cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 30 results. Next

A002663 a(n) = 2^n - C(n,0) - C(n,1) - C(n,2) - C(n,3).

Original entry on oeis.org

0, 0, 0, 0, 1, 6, 22, 64, 163, 382, 848, 1816, 3797, 7814, 15914, 32192, 64839, 130238, 261156, 523128, 1047225, 2095590, 4192510, 8386560, 16774891, 33551806, 67105912, 134214424, 268431773, 536866822, 1073737298
Offset: 0

Views

Author

Keywords

Comments

Starting with "1" = eigensequence of a triangle with bin(n,4), A000332 as the left border: (1, 5, 15, 35, 70, ...) and the rest 1's. - Gary W. Adamson, Jul 24 2010
The Kn25 sums, see A180662, of triangle A065941 equal the terms (doubled) of this sequence minus the four leading zeros. - Johannes W. Meijer, Aug 14 2011
(1 + 6x + 22x^2 + 64x^3 + ...) = (1 + 3x + 6x^2 + 10x^3 + ...) * (1 + 3x + 7x^2 + 15x^3 + ...). - Gary W. Adamson, Mar 14 2012
The sequence starting (1, 6, 22, ...) is the binomial transform of A171418 and starting (0, 0, 0, 1, 6, 22, ...) is the binomial transform of (0, 0, 0, 1, 2, 2, 2, 2, 2, ...). - Gary W. Adamson, Jul 27 2015
Number of binary sequences with at least four 0's. - Enrique Navarrete, Jul 23 2025

References

  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

a(n)= A055248(n, 4). Partial sums of A002662.

Programs

  • Haskell
    a002663 n = a002663_list !! n
    a002663_list = map (sum . drop 4) a007318_tabl
    -- Reinhard Zumkeller, Jun 20 2015
    
  • Magma
    [2^n - Binomial(n,0)- Binomial(n,1) - Binomial(n,2) - Binomial(n,3): n in [0..35]]; // Vincenzo Librandi, May 20 2011
    
  • Maple
    A002663 := proc(n): 2^n - add(binomial(n,k),k=0..3) end: seq(A002663(n), n=0..30); # Johannes W. Meijer, Aug 14 2011
  • Mathematica
    a=1;lst={};s1=s2=s3=s4=0;Do[s1+=a;s2+=s1;s3+=s2;s4+=s3;AppendTo[lst,s4];a=a*2,{n,5!}];lst (* Vladimir Joseph Stephan Orlovsky, Jan 10 2009 *)
    Table[Sum[ Binomial[n + 4, k + 4], {k, 0, n}], {n, -4, 26}] (* Zerinvary Lajos, Jul 08 2009 *)
  • PARI
    a(n)=(6*2^n-n^3-5*n-6)/6 \\ Charles R Greathouse IV, Sep 24 2015

Formula

a(n) = 2^n - A000125(n).
G.f.: x^4/((1-2*x)*(1-x)^4). - Simon Plouffe in his 1992 dissertation
a(n) = Sum_{k=0..n} binomial(n,k+4) = Sum_{k=4..n} binomial(n,k). - Paul Barry, Aug 23 2004
a(n) = 2*a(n-1) + binomial(n-1,3). - Paul Barry, Aug 23 2004
a(n) = (6*2^n - n^3 - 5*n - 6)/6. - Mats Granvik, Gary W. Adamson, Feb 17 2010
From Enrique Navarrete, Jul 23 2025: (Start)
a(n) = 6*a(n-1) - 14*a(n-2) + 16*a(n-3) - 9*a(n-4) + 2*a(n-5).
E.g.f.: exp(x)*(exp(x) - 1 - x - x^2/2 - x^3/6). (End)

A027934 a(0)=0, a(1)=1, a(2)=2; for n > 2, a(n) = 3*a(n-1) - a(n-2) - 2*a(n-3).

Original entry on oeis.org

0, 1, 2, 5, 11, 24, 51, 107, 222, 457, 935, 1904, 3863, 7815, 15774, 31781, 63939, 128488, 257963, 517523, 1037630, 2079441, 4165647, 8342240, 16702191, 33433039, 66912446, 133899917, 267921227, 536038872, 1072395555, 2145305339
Offset: 0

Views

Author

Keywords

Comments

Number of compositions of n with at least one even part (offset 2). - Vladeta Jovovic, Dec 29 2004
First differences of A008466. a(n) = A008466(n+2) - A008466(n+1). - Alexander Adamchuk, Apr 06 2006
Starting with "1" = eigensequence of a triangle with the Fibonacci series as the left border and the rest 1's. - Gary W. Adamson, Jul 24 2010
An elephant sequence, see A175654. For the corner squares 24 A[5] vectors, with decimal values between 11 and 416, lead to this sequence (without the leading 0). For the central square these vectors lead to the companion sequence A099036 (without the first leading 1). - Johannes W. Meijer, Aug 15 2010
a(n) = Sum_{k=1..n} A108617(n,k) / 2. - Reinhard Zumkeller, Oct 07 2012
a(n) is the number of binary strings that contain the substring 11 or end in 1. a(3) = 5 because we have: 001, 011, 101, 110, 111. - Geoffrey Critzer, Jan 04 2014
a(n-1), n >= 1, is the number of nonexisting (due to the maturation delay) "[male-female] pairs of Fibonacci rabbits" at the beginning of the n-th month. - Daniel Forgues, May 06 2015
a(n-1) is the number of subsets of {1,2,..,n} that contain n that have at least one pair of consecutive integers. For example, for n=5, a(4) = 11 and the 11 subsets are {4,5}, {1,2,5}, {1,4,5}, {2,3,5}, {2,4,5}, {3,4,5}, {1,2,3,5}, {1,2,4,5}, {1,3,4,5}, {2,3,4,5}, {1,2,3,4,5}. Note that A008466(n) is the number of all subsets of {1,2,..,n} that have at least one pair of consecutive integers. - Enrique Navarrete, Aug 15 2020

Crossrefs

Row sums of triangle A131767. - Gary W. Adamson, Jul 13 2007
a(n) = A101220(1, 2, n+1).
T(n, n) + T(n, n+1) + ... + T(n, 2n), T given by A027926.
Diagonal sums of A055248.

Programs

  • GAP
    List([0..35], n-> 2^n - Fibonacci(n+1) ); # G. C. Greubel, Sep 27 2019
  • Haskell
    a027934 n = a027934_list !! n
    a027934_list = 0 : 1 : 2 : zipWith3 (\x y z -> 3 * x - y - 2 * z)
                   (drop 2 a027934_list) (tail a027934_list) a027934_list
    -- Reinhard Zumkeller, Oct 07 2012
    
  • Magma
    [2^n - Fibonacci(n+1): n in [0..35]]; // G. C. Greubel, Sep 27 2019
    
  • Maple
    A027934:= proc(n) local K; K:= Matrix ([[2,0,0], [0,1,1], [0,1,0]])^n; K[1,1]-K[2,2] end: seq (A027934(n), n=0..31); # Alois P. Heinz, Jul 28 2008
    a := n -> 2^n - combinat:-fibonacci(n+1): seq(a(n),n=0..31); # Peter Luschny, May 09 2015
  • Mathematica
    nn=31; a:=1/(1-x-x^2); b:=1/(1-2x); CoefficientList[Series[a*x*(1+x*b), {x,0,nn}], x] (* Geoffrey Critzer, Jan 04 2014 *)
    LinearRecurrence[{3,-1,-2}, {0,1,2}, 32] (* Jean-François Alcover, Jan 09 2016 *)
    nxt[{a_,b_,c_}]:={b,c,3c-b-2a}; NestList[nxt,{0,1,2},40][[;;,1]] (* Harvey P. Dale, Feb 02 2025 *)
  • PARI
    a(n)=2^n-fibonacci(n+1) \\ Charles R Greathouse IV, Jun 11 2015
    
  • Sage
    [2^n - fibonacci(n+1) for n in (0..35)] # G. C. Greubel, Sep 27 2019
    

Formula

a(n) = Sum_{j=0..floor(n/2)} Sum_{k=0..n-2*j} binomial(n-j, n-2*j-k). - Paul Barry, Feb 07 2003
From Paul Barry, Jan 23 2004: (Start)
Row sums of A105809.
G.f.: x*(1-x)/((1-2*x)*(1-x-x^2)).
a(n) = 2^n - Fibonacci(n+1). (End) - corrected Apr 06 2006 and Oct 05 2012
a(n) = Sum_{j=0..n} Sum_{k=0..n} binomial(n-k, k+j). - Paul Barry, Aug 29 2004
a(n) = (Sum of (n+1)-th row of the triangle in A108617) / 2. - Reinhard Zumkeller, Jun 12 2005
a(n) = term (1,1) - term (2,2) in the 3 X 3 matrix [2,0,0; 0,1,1; 0,1,0]^n. - Alois P. Heinz, Jul 28 2008
a(n) = 2^n - A000045(n+1). - Geoffrey Critzer, Jan 04 2014
a(n) ~ 2^n. - Daniel Forgues, May 06 2015
From Bob Selcoe, Mar 29 2016: (Start)
a(n) = 2*a(n-1) + A000045(n-2).
a(n) = 4*a(n-2) + A000032(n-2). (End)
a(n) = 2^(n-1) - ( ((1+sqrt(5))/2)^n - ((1-sqrt(5))/2)^n)/sqrt(5). - Haider Ali Abdel-Abbas, Aug 17 2019

Extensions

Simpler definition from Miklos Kristof, Nov 24 2003
Initial zero added by N. J. A. Sloane, Feb 13 2008
Definition fixed by Reinhard Zumkeller, Oct 07 2012

A002664 a(n) = 2^n - C(n,0)- ... - C(n,4).

Original entry on oeis.org

0, 0, 0, 0, 0, 1, 7, 29, 93, 256, 638, 1486, 3302, 7099, 14913, 30827, 63019, 127858, 258096, 519252, 1042380, 2089605, 4185195, 8377705, 16764265, 33539156, 67090962, 134196874, 268411298, 536843071, 1073709893
Offset: 0

Views

Author

Keywords

Comments

From Gary W. Adamson, Jul 24 2010: (Start)
Starting with "1" = eigensequence of a triangle with binomial C(n,5):
(1, 6, 21, 56, ...) as the left border and the rest 1's. (End)
The Kn26 sums, see A180662, of triangle A065941 equal the terms (doubled) of this sequence minus the five leading zeros. - Johannes W. Meijer, Aug 15 2011
Starting (0, 0, 0, 0, 1, 7, 29, ...), this is the binomial transform of (0, 0, 0, 0, 1, 2, 2, 2, ...). Starting (1, 7, 29, ...), this is the binomial transform of (1, 6, 16, 26, 31, 32, 32, 32, ...). - Gary W. Adamson, Jul 28 2015

References

  • J. H. Conway and R. K. Guy, The Book of Numbers, New York: Springer-Verlag, 1995, Chapter 3, pp. 76-79.
  • J. Eckhoff, Der Satz von Radon in konvexen Productstrukturen II, Monat. f. Math., 73 (1969), 7-30.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

a(n) = A055248(n, 5). Partial sums of A002663.
Cf. A007318.

Programs

  • Haskell
    a002664 n = a002664_list !! n
    a002664_list = map (sum . drop 5) a007318_tabl
    -- Reinhard Zumkeller, Jun 20 2015
  • Magma
    [2^n-n^4/24+n^3/12-11*n^2/24-7*n/12-1: n in [0..35]]; // Vincenzo Librandi, May 20 2011
    
  • Maple
    a:=n->sum(binomial(n+1,2*j),j=3..n+1): seq(a(n), n=0..30); # Zerinvary Lajos, May 12 2007
    A002664:=1/(2*z-1)/(z-1)**5; # conjectured by Simon Plouffe in his 1992 dissertation
  • Mathematica
    a=1;lst={};s1=s2=s3=s4=s5=0;Do[s1+=a;s2+=s1;s3+=s2;s4+=s3;s5+=s4;AppendTo[lst,s5];a=a*2,{n,5!}];lst (* Vladimir Joseph Stephan Orlovsky, Jan 10 2009 *)
    Table[Sum[ Binomial[n, k + 5], {k, 0, n}], {n, 0, 30}] (* Zerinvary Lajos, Jul 08 2009 *)
    Table[2^n-Total[Binomial[n,Range[0,4]]],{n,0,30}] (* or *) LinearRecurrence[ {7,-20,30,-25,11,-2},{0,0,0,0,0,1},40] (* Harvey P. Dale, Sep 03 2016 *)

Formula

G.f.: x^5/((1-2*x)*(1-x)^5).
a(n) = Sum_{k=0..n} C(n, k+5) = Sum_{k=5..n} C(n, k); a(n) = 2a(n-1) + C(n-1, 4). - Paul Barry, Aug 23 2004
a(n) = 2^n - n^4/24 + n^3/12 - 11*n^2/24 - 7*n/12 - 1. - Bruno Berselli, May 19 2011 [Robinson (1985) gives an alternative version of this formula, for a different offset. - N. J. A. Sloane, Oct 20 2015]
E.g.f.: exp(x)*(24*(exp(x) - 1) - 24*x - 12*x^2 - 4*x^3 - x^4)/24. - Stefano Spezia, Mar 09 2025

A252738 Row products of irregular table A005940: a(0) = 1; a(1) = 2; for n > 1: 2^(2^(n-2)) * a(n-1) * A003961(a(n-1)); also row products of A163511, A253563, A253565, and A332977.

Original entry on oeis.org

1, 2, 12, 2160, 2449440000, 8488905214204800000000000, 3025568387202006082882734693673523654400000000000000000000000000
Offset: 0

Views

Author

Antti Karttunen, Dec 21 2014

Keywords

Examples

			From _Michael De Vlieger_, Jul 21 2023: (Start)
a(0) = 1 = product of {1},
a(1) = 2^1 = product of {2},
a(2) = 2^2 * 3^1 = product of {3, 2^2},
a(3) = 2^4 * 3^3 * 5^1 = product of {5, 2^1*3^1, 3^2, 2^3},
a(4) = 2^8 * 3^7 * 5^4 * 7^1 = product of
  {7, 2^1*5^1, 3^1*5^1, 2^2*3^1, 5^2, 2^1*3^2, 3^3, 2^4},
...
Table of e(n,k) where a(n) = Product_{k=1..n+1} prime(k)^e(n,k):
prime(k)|    2    3    5   7  11  13  17  19 23 29 31 ...
   n\k  |    1    2    3   4   5   6   7   8  9 10 11 ...
   ----------------------------------------------------
    0   |    1
    1   |    2    1
    2   |    4    3    1
    3   |    8    7    4   1
    4   |   16   15   11   5   1
    5   |   32   31   26  16   6   1
    6   |   64   63   57  42  22   7   1
    7   |  128  127  120  99  64  29   8   1
    8   |  256  255  247 219 163  93  37   9  1
    9   |  512  511  502 466 382 256 130  46 10  1
   10   | 1024 1023 1013 968 848 638 386 176 56 11  1
  ... (End)
		

Crossrefs

These are row products of irregular tables A005940, A163511, A253563 and A253565, which all are shaped like a binary tree.
Partial products of A252740.
Cf. A252737 (row sums), A252739 (divided by n), A252741 (divided by n!).

Programs

  • Mathematica
    Table[Times @@ Array[Prime[# + 1]^Sum[Binomial[n, # + j], {j, 0, n}] &, n + 1, 0], {n, 0, 5}] (* Michael De Vlieger, Jul 21 2023 *)
  • PARI
    allocatemem(234567890);
    A003961(n) = my(f = factor(n)); for (i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); factorback(f); \\ Using code of Michel Marcus
    A252738print(up_to_n) = { my(s, i=0, n=0); for(n=0, up_to_n, if(0 == n, s = 1, if(1 == n, s = 2; lev = vector(1); lev[1] = 2, oldlev = lev; lev = vector(2*length(oldlev)); s = 1; for(i = 0, (2^(n-1))-1, lev[i+1] = if((i%2),A003961(oldlev[(i\2)+1]),2*oldlev[(i\2)+1]); s *= lev[i+1]))); write("b252738.txt", n, " ", s)); }; \\ Counts them empirically.
    A252738print(7);
    
  • Scheme
    (definec (A252738rec n) (if (<= n 1) (+ 1 n) (* (A000079 (A000079 (- n 2))) (A252738rec (- n 1)) (A003961 (A252738rec (- n 1)))))) ;; Implements the given recurrence; uses the memoizing definec-macro.
    (define (A252738 n) (if (zero? n) 1 (mul A163511 (A000079 (- n 1)) (A000225 n))))
    (define (mul intfun lowlim uplim) (let multloop ((i lowlim) (res 1)) (cond ((> i uplim) res) (else (multloop (+ 1 i) (* res (intfun i)))))))
    ;; Another alternative, implementing the new recurrence:
    (definec (A252738 n) (if (<= n 1) (+ 1 n) (* (A267096 (- n 2)) (A000290 (A252738 (- n 1)))))) ;; Antti Karttunen, Feb 06 2016

Formula

a(0) = 1; a(1) = 2; for n > 1: a(n) = 2^(2^(n-2)) * a(n-1) * A003961(a(n-1)).
a(0) = 1; for n>=1: a(n) = Product_{k=A000079(n-1) .. A000225(n)} A163511(k) = Product_{k=2^(n-1) .. (2^n)-1} A163511(k).
a(0) = 1; a(1) = 2; for n > 1: a(n) = A267096(n-2) * a(n-1)^2. [Compare to the formulas of A191555] - Antti Karttunen, Feb 06 2016
From Michael De Vlieger, Jul 21 2023: (Start)
a(n) = Product_{k=1..n+1} prime(k)^e(n,k), where e(n,k) = k-th term in row n of A055248.
A067255(a(n)) = row n of A055248. (End)

Extensions

Typos in the second formula corrected by Antti Karttunen, Feb 06 2016

A035042 a(n) = 2^n - C(n,0)- ... - C(n,9).

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 12, 79, 378, 1471, 4944, 14893, 41226, 106762, 262144, 616666, 1401292, 3096514, 6690448, 14198086, 29703676, 61450327, 126025204, 256737233, 520381366, 1050777737, 2115862624, 4251885323, 8531819446
Offset: 0

Views

Author

Keywords

References

  • J. Eckhoff, Der Satz von Radon in konvexen Productstrukturen II, Monat. f. Math., 73 (1969), 7-30.

Crossrefs

a(n)= A055248(n, 10). Partial sums of A035041.
Cf. A007318.

Programs

  • Haskell
    a035042 n = a035042_list !! n
    a035042_list = map (sum . drop 10) a007318_tabl
    -- Reinhard Zumkeller, Jun 20 2015
  • Maple
    a:=n->sum(binomial(n,j),j=10..n): seq(a(n), n=0..33); # Zerinvary Lajos, Jan 04 2007
  • Mathematica
    Table[2^n-Sum[Binomial[n,i],{i,0,9}],{n,0,40}] (* Harvey P. Dale, Jan 05 2013 *)

Formula

G.f.: x^10/((1-2*x)*(1-x)^10).

A003583 a(n) = (n+2)*2^(2*n-1) - (n/2)*binomial(2*n,n).

Original entry on oeis.org

1, 5, 26, 130, 628, 2954, 13612, 61716, 276200, 1223002, 5367676, 23383100, 101215576, 435712580, 1866667448, 7963424104, 33846062544, 143373104378, 605518549660, 2550438016812, 10716162617336
Offset: 0

Views

Author

Keywords

Comments

a(n) gives the number of open partitions of a tree made of two chains with n points each, that share an added root. (An open partition pi of a tree T is a partition of the vertices of T with the property that, for each block B of pi, the upset of B is a union of blocks of pi.) - Pietro Codara, Jan 14 2015

References

  • Pietro Codara, Partitions of a finite partially ordered set, From Combinatorics to Philosophy: The Legacy of G.-C. Rota, Springer, New York (2009), 45-59.

Crossrefs

If the exponent E in a(n) = Sum_{m=0..n} (Sum_{k=0..m} C(n,k))^E is 1, 2, 3, 4, 5 we get A001792, A003583, A007403, A294435, A294436 respectively.

Programs

  • Maple
    seq((n+2)*2^(2*n-1)-(n/2)*binomial(2*n,n), n=0..50); # Robert Israel, Jan 13 2015
  • Mathematica
    Table[(n+2)*2^(2*n-1)-(n/2)*Binomial[2*n,n], {n,0,50}] (* Pietro Codara, Jan 14 2015 *)
    Table[Sum[Sum[Binomial[n-1,k-1]Binomial[n-1,j-1]Min[k,j],{j,1,n}],{k,1 n}],{n,1,51}] (* Pietro Codara, Jan 14 2015 *)
  • PARI
    x='x+O('x^50); Vec((1-2*x)/(1-4*x)^2 - x/(1 - 4*x)^(3/2)) \\ G. C. Greubel, Feb 15 2017

Formula

Main diagonal of correlation matrix of A055248. a(n) = Sum_{k=0..n} ( Sum_{m=k..n} binomial(n, m) )^2. - Paul Barry, Jun 05 2003
Let S2 := (n, t)->add( k^t * (add( binomial(n, j), j=0..k))^2, k=0..n); a(n) = S2(n, 0).
From Robert Israel, Jan 13 2015: (Start)
G.f.: (1-2*x)/(1-4*x)^2 - x/(1 - 4*x)^(3/2).
E.g.f.: (2*x+1)*exp(4*x) - x*exp(2*x)*(I_0(2*x)+I_1(2*x)) where I_0 and I_1 are modified Bessel functions.
a(n) ~ 4^n*(n/2 - sqrt(n)/(2*sqrt(Pi)) + 1 + O(n^(-1/2))).
(End)

A055252 Triangle of partial row sums (prs) of triangle A055249.

Original entry on oeis.org

1, 4, 1, 13, 5, 1, 38, 18, 6, 1, 104, 56, 24, 7, 1, 272, 160, 80, 31, 8, 1, 688, 432, 240, 111, 39, 9, 1, 1696, 1120, 672, 351, 150, 48, 10, 1, 4096, 2816, 1792, 1023, 501, 198, 58, 11, 1, 9728, 6912, 4608, 2815, 1524, 699, 256, 69, 12, 1, 22784, 16640, 11520
Offset: 0

Views

Author

Wolfdieter Lang, May 26 2000

Keywords

Comments

In the language of the Shapiro et al. reference (given in A053121) such a lower triangular (ordinary) convolution array, considered as matrix, belongs to the Riordan-group. The G.f. for the row polynomials p(n,x) (increasing powers of x) is (((1-z)^2)/(1-2*z)^3)/(1-x*z/(1-z)).
This is the third member of the family of Riordan-type matrices obtained from A007318(n,m) (Pascal's triangle read as lower triangular matrix) by repeated application of the prs-procedure.
The column sequences appear as A049611(n+1), A001793, A001788, A055580, A055581, A055582, A055583 for m=0..6.

Examples

			[0] 1
[1] 4, 1
[2] 13, 5, 1
[3] 38, 18, 6, 1
[4] 104, 56, 24, 7, 1
[5] 272, 160, 80, 31, 8, 1
[6] 688, 432, 240, 111, 39, 9, 1
[7] 1696, 1120, 672, 351, 150, 48, 10, 1
Fourth row polynomial (n = 3): p(3, x) = 38 + 18*x + 6*x^2 + x^3.
		

Crossrefs

Cf. A007318, A055248, A055249. Row sums: A049612(n+1)= A055584(n, 0).

Programs

  • Maple
    T := (n, k) -> binomial(n, k)*hypergeom([3, k - n], [k + 1], -1):
    for n from 0 to 7 do seq(simplify(T(n, k)), k = 0..n) od; # Peter Luschny, Sep 23 2024

Formula

a(n, m)=sum(A055249(n, k), k=m..n), n >= m >= 0, a(n, m) := 0 if n
Column m recursion: a(n, m)= sum(a(j, m), j=m..n-1)+ A055249(n, m), n >= m >= 0, a(n, m) := 0 if n
G.f. for column m: (((1-x)^2)/(1-2*x)^3)*(x/(1-x))^m, m >= 0.
T(n, k) = binomial(n, k)*hypergeom([3, k - n], [k + 1], -1). - Peter Luschny, Sep 23 2024

A035039 a(n) = 2^n - C(n,0) - C(n,1) - ... - C(n,6).

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 1, 9, 46, 176, 562, 1586, 4096, 9908, 22819, 50643, 109294, 230964, 480492, 988116, 2014992, 4084248, 8243109, 16587165, 33308926, 66794952, 133820134, 267936278, 536249296, 1072973612, 2146540999
Offset: 0

Keywords

Comments

Partial sums of A035038.

Programs

  • Haskell
    a035039 n = a035039_list !! n
    a035039_list = map (sum . drop 7) a007318_tabl
    -- Reinhard Zumkeller, Jun 20 2015
  • Maple
    a:=n->sum(binomial(n,j),j=7..n): seq(a(n), n=0..31); # Zerinvary Lajos, Feb 12 2007
  • Mathematica
    a=1;lst={};s1=s2=s3=s4=s5=s6=s7=0;Do[s1+=a;s2+=s1;s3+=s2;s4+=s3;s5+=s4;s6+=s5;s7+=s6;AppendTo[lst,s7];a=a*2,{n,5!}];lst (* Vladimir Joseph Stephan Orlovsky, Jan 10 2009 *)
    Table[2^n-Total[Binomial[n,Range[0,6]]],{n,40}] (* or *) LinearRecurrence[ {9,-35,77,-105,91,-49,15,-2},{0,0,0,0,0,0,0,1},40] (* Harvey P. Dale, Apr 22 2016 *)

Formula

a(n) = A055248(n,7).
G.f.: x^7/((1-2*x)*(1-x)^7).
a(n) = Sum_{k=0..n}, C(n, k+7) = Sum_{k=7..n} C(n, k); a(n) = 2a(n-1) + C(n-1, 6). - Paul Barry, Aug 23 2004

A035040 a(n) = 2^n - C(n,0) - C(n,1) - ... - C(n,7).

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 1, 10, 56, 232, 794, 2380, 6476, 16384, 39203, 89846, 199140, 430104, 910596, 1898712, 3913704, 7997952, 16241061, 32828226, 66137152, 132932104, 266752238, 534688516, 1070937812, 2143911424, 4290452423
Offset: 0

Keywords

Crossrefs

a(n)= A055248(n, 8). Partial sums of A035039.
Cf. A007318.

Programs

  • Haskell
    a035040 n = a035040_list !! n
    a035040_list = map (sum . drop 8) a007318_tabl
    -- Reinhard Zumkeller, Jun 20 2015
  • Maple
    a:=n->sum(binomial(n,j),j=8..n): seq(a(n), n=0..32); # Zerinvary Lajos, Jan 04 2007
  • Mathematica
    a=1;lst={};s1=s2=s3=s4=s5=s6=s7=s8=0;Do[s1+=a;s2+=s1;s3+=s2;s4+=s3;s5+=s4;s6+=s5;s7+=s6;s8+=s7;AppendTo[lst,s8];a=a*2,{n,5!}];lst (* Vladimir Joseph Stephan Orlovsky, Jan 10 2009 *)
    Table[2^n-Total[Binomial[n,Range[0,7]]],{n,0,40}] (* Harvey P. Dale, Aug 27 2025 *)

Formula

G.f.: x^8/((1-2*x)*(1-x)^8).
a(n) = sum_{k=0..n} C(n, k+8) = sum_{k=8..n} C(n, k); a(n) = 2a(n-1) + C(n-1, 7). - Paul Barry, Aug 23 2004

A106516 A Pascal-like triangle based on 3^n.

Original entry on oeis.org

1, 3, 1, 9, 4, 1, 27, 13, 5, 1, 81, 40, 18, 6, 1, 243, 121, 58, 24, 7, 1, 729, 364, 179, 82, 31, 8, 1, 2187, 1093, 543, 261, 113, 39, 9, 1, 6561, 3280, 1636, 804, 374, 152, 48, 10, 1, 19683, 9841, 4916, 2440, 1178, 526, 200, 58, 11, 1, 59049, 29524, 14757, 7356, 3618, 1704, 726, 258, 69, 12, 1
Offset: 0

Author

Paul Barry, May 05 2005

Keywords

Comments

Row sums are A027649. Antidiagonal sums are A106517.
From Wolfdieter Lang, Jan 09 2015: (Start)
Alternating row sums give A025192. The A-sequence of this Riordan lower triangular matrix is [1, 1, repeat(0, )] (leading to the Pascal recurrence for T(n,k) for n >= k >= 1. The Z-sequence is [3, repeat(0, )] (leading to the recurrence T(n,0) = 3*T(n-1,0), n >= 1. For A- and Z-sequences see the W. Lang link under A006232.
The inverse of this Riordan matrix is Tinv = ((1 - 2*x)/(1 + x), x/(1 + x)) given as a signed version of A093560: Tinv(n,m) = (-1)^(n-m)*A093560(n,m). (End)

Examples

			The triangle T(n,k) begins:
n\k     0     1     2    3    4    5   6   7  8  9 10 ...
0:      1
1:      3     1
2:      9     4     1
3:     27    13     5    1
4:     81    40    18    6    1
5:    243   121    58   24    7    1
6:    729   364   179   82   31    8   1
7:   2187  1093   543  261  113   39   9   1
8:   6561  3280  1636  804  374  152  48  10  1
9:  19683  9841  4916 2440 1178  526 200  58 11  1
10: 59049 29524 14757 7356 3618 1704 726 258 69 12  1
... reformatted and extended. - _Wolfdieter Lang_, Jan 06 2015
----------------------------------------------------------
With the array M(k) as defined in the Formula section, the infinite product M(0)*M(1)*M(2)*... begins
/ 1        \/1           \/1        \       /1         \
| 3  1     ||0  1        ||0 1      |      | 3  1      |
| 9  4 1   ||0  3  1     ||0 0 1    |... = | 9  7  1   |
|27 13 5 1 ||0  9  4 1   ||0 0 3 1  |      |27 37 12 1 |
|...       ||0 27 13 5 1 ||0 0 9 4 1|      |...        |
|...       ||...         ||...      |      |...        |
= A143495. - _Peter Bala_, Dec 23 2014
		

Crossrefs

Columns 1, 2, 3, 4, 5: A003462, A000340, A052150, A097786, A097787.

Programs

  • Mathematica
    a106516[n_] := Block[{a, k},
    a[x_] := Flatten@ Last@ Reap[For[k = -1, k < x, Sow[Binomial[x, k] +
    2 Sum[3^(i - 1)*Binomial[x - i, k], {i, 1, x}]], k++]]; Flatten@Array[a, n, 0]]; a106516[11] (* Michael De Vlieger, Dec 23 2014 *)

Formula

Riordan array (1/(1-3x), x/(1-x)); Number triangle T(n, 0)=A000244(n), T(n, k)=T(n-1, k-1)+T(n-1, k); T(n, k)=sum{j=0..n, binomial(n, k+j)2^j}.
From Peter Bala, Jul 16 2013: (Start)
T(n,k) = binomial(n,k) + 2*sum {i = 1..n} 3^(i-1)*binomial(n-i,k).
O.g.f.: (1 - t)/( (1 - 3*t)*(1 - (1 + x)*t) ) = 1 + (3 + x)*t + (9 + 4*x + x^2)*t^2 + ....
The n-th row polynomial R(n,x) = 1/(x - 2)*( x*(x + 1)^n - 2*3^n ). (End)
Closed-form formula for arbitrary left and right borders of Pascal-like triangle see A228196. - Boris Putievskiy, Aug 19 2013
T(n,k) = 4*T(n-1,k) + T(n-1,k-1) - 3*T(n-2,k) - 3*T(n-2,k-1), T(0,0)=1, T(1,0)=3, T(1,1)=1, T(n,k)=0 if k<0 or if k>n. - Philippe Deléham, Dec 26 2013
From Peter Bala, Dec 23 2014: (Start)
exp(x) * e.g.f. for row n = e.g.f. for diagonal n. For example, for n = 3 we have exp(x)*(27 + 13*x + 5*x^2/2! + x^3/3!) = 27 + 40*x + 58*x^2/2! + 82*x^3/3! + 113*x^4/4! + .... The same property holds more generally for Riordan arrays of the form ( f(x), x/(1 - x) ).
Let M denote the present triangle. For k = 0,1,2,... define M(k) to be the lower unit triangular block array
/I_k 0\
\ 0 M/ having the k X k identity matrix I_k as the upper left block; in particular, M(0) = M. The infinite product M(0)*M(1)*M(2)*..., which is clearly well-defined, is equal to A143495 (but with a different offset). See the Example section. Cf. A055248. (End)
n-th row polynomial R(n, x) = (2*3^n - x*(1 + x)^n)/(2 - x). - Peter Bala, Mar 05 2025
Previous Showing 11-20 of 30 results. Next