a (1+e)-divisor of n.

Original entry on oeis.org

1, 2, 2, 3, 2, 4, 2, 3, 3, 4, 2, 6, 2, 4, 4, 4, 2, 6, 2, 6, 4, 4, 2, 6, 3, 4, 3, 6, 2, 8, 2, 3, 4, 4, 4, 9, 2, 4, 4, 6, 2, 8, 2, 6, 6, 4, 2, 8, 3, 6, 4, 6, 2, 6, 4, 6, 4, 4, 2, 12, 2, 4, 6, 5, 4, 8, 2, 6, 4, 8, 2, 9, 2, 4, 6, 6, 4, 8, 2, 8, 4, 4, 2, 12, 4, 4, 4, 6, 2, 12, 4, 6, 4, 4, 4, 6, 2, 6, 6, 9, 2, 8, 2
Offset: 1

Views

Author

Keywords

Comments

A divisor of n is a (1+e)-divisor if and only if it is a unitary divisor of an exponential divisor of n (see A077610 and A322791). - Amiram Eldar, Feb 26 2024

Crossrefs

Programs

  • Haskell
    a049599 = product . map ((+ 1) . a000005 . fromIntegral) . a124010_row
    -- Reinhard Zumkeller, Mar 13 2012
    
  • Mathematica
    a[n_] := Times @@ (DivisorSigma[0, #] + 1 &)  /@ FactorInteger[n][[All, 2]]; a[1] = 1; Table[a[n], {n, 1, 103}] (* Jean-François Alcover, Oct 10 2011 *)
  • PARI
    a(n) = vecprod(apply(x->numdiv(x)+1, factor(n)[, 2])); \\ Amiram Eldar, Aug 13 2023

Formula

If n = Product p(i)^r(i) then a(n) = Product (tau(r(i))+1), where tau(n) = number of divisors of n, cf. A000005. - Vladeta Jovovic, Apr 29 2001

Extensions

More terms from Naohiro Nomoto, Apr 12 2001

A126164 Sum of the proper exponential divisors of n.

Original entry on oeis.org

0, 0, 0, 2, 0, 0, 0, 2, 3, 0, 0, 6, 0, 0, 0, 6, 0, 6, 0, 10, 0, 0, 0, 6, 5, 0, 3, 14, 0, 0, 0, 2, 0, 0, 0, 36, 0, 0, 0, 10, 0, 0, 0, 22, 15, 0, 0, 18, 7, 10, 0, 26, 0, 6, 0, 14, 0, 0, 0, 30, 0, 0, 21, 14, 0, 0, 0, 34, 0, 0, 0, 48, 0, 0, 15
Offset: 1

Views

Author

Ant King, Dec 21 2006

Keywords

Comments

The e-divisors (or exponential divisors) of x=Product p(i)^r(i) are all numbers of the form Product p(i)^s(i) where s(i) divides r(i) for all i.

Examples

			The exponential divisors of 240 are 30, 60 and 240, so a(240) = 30+60 = 90.
		

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := DivisorSum[e, p^# &]; a[1] = 0; a[n_] := Times @@ f @@@ FactorInteger[n] - n; Array[a, 100] (* Amiram Eldar, Aug 13 2023 *)
  • PARI
    A051377(n) = { my(f=factor(n)); prod(i=1, #f[, 1], sumdiv(f[i, 2], d, f[i, 1]^d)); }; \\ This function from Charles R Greathouse IV, Nov 22 2011
    A126164(n) = (A051377(n) - n); \\ Antti Karttunen, Oct 04 2017, after the given formula

Formula

a(n) = esigma(n) - n = A051377(n) - n.

A072911 Number of "phi-divisors" of n.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 2, 1, 1, 1, 1, 4, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 4, 1, 1, 1, 1, 1, 1, 1, 2, 1
Offset: 1

Views

Author

Yasutoshi Kohmoto, Aug 21 2002

Keywords

Comments

If n = Product p(i)^r(i), d = Product p(i)^s(i), = s(i)<=r(i) and gcd(s(i), r(i)) = 1, then d is a phi-divisor of n.
The integers n = Product_{i=1..r} p_i^{a_i} and m = Product_{i=1..r} p_i^{b_i}, a_i, b_i >= 1 (1 <= i <= r) having the same prime factors are called exponentially coprime, if gcd(a_i, b_i) = 1 for every 1 <= i <= r, i.e., the only common exponential divisor of n and m is Product_{i=1..r} p_i = the common squarefree kernel of n and m, cf. A049419, A007947. The terms of this sequence count the divisors d of n such that d and n are exponentially coprime. - Laszlo Toth, Oct 06 2008

References

  • József Sándor, On an exponential totient function, Studia Univ. Babes-Bolyai, Math., 41 (1996), 91-94. [Laszlo Toth, Oct 06 2008]

Crossrefs

Programs

  • Haskell
    a072911 = product . map (a000010 . fromIntegral) . a124010_row
    -- Reinhard Zumkeller, Mar 13 2012
  • Maple
    A072911 := proc(n)
        local a, p;
        a := 1 ;
        for p in ifactors(n)[2] do
            a := a*numtheory[phi](op(2, p)) ;
        od:
        a ;
    end:
    seq(A072911(n),n=1..100) ; # R. J. Mathar, Sep 25 2008
  • Mathematica
    a[n_] := Times @@ EulerPhi[FactorInteger[n][[All, 2]]];
    Array[a, 105] (* Jean-François Alcover, Nov 16 2017 *)

Formula

If n = Product p(i)^r(i) then a(n) = Product (phi(r(i))), where phi(k) is the Euler totient function of k, cf. A000010.
Sum_{k=1..n} a(k) ~ c_1 * n + c_2 * n^(1/3) + O(n^(1/5+eps)), where c_1 = A327838 (Tóth, 2004). - Amiram Eldar, Oct 30 2022

Extensions

More terms from R. J. Mathar, Sep 25 2008

A126166 Larger member of each exponential amicable pair.

Original entry on oeis.org

100548, 502740, 968436, 1106028, 1307124, 1709316, 2312604, 2915892, 3116988, 3720276, 4122468, 4323564, 4725756, 5027400, 4842180, 5329044, 5530140, 5932332, 6133428, 6535620, 6736716, 7138908, 7340004, 7943292, 8345484, 8546580, 8948772, 9753156, 10155348
Offset: 1

Views

Author

Ant King, Dec 21 2006

Keywords

Comments

This sequence includes the largest member of all exponential amicable pairs and does not discriminate between primitive and nonprimitive pairs.

Examples

			a(3)= 968436 because (937692,968436) is the third exponential amicable pair
		

References

  • Hagis, Peter Jr.; Some Results Concerning Exponential Divisors, Internat. J. Math. & Math. Sci., Vol. 11, No. 2, (1988), pp. 343-350.

Crossrefs

Programs

  • Mathematica
    fun[p_, e_] := DivisorSum[e, p^# &]; esigma[1] = 1; esigma[n_] := Times @@ fun @@@ FactorInteger[n]; s = {}; Do[m = esigma[n] - n; If[m > n && esigma[m] - m == n, AppendTo[s, m]], {n, 1, 10^7}]; s (* Amiram Eldar, May 09 2019 *)

Formula

The values of n for which esigma(m)=esigma(n)=m+n and mA051377

Extensions

Link corrected and reference added by Andrew Lelechenko, Dec 04 2011
More terms from Amiram Eldar, May 09 2019

A126165 Smaller member of each exponential amicable pair.

Original entry on oeis.org

90972, 454860, 937692, 1000692, 1182636, 1546524, 2092356, 2638188, 2820132, 3365964, 3729852, 3911796, 4275684, 4548600, 4688460, 4821516, 5003460, 5367348, 5549292, 5913180, 6095124, 6459012, 6640956, 7186788, 7550676, 7732620, 8096508, 8824284, 9188172, 9370116
Offset: 1

Views

Author

Ant King, Dec 21 2006

Keywords

Comments

This sequence includes the smallest member of all exponential amicable pairs and does not discriminate between primitive and nonprimitive pairs.

Examples

			a(3)=937692 because (937692,968436) is the third exponential amicable pair
		

Crossrefs

Programs

  • Mathematica
    fun[p_, e_] := DivisorSum[e, p^# &]; esigma[1] = 1; esigma[n_] := Times @@ fun @@@ FactorInteger[n]; s = {}; Do[m = esigma[n] - n; If[m > n && esigma[m] - m == n, AppendTo[s, n]], {n, 1, 10^7}]; s (* Amiram Eldar, May 09 2019 *)

Formula

The values of m for which esigma(m)=esigma(n)=m+n and mA051377.

Extensions

More terms from Amiram Eldar, May 09 2019

A241405 Sum of modified exponential divisors: if n = Product p_i^r_i then me-sigma(x) = Product (sum p_i^s_i such that s_i+1 divides r_i+1).

Original entry on oeis.org

1, 3, 4, 5, 6, 12, 8, 11, 10, 18, 12, 20, 14, 24, 24, 17, 18, 30, 20, 30, 32, 36, 24, 44, 26, 42, 31, 40, 30, 72, 32, 39, 48, 54, 48, 50, 38, 60, 56, 66, 42, 96, 44, 60, 60, 72, 48, 68, 50, 78, 72, 70, 54, 93, 72, 88, 80, 90, 60, 120, 62, 96, 80, 65, 84, 144, 68, 90, 96, 144, 72, 110, 74, 114, 104, 100, 96, 168, 80
Offset: 1

Views

Author

Andrew Lelechenko, May 06 2014

Keywords

Comments

The modified exponential divisors of a number n = product p_i^r_i are all numbers of the form product p_i^s_i such that s_i+1 divides r_i+1 for each i.
The concept of modified exponential divisors simplifies combinatorial problems on the sum of exponential divisors A051377 such as a search of e-perfect numbers. Each primitive e-perfect number A054980 corresponds to a unique me-perfect number of smaller magnitude.

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := DivisorSum[e+1, p^(#-1)&]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Sep 03 2023 *)
  • PARI
    A241405(n) = {my(f=factor(n)); prod(i=1, #f[, 1], sumdiv(f[i, 2]+1, d, f[i, 1]^(d-1)))}

Formula

a(n / A007947(n)) = A051377(n).
Multiplicative with a(p^a) = sum p^b such that b+1 divides a+1.

Extensions

More terms from Antti Karttunen, Nov 23 2017
Incorrect comment removed by Amiram Eldar, Dec 14 2024

A348341 a(n) is the number of noninfinitary divisors of n.

Original entry on oeis.org

0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 2, 0, 0, 0, 3, 0, 2, 0, 2, 0, 0, 0, 0, 1, 0, 0, 2, 0, 0, 0, 2, 0, 0, 0, 5, 0, 0, 0, 0, 0, 0, 0, 2, 2, 0, 0, 6, 1, 2, 0, 2, 0, 0, 0, 0, 0, 0, 0, 4, 0, 0, 2, 3, 0, 0, 0, 2, 0, 0, 0, 4, 0, 0, 2, 2, 0, 0, 0, 6, 3, 0, 0, 4, 0, 0, 0
Offset: 1

Views

Author

Amiram Eldar, Oct 13 2021

Keywords

Examples

			a(4) = 1 since 4 has one noninfinitary divisor, 2.
		

Crossrefs

Programs

  • Mathematica
    a[1] = 0; a[n_] := DivisorSigma[0, n] - Times @@ Flatten[2^DigitCount[#, 2, 1] & /@ FactorInteger[n][[;; , 2]]]; Array[a, 100]
  • PARI
    A348341(n) = (numdiv(n)-factorback(apply(a -> 2^hammingweight(a), factorint(n)[, 2]))); \\ Antti Karttunen, Oct 13 2021

Formula

a(n) = A000005(n) - A037445(n).
a(n) = 0 if and only if the number of divisors of n is a power of 2, (i.e., n is in A036537).
a(n) > 0 if and only if the number of divisors of n is not a power of 2, (i.e., n is in A162643).
Sum_{k=1..n} a(k) ~ c * n * log(n), where c = (1 - 2 * A327576) = 0.266749... . - Amiram Eldar, Dec 09 2022

A061389 Number of (1+phi)-divisors of n.

Original entry on oeis.org

1, 2, 2, 2, 2, 4, 2, 3, 2, 4, 2, 4, 2, 4, 4, 3, 2, 4, 2, 4, 4, 4, 2, 6, 2, 4, 3, 4, 2, 8, 2, 5, 4, 4, 4, 4, 2, 4, 4, 6, 2, 8, 2, 4, 4, 4, 2, 6, 2, 4, 4, 4, 2, 6, 4, 6, 4, 4, 2, 8, 2, 4, 4, 3, 4, 8, 2, 4, 4, 8, 2, 6, 2, 4, 4, 4, 4, 8, 2, 6, 3, 4, 2, 8, 4, 4, 4, 6, 2, 8, 4, 4, 4, 4, 4, 10, 2, 4, 4, 4, 2, 8, 2, 6
Offset: 1

Views

Author

Vladeta Jovovic, Apr 29 2001

Keywords

Comments

d is called a (1+phi)-divisor of a number n with prime factorization n = Product p(i)^r(i) if d|n and d = Product p(i)^s(i), where s(i)=0 or GCD(s(i),r(i))=1.
a(n) is odd iff n is a 3-full number (cf. A036966).

Crossrefs

Programs

  • Haskell
    a061389 = product . map ((+ 1) . a000010 . fromIntegral) . a124010_row
    -- Reinhard Zumkeller, Mar 13 2012
  • Mathematica
    f[p_, e_] := EulerPhi[e] + 1; a[1] = 1; a[n_] := Times @@ ( f @@@ FactorInteger[n] ); Array[a, 100] (* Amiram Eldar, Aug 30 2019*)

Formula

Multiplicative with a(p^e) = A000010(e)+1.
Previous Showing 11-20 of 54 results. Next