cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 81-90 of 254 results. Next

A037992 Smallest number with 2^n divisors.

Original entry on oeis.org

1, 2, 6, 24, 120, 840, 7560, 83160, 1081080, 17297280, 294053760, 5587021440, 128501493120, 3212537328000, 93163582512000, 2888071057872000, 106858629141264000, 4381203794791824000, 188391763176048432000, 8854412869274276304000, 433866230594439538896000
Offset: 0

Views

Author

Keywords

Comments

Positions where the number of infinitary divisors of n (A037445), increases to a record (cf. A002182), or infinitary analog of highly composite numbers (A002182). - Vladimir Shevelev, May 13-22 2016
Infinitary superabundant numbers: numbers m with record values of the infinitary abundancy index, A049417(m)/m > A049417(k)/k for all k < m. - Amiram Eldar, Sep 20 2019

Crossrefs

Programs

  • Haskell
    a037992 n = head [x | x <- [1..], a000005 x == 2 ^ n]
    -- Reinhard Zumkeller, Apr 08 2015
    
  • Mathematica
    a[0] = 1; a[n_] := a[n] = Catch[ For[ k = 2, True, k++, If[ an = k*a[n-1]; DivisorSigma[0, an] == 2^n, Throw[an]]]]; Table[a[n], {n, 0, 18}] (* Jean-François Alcover, Apr 16 2012 *)
  • PARI
    {a(n)= local(A,m,c,k,p); if(n<1, n==0, c=0; A=1; m=1; while( cMichael Somos, Apr 15 2005 */
    
  • Python
    def a(n):
      product = 1
      k = 1
      for i in range(n+1):
        product *= k   # k=A050376(i), for i>=1
        while product % k == 0:
          k += 1
      return product
    # Jason L. Miller, Mar 20 2024

Formula

A000005(a(n)) = A000079(n).
a(n) = Product_{k=1..n} A050376(k), product of the first n terms of A050376. - Lekraj Beedassy, Jun 30 2004
a(n) = A052330(2^n -1). - Thomas Ordowski, Jun 29 2005
A001221(a(n+1)) <= A001221(a(n))+1, see also A074239; A007947(a(n)) gives a sequence of primorials (A002110) in nondecreasing order. - Reinhard Zumkeller, Apr 16 2006, corrected: Apr 09 2015
a(n) = A005179(2^n). - Ivan N. Ianakiev, Apr 01 2015
a(n+1)/a(n) = A050376(n+1). - Jinyuan Wang, Oct 14 2018

Extensions

a(18) from Don Reble, Aug 20 2002

A052331 Inverse of A052330; A binary encoding of Fermi-Dirac factorization of n, shown in decimal.

Original entry on oeis.org

0, 1, 2, 4, 8, 3, 16, 5, 32, 9, 64, 6, 128, 17, 10, 256, 512, 33, 1024, 12, 18, 65, 2048, 7, 4096, 129, 34, 20, 8192, 11, 16384, 257, 66, 513, 24, 36, 32768, 1025, 130, 13, 65536, 19, 131072, 68, 40, 2049, 262144, 258, 524288, 4097, 514, 132, 1048576, 35
Offset: 1

Views

Author

Christian G. Bower, Dec 15 1999

Keywords

Comments

Every number can be represented uniquely as a product of numbers of the form p^(2^k), sequence A050376. This sequence is a binary representation of this factorization, with a(p^(2^k)) = 2^(i-1), where i is the index (A302778) of p^(2^k) in A050376. Additive with a(p^e) = sum a(p^(2^e_k)) where e = sum(2^e_k) is the binary representation of e and a(p^(2^k)) is as described above. - Franklin T. Adams-Watters, Oct 25 2005 - Index offset corrected by Antti Karttunen, Apr 17 2018

Examples

			n = 84 has Fermi-Dirac factorization A050376(5) * A050376(3) * A050376(2) = 7*4*3. Thus a(84) = 2^(5-1) + 2^(3-1) + 2^(2-1) = 16 + 4 + 2 = 22 ("10110" in binary = A182979(84)). - _Antti Karttunen_, Apr 17 2018
		

Crossrefs

Cf. A182979 (same sequence shown in binary).
One less than A064358.
Cf. also A156552.

Programs

  • PARI
    A052331=a(n)={for(i=1,#n=factor(n)~,n[2,i]>1||next; m=binary(n[2,i]); n=concat(n,Mat(vector(#m-1,j,[n[1,i]^2^(#m-j),m[j]]~)));n[2,i]%=2); n||return(0); m=vecsort(n[1,]); forprime(p=1,m[#m],my(j=0);while(p^2^j>1} \\ M. F. Hasler, Apr 08 2015
    
  • PARI
    up_to_e = 8192;
    v050376 = vector(up_to_e);
    ispow2(n) = (n && !bitand(n,n-1));
    i = 0; for(n=1,oo,if(ispow2(isprimepower(n)), i++; v050376[i] = n); if(i == up_to_e,break));
    A052331(n) = { my(s=0,e); while(n > 1, fordiv(n, d, if(((n/d)>1)&&ispow2(isprimepower(n/d)), e = vecsearch(v050376, n/d); if(!e, print("v050376 too short!"); return(1/0)); s += 2^(e-1); n = d; break))); (s); }; \\ Antti Karttunen, Apr 12 2018

Formula

a(1)=0; a(n*A050376(k)) = a(n) + 2^k for a(n) < 2^k, k=0, 1, ... - Thomas Ordowski, Mar 23 2005
From Antti Karttunen, Apr 13 2018: (Start)
a(1) = 0; for n > 1, a(n) = A000079(A302785(n)-1) + a(A302776(n)).
For n > 1, a(n) = A000079(A302786(n)-1) * A302787(n).
a(n) = A064358(n)-1.
A000120(a(n)) = A064547(n).
A069010(a(n)) = A302790(n).
(End)

A213925 Triangle read by rows: n-th row contains Fermi-Dirac representation of n.

Original entry on oeis.org

1, 2, 3, 4, 5, 2, 3, 7, 2, 4, 9, 2, 5, 11, 3, 4, 13, 2, 7, 3, 5, 16, 17, 2, 9, 19, 4, 5, 3, 7, 2, 11, 23, 2, 3, 4, 25, 2, 13, 3, 9, 4, 7, 29, 2, 3, 5, 31, 2, 16, 3, 11, 2, 17, 5, 7, 4, 9, 37, 2, 19, 3, 13, 2, 4, 5, 41, 2, 3, 7, 43, 4, 11, 5, 9, 2, 23, 47, 3, 16, 49, 2, 25
Offset: 1

Views

Author

Reinhard Zumkeller, Mar 20 2013

Keywords

Comments

Unique factorization of n into distinct prime powers of form p^(2^k), cf. A050376.

Examples

			First rows:
.     1:    1
.     2:    2
.     3:    3
.     4:    4
.     5:    5
.     6:    2  3
.     7:    7
.     8:    2  4                   8 = 2^2^0 * 2^2^1
.     9:    9
.    10:    2  5
.......
.   990:    2   5  9  11
.   991:  991
.   992:    2  16 31             992 = 2^2^0 * 2^2^2 * 31^2^0
.   993:    3 331
.   994:    2   7 71
.   995:    5 199
.   996:    3   4 83
.   997:  997
.   998:    2 499
.   999:    3   9 37             999 = 3^2^0 * 3^2^1 * 37^2^0
.  1000:    2   4  5  25        1000 = 2^2^0 * 2^2^1 * 5^2^0 * 5^2^1 .
		

Crossrefs

Cf. A050376.
For n > 1: A064547 (row lengths), A181894 (row sums), A223490, A223491.

Programs

  • Haskell
    a213925 n k = a213925_row n !! (k-1)
    a213925_row 1 = [1]
    a213925_row n = reverse $ fd n (reverse $ takeWhile (<= n) a050376_list)
       where fd 1 _      = []
             fd x (q:qs) = if m == 0 then q : fd x' qs else fd x qs
                           where (x',m) = divMod x q
    a213925_tabf = map a213925_row [1..]
    
  • Maple
    T:= n-> `if`(n=1, [1], sort([seq((l-> seq(`if`(l[j]=1, i[1]^(2^(j-1)), [][]),
                 j=1..nops(l)))(convert(i[2], base, 2)), i=ifactors(n)[2])]))[]:
    seq(T(n), n=1..60);  # Alois P. Heinz, Feb 20 2018
  • Mathematica
    nmax = 50; FDPrimes = Reap[k = 1; While[lim = nmax^(1/k); lim > 2, Sow[Prime[Range[PrimePi[lim]]]^k]; k = 2 k]][[2, 1]] // Flatten // Union;
    f[1] = 1; f[n_] := Reap[m = n; Do[If[m == 1, Break[], If[Divisible[m, p], m = m/p; Sow[p]]], {p, Reverse[FDPrimes]}]][[2, 1]] // Reverse;
    Array[f, nmax] // Flatten (* Jean-François Alcover, Feb 05 2019 *)
  • PARI
    row(n) = if(n == 1, [1], my(f = factor(n), p = f[, 1], e = f[, 2], r = [], b); for(i = 1, #p, b = binary(e[i]); for(j = 0, #b-1, if(b[#b-j], r = concat(r, p[i]^(2^j))))); r); \\ Amiram Eldar, May 02 2025

Formula

Product_{k=1..A064547(n)} T(n,k) = n.

Extensions

Example corrected (row 992) by Reinhard Zumkeller, Mar 11 2015

A299755 Triangle read by rows in which row n is the strict integer partition with FDH number n.

Original entry on oeis.org

1, 2, 3, 4, 2, 1, 5, 3, 1, 6, 4, 1, 7, 3, 2, 8, 5, 1, 4, 2, 9, 10, 6, 1, 11, 4, 3, 5, 2, 7, 1, 12, 3, 2, 1, 13, 8, 1, 6, 2, 5, 3, 14, 4, 2, 1, 15, 9, 1, 7, 2, 10, 1, 5, 4, 6, 3, 16, 11, 1, 8, 2, 4, 3, 1, 17, 5, 2, 1, 18, 7, 3, 6, 4, 12, 1, 19, 9, 2, 20, 13, 1
Offset: 1

Views

Author

Gus Wiseman, Feb 18 2018

Keywords

Comments

Let f(n) = A050376(n) be the n-th Fermi-Dirac prime. Every positive integer n has a unique factorization of the form n = f(s_1)*...*f(s_k) where the s_i are strictly increasing positive integers. This determines a unique strict integer partition (s_k...s_1) whose FDH number is then defined to be n.

Examples

			Sequence of strict integer partitions begins: () (1) (2) (3) (4) (2,1) (5) (3,1) (6) (4,1) (7) (3,2) (8) (5,1) (4,2) (9) (10) (6,1) (11) (4,3) (5,2) (7,1) (12) (3,2,1) (13) (8,1) (6,2) (5,3) (14) (4,2,1) (15).
		

Crossrefs

Programs

  • Mathematica
    FDfactor[n_]:=If[n===1,{},Sort[Join@@Cases[FactorInteger[n],{p_,k_}:>Power[p,Cases[Position[IntegerDigits[k,2]//Reverse,1],{m_}->2^(m-1)]]]]];
    nn=200;FDprimeList=Array[FDfactor,nn,1,Union];
    FDrules=MapIndexed[(#1->#2[[1]])&,FDprimeList];
    Join@@Table[Reverse[FDfactor[n]/.FDrules],{n,nn}]

A299757 Weight of the strict integer partition with FDH number n.

Original entry on oeis.org

0, 1, 2, 3, 4, 3, 5, 4, 6, 5, 7, 5, 8, 6, 6, 9, 10, 7, 11, 7, 7, 8, 12, 6, 13, 9, 8, 8, 14, 7, 15, 10, 9, 11, 9, 9, 16, 12, 10, 8, 17, 8, 18, 10, 10, 13, 19, 11, 20, 14, 12, 11, 21, 9, 11, 9, 13, 15, 22, 9, 23, 16, 11, 12, 12, 10, 24, 13, 14, 10, 25, 10, 26, 17
Offset: 1

Views

Author

Gus Wiseman, Feb 18 2018

Keywords

Comments

Let f(n) = A050376(n) be the n-th Fermi-Dirac prime. Every positive integer n has a unique factorization of the form n = f(s_1)*...*f(s_k) where the s_i are strictly increasing positive integers. This determines a unique strict integer partition (s_k...s_1) whose FDH number is then defined to be n.
In analogy with the Heinz number correspondence between integer partitions and positive integers (see A056239), FDH numbers give a correspondence between strict integer partitions and positive integers.

Examples

			Sequence of strict integer partitions begins: () (1) (2) (3) (4) (2,1) (5) (3,1) (6) (4,1) (7) (3,2) (8) (5,1) (4,2) (9).
		

Crossrefs

Programs

  • Mathematica
    FDfactor[n_]:=If[n===1,{},Sort[Join@@Cases[FactorInteger[n],{p_,k_}:>Power[p,Cases[Position[IntegerDigits[k,2]//Reverse,1],{m_}->2^(m-1)]]]]];
    nn=200;FDprimeList=Array[FDfactor,nn,1,Union];
    FDrules=MapIndexed[(#1->#2[[1]])&,FDprimeList];
    Table[Total[FDfactor[n]/.FDrules],{n,nn}]

A007357 Infinitary perfect numbers.

Original entry on oeis.org

6, 60, 90, 36720, 12646368, 22276800, 126463680, 4201148160, 28770487200, 287704872000, 1446875426304, 2548696550400, 14468754263040, 590325173932032, 3291641594841600, 8854877608980480, 32916415948416000
Offset: 1

Views

Author

Keywords

Comments

Numbers N whose sum of infinitary divisors equals 2*N: A049417(N)=2*N. - Joerg Arndt, Mar 20 2011
6 is the only infinitary perfect number which is also perfect number (A000396). 6 is also the only squarefree infinitary perfect number. - Vladimir Shevelev, Mar 02 2011

Examples

			Let n=90. Its unique expansion over distinct terms of A050376 is 90=2*5*9. Thus the infinitary divisors of 90 are 1,2,5,9,10,18,45,90. The number of such divisors is 2^3, i.e., the cardinality of the set of all subsets of the set {2,5,9}. The sum of such divisors is (2+1)*(5+1)*(9+1)=180 and the sum of proper such divisors is 90=n. Thus 90 is in the sequence. - _Vladimir Shevelev_, Mar 02 2011
		

References

  • G. L. Cohen, personal communication.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A129656 (infinitary abundant), A129657 (infinitary deficient).

Programs

  • Maple
    isA007357 := proc(n)
        A049417(n) = 2*n ;
        simplify(%) ;
    end proc:
    for n from 1 do
        if isA007357(n) then
            printf("%d,\n",n) ;
        end if;
    end do: # R. J. Mathar, Oct 05 2017
  • Mathematica
    infiPerfQ[n_] := 2n == Total[If[n == 1, 1, Sort @ Flatten @ Outer[ Times, Sequence @@ (FactorInteger[n] /. {p_, m_Integer} :> p^Select[Range[0, m], BitOr[m, #] == m&])]]];
    For[n = 6, True, n += 6, If[infiPerfQ[n], Print[n]]] (* Jean-François Alcover, Feb 08 2021 *)

Formula

{n: A049417(n) = 2*n}. - R. J. Mathar, Mar 18 2011
a(n)==0 (mod 6). Thus there are no odd infinitary perfect numbers. - Vladimir Shevelev, Mar 02 2011

Extensions

More terms from Eric W. Weisstein, Jan 27 2004

A000379 Numbers where total number of 1-bits in the exponents of their prime factorization is even; a 2-way classification of integers: complement of A000028.

Original entry on oeis.org

1, 6, 8, 10, 12, 14, 15, 18, 20, 21, 22, 26, 27, 28, 32, 33, 34, 35, 36, 38, 39, 44, 45, 46, 48, 50, 51, 52, 55, 57, 58, 62, 63, 64, 65, 68, 69, 74, 75, 76, 77, 80, 82, 85, 86, 87, 91, 92, 93, 94, 95, 98, 99, 100, 106, 111, 112, 115, 116, 117, 118, 119, 120, 122, 123, 124, 125, 129
Offset: 1

Views

Author

Keywords

Comments

This sequence and A000028 (its complement) give the unique solution to the problem of splitting the positive integers into two classes in such a way that products of pairs of distinct elements from either class occur with the same multiplicities [Lambek and Moser]. Cf. A000069, A001969.
See A000028 for precise definition, Maple program, etc.
The sequence contains products of even number of distinct terms of A050376. - Vladimir Shevelev, May 04 2010
From Vladimir Shevelev, Oct 28 2013: (Start)
Numbers m such that the infinitary Möbius function (A064179) of m equals 1. (This follows from the definition of A064179.)
A number m is in the sequence iff the number k = k(m) of terms of A050376 that divide m with odd maximal exponent is even (see example).
(End)
Numbers k for which A064547(k) [or equally, A268386(k)] is even. Numbers k for which A010060(A268387(k)) = 0. - Antti Karttunen, Feb 09 2016
The sequence is closed under the commutative binary operation A059897(.,.). As integers are self-inverse under A059897(.,.), it therefore forms a subgroup of the positive integers considered as a group under A059897(.,.). Specifically (expanding on the comment above dated May 04 2010) it is the subgroup of even length words in A050376, which is the group's lexicographically earliest ordered minimal set of generators. A000028, the set of odd length words in A050376, is its complementary coset. - Peter Munn, Nov 01 2019
From Amiram Eldar, Oct 02 2024: (Start)
Numbers whose number of infinitary divisors (A037445) is a square.
Numbers whose exponentially odious part (A367514) has an even number of distinct prime factors, i.e., numbers k such that A092248(A367514(k)) = 0. (End)

Examples

			If m = 120, then the maximal exponent of 2 that divides 120 is 3, for 3 it is 1, for 4 it is 1, for 5 it is 1. Thus k(120) = 4 and 120 is a term. - _Vladimir Shevelev_, Oct 28 2013
		

References

  • Joe Roberts, Lure of the Integers, Math. Assoc. America, 1992, p. 22.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Subsequences: A030229, A238748, A262675, A268390.
Subsequence of A268388 (apart from the initial 1).
Complement: A000028.
Sequences used in definitions of this sequence: A133008, A050376, A059897, A064179, A064547, A124010 (prime exponents), A268386, A268387, A010060.
Other 2-way classifications: A000069/A001969 (to which A000120 and A010060 are relevant), A000201/A001950.
This is different from A123240 (e.g., does not contain 180). The first difference occurs already at n=31, where A123240(31) = 60, a value which does not occur here, as a(31+1) = 62. The same is true with respect to A131181, as A131181(31) = 60.

Programs

  • Haskell
    a000379 n = a000379_list !! (n-1)
    a000379_list = filter (even . sum . map a000120 . a124010_row) [1..]
    -- Reinhard Zumkeller, Oct 05 2011
    
  • Mathematica
    Select[ Range[130], EvenQ[ Count[ Flatten[ IntegerDigits[#, 2]& /@ Transpose[ FactorInteger[#]][[2]]], 1]]&] // Prepend[#, 1]& (* Jean-François Alcover, Apr 11 2013, after Harvey P. Dale *)
  • PARI
    is(n)=my(f=factor(n)[,2]); sum(i=1,#f,hammingweight(f[i]))%2==0 \\ Charles R Greathouse IV, Aug 31 2013
    (Scheme, two variants)
    (define A000379 (MATCHING-POS 1 1 (COMPOSE even? A064547)))
    (define A000379 (MATCHING-POS 1 1 (lambda (n) (even? (A000120 (A268387 n))))))
    ;; Both require also my IntSeq-library. - Antti Karttunen, Feb 09 2016

Extensions

Edited by N. J. A. Sloane, Dec 20 2007, to restore the original definition.

A091732 Iphi(n): infinitary analog of Euler's phi function.

Original entry on oeis.org

1, 1, 2, 3, 4, 2, 6, 3, 8, 4, 10, 6, 12, 6, 8, 15, 16, 8, 18, 12, 12, 10, 22, 6, 24, 12, 16, 18, 28, 8, 30, 15, 20, 16, 24, 24, 36, 18, 24, 12, 40, 12, 42, 30, 32, 22, 46, 30, 48, 24, 32, 36, 52, 16, 40, 18, 36, 28, 58, 24, 60, 30, 48, 45, 48, 20, 66, 48, 44, 24, 70, 24, 72, 36, 48
Offset: 1

Views

Author

Steven Finch, Mar 05 2004

Keywords

Comments

Not the same as A064380.
With n having a unique factorization as A050376(i) * A050376(j) * ... * A050376(k), with i, j, ..., k all distinct, a(n) = (A050376(i)-1) * (A050376(j)-1) * ... * (A050376(k)-1). (Cf. the first formula). - Antti Karttunen, Jan 15 2019

Examples

			a(6)=2 since 6=P_1*P_2, where P_1=2^(2^0) and P_2=3^(2^0); hence (P_1-1)*(P_2-1)=2.
12=3*4 (3,4 are in A050376). Therefore, a(12) = 12*(1-1/3)*(1-1/4) = 6. - _Vladimir Shevelev_, Feb 20 2011
		

Crossrefs

Programs

  • Maple
    A091732 := proc(n) local f,a,e,p,b; a :=1 ; for f in ifactors(n)[2] do e := op(2,f) ; p := op(1,f) ; b := convert(e,base,2) ; for i from 1 to nops(b) do if op(i,b) > 0 then a := a*(p^(2^(i-1))-1) ; end if; end do: end do: a ; end proc:
    seq(A091732(n),n=1..20) ; # R. J. Mathar, Apr 11 2011
  • Mathematica
    f[p_, e_] := p^(2^(-1 + Position[Reverse @ IntegerDigits[e, 2], 1])); a[1] = 1; a[n_] := Times @@ (Flatten@(f @@@ FactorInteger[n]) - 1); Array[a, 100] (* Amiram Eldar, Feb 28 2020 *)
  • PARI
    ispow2(n) = (n && !bitand(n,n-1));
    A302777(n) = ispow2(isprimepower(n));
    A091732(n) = { my(m=1); while(n > 1, fordiv(n, d, if((dA302777(n/d), m *= ((n/d)-1); n = d; break))); (m); }; \\ Antti Karttunen, Jan 15 2019

Formula

Consider the set, I, of integers of the form p^(2^j), where p is any prime and j >= 0. Let n > 1. From the fundamental theorem of arithmetic and the fact that the binary representation of any integer is unique, it follows that n can be uniquely factored as a product of distinct elements of I. If n = P_1*P_2*...*P_t, where each P_j is in I, then iphi(n) = Product_{j=1..t} (P_j - 1).
From Vladimir Shevelev, Feb 20 2011: (Start)
Thus we have the following analog of the formula phi(n) = n*Product_{p prime divisors of n} (1-1/p): if the factorization of n over distinct terms of A050376 is n = Product(q) (this factorization is unique), then a(n) = n*Product(1-1/q). Thus a(n) is infinitary multiplicative, i.e., if n_1 and n_2 have no common i-divisors, then a(n_1*n_2) = a(n_1)*a(n_2). Now we see that this property is stronger than the usual multiplicativity, therefore a(n) is a multiplicative arithmetic function.
Add that Sum_{d runs i-divisors of n} a(d)=n and a(n) = n*Sum_{d runs i-divisors of n} A064179(d)/d. The latter formulas are analogs of the corresponding formulas for phi(n): Sum_{d|n} phi(d) = n and phi(n) = n*Sum_{d|n} mu(d)/d. (End).
a(n) = n - A323413(n). - Antti Karttunen, Jan 15 2019
a(n) <= A064380(n), with equality if and only if n is in A050376. - Amiram Eldar, Feb 18 2023

A000028 Let k = p_1^e_1 p_2^e_2 p_3^e_3 ... be the prime factorization of n. Sequence gives k such that the sum of the numbers of 1's in the binary expansions of e_1, e_2, e_3, ... is odd.

Original entry on oeis.org

2, 3, 4, 5, 7, 9, 11, 13, 16, 17, 19, 23, 24, 25, 29, 30, 31, 37, 40, 41, 42, 43, 47, 49, 53, 54, 56, 59, 60, 61, 66, 67, 70, 71, 72, 73, 78, 79, 81, 83, 84, 88, 89, 90, 96, 97, 101, 102, 103, 104, 105, 107, 108, 109, 110, 113, 114, 121, 126, 127, 128, 130, 131, 132, 135, 136, 137
Offset: 1

Views

Author

Keywords

Comments

This sequence and A000379 (its complement) give the unique solution to the problem of splitting the positive integers into two classes in such a way that products of pairs of distinct elements from either class occur with the same multiplicities [Lambek and Moser]. Cf. A000069, A001969.
Contains (for example) 180, so is different from A123193. - Max Alekseyev, Sep 20 2007
The sequence contains products of odd number of distinct terms of A050376. - Vladimir Shevelev, May 04 2010
From Vladimir Shevelev, Oct 28 2013: (Start)
Numbers m such that infinitary Moebius function of m (A064179) equals -1. This follows from the definition of A064179.
Number m is in the sequence if and only if the number k = k(m) of terms of A050376 which divide m with odd maximal exponent is odd.
For example, if m = 96, then the maximal exponent of 2 that divides 96 is 5, for 3 it is 1, for 4 it is 2, for 16 it is 1. Thus k(96) = 3 and 96 is a term.
(End)
Positions of odd terms in A064547, A268386 and A293439. - Antti Karttunen, Nov 09 2017
Lexicographically earliest sequence of distinct nonnegative integers such that no term is the A059897 product of 2 terms. (A059897 can be considered as a multiplicative operator related to the Fermi-Dirac factorization of numbers described in A050376.) Specifying that the A059897 product be of 2 distinct terms leaves the sequence unchanged. The equivalent sequences using standard integer multiplication are A026416 (with the 2 terms specified as distinct) and A026424 (otherwise). - Peter Munn, Mar 16 2019
From Amiram Eldar, Oct 02 2024: (Start)
Numbers whose number of infinitary divisors (A037445) is not a square.
Numbers whose exponentially odious part (A367514) has an odd number of distinct prime factors, i.e., numbers k such that A092248(A367514(k)) = 1. (End)

Examples

			If k = 96 then the maximal exponent of 2 that divides 96 is 5, for 3 it is 1. 5 in binary is 101_2 and has so has a sum of binary digits of 1 + 0 + 1 = 2. 1 in binary is 1_2 and so has a sum of binary digits of 1. Thus the sum of digits of binary exponents is 2 + 1 = 3 which is odd and so 96 is a term. - _Vladimir Shevelev_, Oct 28 2013, edited by _David A. Corneth_, Mar 20 2019
		

References

  • Joe Roberts, Lure of the Integers, Math. Assoc. America, 1992, p. 22.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A133008, A000379 (complement), A000120 (binary weight function), A064547; also A066724, A026477, A050376, A084400, A268386, A293439.
Note that A000069 and A001969, also A000201 and A001950 give other decompositions of the integers into two classes.
Cf. A124010 (prime exponents).

Programs

  • Haskell
    a000028 n = a000028_list !! (n-1)
    a000028_list = filter (odd . sum . map a000120 . a124010_row) [1..]
    -- Reinhard Zumkeller, Oct 05 2011
    
  • Maple
    (Maple program from N. J. A. Sloane, Dec 20 2007) expts:=proc(n) local t1,t2,t3,t4,i; if n=1 then RETURN([0]); fi; if isprime(n) then RETURN([1]); fi; t1:=ifactor(n); if nops(factorset(n))=1 then RETURN([op(2,t1)]); fi; t2:=nops(t1); t3:=[]; for i from 1 to t2 do t4:=op(i,t1); if nops(t4) = 1 then t3:=[op(t3),1]; else t3:=[op(t3),op(2,t4)]; fi; od; RETURN(t3); end; # returns a list of the exponents e_1, e_2, ...
    A000120 := proc(n) local w,m,i; w := 0; m := n; while m > 0 do i := m mod 2; w := w+i; m := (m-i)/2; od; w; end: # returns weight of binary expansion
    LamMos:= proc(n) local t1,t2,t3,i; t1:=expts(n); add( A000120(t1[i]),i=1..nops(t1)); end; # returns sum of weights of exponents
    M:=400; t0:=[]; t1:=[]; for n from 1 to M do if LamMos(n) mod 2 = 0 then t0:=[op(t0),n] else t1:=[op(t1),n]; fi; od: t0; t1; # t0 is A000379, t1 is the present sequence
  • Mathematica
    iMoebiusMu[ n_ ] := Switch[ MoebiusMu[ n ], 1, 1, -1, -1, 0, If[ OddQ[ Plus@@ (DigitCount[ Last[ Transpose[ FactorInteger[ n ] ] ], 2, 1 ]) ], -1, 1 ] ]; q=Select[ Range[ 20000 ],iMoebiusMu[ # ]===-1& ] (* Wouter Meeussen, Dec 21 2007 *)
    Rest[Select[Range[150],OddQ[Count[Flatten[IntegerDigits[#,2]&/@ Transpose[ FactorInteger[#]][[2]]],1]]&]] (* Harvey P. Dale, Feb 25 2012 *)
  • PARI
    is(n)=my(f=factor(n)[,2]); sum(i=1,#f,hammingweight(f[i]))%2 \\ Charles R Greathouse IV, Aug 31 2013

Extensions

Entry revised by N. J. A. Sloane, Dec 20 2007, restoring the original definition, correcting the entries and adding a new b-file.

A064380 Number of numbers less than n that are infinitarily relatively prime to n; the infinitary Euler phi function.

Original entry on oeis.org

1, 2, 3, 4, 3, 6, 4, 8, 5, 10, 7, 12, 8, 9, 15, 16, 11, 18, 13, 14, 14, 22, 10, 24, 16, 18, 19, 28, 13, 30, 20, 22, 21, 25, 26, 36, 24, 27, 18, 40, 17, 42, 32, 33, 29, 46, 34, 48, 32, 36, 39, 52, 24, 42, 27, 40, 37, 58, 30, 60, 40, 49, 48, 50, 30, 66, 51, 49, 35, 70, 34, 72, 48
Offset: 2

Views

Author

Wouter Meeussen, Sep 27 2001

Keywords

Comments

Not the same as A091732.
Let E[n] be the set of different terms of A050376 for which n = Product_{q in E[n]}q. Put Z(n) = n^2/Product_{q in E[n]}(q+1). Then a(n) = Z(n) + o(n^eps), where eps>0 arbitrary small. In fact, in the limits of [2,1000] we have for 636 numbers |a(n)-Z(n)| <= 1/2, for 242 numbers 1/2 < |a(n)-Z(n)| <= 1, for 117 numbers 1 < |a(n)-Z(n)| < 2 and only for 4 numbers (namely, 308, 738, 846 and 966) 2 <= |a(n)-Z(n)| < 3. - Vladimir Shevelev, Apr 17 2010

Examples

			irelprime[6] = {1, 4, 5} because iDivisors[6] = {1, 2, 3, 6} and iDivisors[4] = {1, 4} so 4 is infinitary_relatively_prime to 6 since it lacks common infinitary divisors with 6.
For n = 2 .. 8, irelprime[n] gives {1}, {1,2}, {1,2,3}, {1,2,3,4}, {1,4,5}, {1,2,3,4,5,6}, {1,3,5,7}.
Let n = 10000 = 16*625 (16 and 625 are terms of A050376). Then a(10000) = Sum_{t_1>=0} Sum_{t_2>=0}(-1)^(t_1+t_2) * floor(16*625/(16^t_1*625^t_2)) = 16*625 - 16 - 625 + 1 + floor(625/16) - floor(625/256) = 9397. Note that, Z(n) = 9396.7 - _Vladimir Shevelev_, Apr 17 2010
		

References

  • V. S. Abramovich (Shevelev), On an analog of the Euler function, Proceeding of the North-Caucasus Center of the Academy of Sciences of the USSR (Rostov na Donu) (1981) No. 2, 13-17.
  • V. S. Shevelev, Multiplicative functions in the Fermi-Dirac arithmetic, Izvestia Vuzov of the North-Caucasus region, Nature sciences 4 (1996), 28-43.

Crossrefs

Programs

  • Maple
    maxpowp := proc(p, n) local f; for f in ifactors(n)[2] do if op(1, f) = p then return op(2, f) ; end if; end do: return 0 ; end proc:
    isidiv := proc(d, n) local n2, d2, p, j; if n mod d <> 0 then return false; end if; for p in numtheory[factorset](n) do n2 := maxpowp(p, n) ; n2 := convert(n2, base, 2) ; d2 := maxpowp(p, d) ; d2 := convert(d2, base, 2) ; for j from 1 to nops(d2) do if op(j, n2) = 0 and op(j, d2) <> 0 then return false; end if; end do: end do; return true; end proc:
    idivisors := proc(n) local a, d; a := {} ; for d in numtheory[divisors](n) do if isidiv(d, n) then a := a union {d} ; end if; end do: a ; end proc:
    isInfrelpr := proc(n, m) idivisors(n) intersect idivisors(m) = {1} ; end proc:
    A064380 := proc(n) option remember; local a; a := 0 ; for m from 1 to n-1 do if isInfrelpr(m, n) then a := a+1 ; end if; end do ; a ; end proc: # R. J. Mathar, Feb 19 2011
  • Mathematica
    Table[ Length[ irelprime[ n ] ], {n, 2, 128} ] (* with irelprime[ n ] defined in A064379 *)
    infCoprimeQ[n1_, n2_] := Module[{g = GCD[n1, n2]}, If[g == 1, True, AllTrue[ FactorInteger[g][[;;, 1]], BitAnd @@ IntegerExponent[{n1, n2}, #] == 0 &]]]; a[n_] := Sum[Boole[infCoprimeQ[j, n]], {j, 1, n-1}]; Array[a, 100, 2] (* Amiram Eldar, Mar 26 2023 *)
  • PARI
    isinfcoprime(n1, n2) = {my(g = gcd(n1, n2), p, e1, e2); if(g == 1,return(1)); p = factor(g)[, 1]; for(i=1, #p, e1 = valuation(n1, p[i]); e2 = valuation(n2, p[i]); if(bitand(e1, e2) > 0, return(0))); 1; }
    a(n) = sum(j = 1, n-1, isinfcoprime(j, n)); \\ Amiram Eldar, Mar 26 2023

Formula

a(n) = Sum_{t_1>=0} Sum_{t_2>=0}... Sum_{t_m>=0} (-1)^(t_1+...+t_m) *floor(n/(q_1^t_1*...*q_m^t_m)), where q_i are distinct terms of A050376, such that n=q_1*...*q_m. - Vladimir Shevelev, Apr 17 2010

Extensions

Name edited by Peter Munn, Nov 14 2022
Previous Showing 81-90 of 254 results. Next