cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 30 results. Next

A056115 a(n) = n*(n+11)/2.

Original entry on oeis.org

0, 6, 13, 21, 30, 40, 51, 63, 76, 90, 105, 121, 138, 156, 175, 195, 216, 238, 261, 285, 310, 336, 363, 391, 420, 450, 481, 513, 546, 580, 615, 651, 688, 726, 765, 805, 846, 888, 931, 975, 1020, 1066, 1113, 1161, 1210, 1260, 1311, 1363, 1416, 1470, 1525
Offset: 0

Views

Author

Barry E. Williams, Jul 04 2000

Keywords

References

  • A. H. Beiler, Recreations in the Theory of Numbers, Dover, N.Y., 1964, pp. 194-196.

Crossrefs

Third column of Pascal (1, 6) triangle A096956.

Programs

  • GAP
    List([0..50], n-> n*(n+11)/2 ); # G. C. Greubel, Jan 18 2020
  • Magma
    [n*(n+11)/2: n in [0..50]]; // G. C. Greubel, Jan 18 2020
    
  • Mathematica
    ((2*Range[0,50]+11)^2 -11^2)/8 (* G. C. Greubel, Jan 18 2020 *)
  • PARI
    a(n)=n*(n+11)/2; \\ Joerg Arndt, Oct 25 2014
    
  • Sage
    [n*(n+11)/2 for n in (0..50)] # G. C. Greubel, Jan 18 2020
    

Formula

G.f.: x*(6-5*x)/(1-x)^3.
a(n) = A000096(n) + 4*A001477(n) = A056000(n) + A001477(n) = A056119(n) - A001477(n). - Zerinvary Lajos, Oct 01 2006
a(n) = A126890(n,5) for n>4. - Reinhard Zumkeller, Dec 30 2006
Equals A119412/2. - Zerinvary Lajos, Feb 12 2007
If we define f(n,i,a) = Sum_{k=0..n-i} ( binomial(n,k)*stirling1(n-k,i) *Product_{j=0..k-1} (-a-j) ), then a(n) = -f(n,n-1,6), for n>=1. - Milan Janjic, Dec 20 2008
a(n) = a(n-1) + n + 5 (with a(0)=0). - Vincenzo Librandi, Aug 07 2010
Sum_{n>=1} 1/a(n) = 83711/152460. - R. J. Mathar, Jul 14 2012
a(n) = 6*n - floor(n/2) + floor(n^2/2). - Wesley Ivan Hurt, Jun 15 2013
E.g.f.: x*(12 + x)*exp(x)/2. - G. C. Greubel, Jan 18 2020
Sum_{n>=1} (-1)^(n+1)/a(n) = 4*log(2)/11 - 20417/152460. - Amiram Eldar, Jan 10 2021

A095666 Pascal (1,4) triangle.

Original entry on oeis.org

4, 1, 4, 1, 5, 4, 1, 6, 9, 4, 1, 7, 15, 13, 4, 1, 8, 22, 28, 17, 4, 1, 9, 30, 50, 45, 21, 4, 1, 10, 39, 80, 95, 66, 25, 4, 1, 11, 49, 119, 175, 161, 91, 29, 4, 1, 12, 60, 168, 294, 336, 252, 120, 33, 4, 1, 13, 72, 228, 462, 630, 588, 372, 153, 37, 4, 1, 14, 85, 300, 690, 1092
Offset: 0

Views

Author

Wolfdieter Lang, Jun 11 2004

Keywords

Comments

This is the fourth member, q=4, in the family of (1,q) Pascal triangles: A007318 (Pascal (q=1)), A029635 (q=2) (but with a(0,0)=2, not 1), A095660 (q=3), A096940 (q=5), A096956 (q=6).
This is an example of a Riordan triangle (see A053121 for a comment and the 1991 Shapiro et al. reference on the Riordan group) with o.g.f. of column no. m of the type g(x)*(x*f(x))^m with f(0)=1. Therefore the o.g.f. for the row polynomials p(n,x) := Sum_{m=0..n} a(n,m)*x^m is G(z,x) = g(z)/(1 - x*z*f(z)). Here: g(x) = (4-3*x)/(1-x), f(x) = 1/(1-x), hence G(z,x) = (4-3*z)/(1-(1+x)*z).
The SW-NE diagonals give Sum_{k=0..ceiling((n-1)/2)} a(n-1-k, k) = A022095(n-2), n >= 2, with n=1 value 4. [Observation by Paul Barry, Apr 29 2004. Proof via recursion relations and comparison of inputs.]
T(2*n,n) = A029609(n) for n > 0, A029609 are the central terms of the Pascal (2,3) triangle A029600. - Reinhard Zumkeller, Apr 08 2012

Examples

			Triangle begins:
  [4];
  [1,4];
  [1,5,4];
  [1,6,9,4];
  [1,7,15,13,4];
  ...
		

Crossrefs

Row sums: A020714(n-1), n >= 1, 4 if n=0.
Alternating row sums are [4, -3, followed by 0's].
Column sequences (without leading zeros) give for m=1..9, with n >= 0: A000027(n+4), A055999(n+1), A060488(n+3), A095667-71, A095819.

Programs

  • Haskell
    a095666 n k = a095666_tabl !! n !! k
    a095666_row n = a095666_tabl !! n
    a095666_tabl = [4] : iterate
       (\row -> zipWith (+) ([0] ++ row) (row ++ [0])) [1,4]
    -- Reinhard Zumkeller, Apr 08 2012
  • Maple
    a(n,k):=(1+3*k/n)*binomial(n,k) # Mircea Merca, Apr 08 2012
  • Mathematica
    A095666[n_, k_] := If[n == k,  4, (3*k/n + 1)*Binomial[n, k]];
    Table[A095666[n, k], {n, 0, 12}, {k, 0, n}] (* Paolo Xausa, Apr 14 2025 *)

Formula

Recursion: a(n, m) = 0 if m > n, a(0, 0) = 4; a(n, 0) = 1 if n>=1; a(n, m) = a(n-1, m) + a(n-1, m-1).
G.f. column m (without leading zeros): (4-3*x)/(1-x)^(m+1), m >= 0.
a(n,k) = (1 + 3*k/n)*binomial(n,k). - Mircea Merca, Apr 08 2012

A254963 a(n) = n*(11*n + 3)/2.

Original entry on oeis.org

0, 7, 25, 54, 94, 145, 207, 280, 364, 459, 565, 682, 810, 949, 1099, 1260, 1432, 1615, 1809, 2014, 2230, 2457, 2695, 2944, 3204, 3475, 3757, 4050, 4354, 4669, 4995, 5332, 5680, 6039, 6409, 6790, 7182, 7585, 7999, 8424, 8860, 9307, 9765, 10234, 10714, 11205, 11707
Offset: 0

Views

Author

Bruno Berselli, Feb 11 2015

Keywords

Comments

This sequence provides the first differences of A254407 and the partial sums of A017473.
Also:
a(n) - n = A022269(n);
a(n) + n = n*(11*n+5)/2: 0, 8, 27, 57, 98, 150, 213, 287, ...;
a(n) - 2*n = A022268(n);
a(n) + 2*n = n*(11*n+7)/2: 0, 9, 29, 60, 102, 155, 219, 294, ...;
a(n) - 3*n = n*(11*n-3)/2: 0, 4, 19, 45, 82, 130, 189, 259, ...;
a(n) + 3*n = A211013(n);
a(n) - 4*n = A226492(n);
a(n) + 4*n = A152740(n);
a(n) - 5*n = A180223(n);
a(n) + 5*n = n*(11*n+13)/2: 0, 12, 35, 69, 114, 170, 237, 315, ...;
a(n) - 6*n = A051865(n);
a(n) + 6*n = n*(11*n+15)/2: 0, 13, 37, 72, 118, 175, 243, 322, ...;
a(n) - 7*n = A152740(n-1) with A152740(-1) = 0;
a(n) + 7*n = n*(11*n+17)/2: 0, 14, 39, 75, 122, 180, 249, 329, ...;
a(n) - n*(n-1)/2 = A168668(n);
a(n) + n*(n-1)/2 = A049453(n);
a(n) - n*(n+1)/2 = A202803(n);
a(n) + n*(n+1)/2 = A033580(n).

Crossrefs

Cf. A008729 and A218530 (seventh column); A017473, A254407.
Cf. similar sequences of the type 4*n^2 + k*n*(n+1)/2: A055999 (k=-7, n>6), A028552 (k=-6, n>2), A095794 (k=-5, n>1), A046092 (k=-4, n>0), A000566 (k=-3), A049450 (k=-2), A022264 (k=-1), A016742 (k=0), A022267 (k=1), A202803 (k=2), this sequence (k=3), A033580 (k=4).
Cf. A069125: (2*n+1)^2 + 3*n*(n+1)/2; A147875: n^2 + 3*n*(n+1)/2.

Programs

  • Magma
    [n*(11*n+3)/2: n in [0..50]];
    
  • Mathematica
    Table[n (11 n + 3)/2, {n, 0, 50}]
    LinearRecurrence[{3,-3,1},{0,7,25},50] (* Harvey P. Dale, Mar 25 2018 *)
  • Maxima
    makelist(n*(11*n+3)/2, n, 0, 50);
  • PARI
    vector(50, n, n--; n*(11*n+3)/2)
    
  • Sage
    [n*(11*n+3)/2 for n in (0..50)]
    

Formula

G.f.: x*(7 + 4*x)/(1 - x)^3.
From Elmo R. Oliveira, Dec 15 2024: (Start)
E.g.f.: exp(x)*x*(14 + 11*x)/2.
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n > 2. (End)

A187988 T(n,k) = number of nondecreasing arrangements of n numbers x(i) in -(n+k-2)..(n+k-2) with the sum of sign(x(i))*2^|x(i)| zero.

Original entry on oeis.org

0, 0, 1, 0, 2, 3, 0, 3, 5, 9, 0, 4, 7, 15, 36, 0, 5, 9, 22, 57, 117, 0, 6, 11, 30, 82, 181, 411, 0, 7, 13, 39, 111, 260, 632, 1452, 0, 8, 15, 49, 144, 355, 912, 2199, 5040, 0, 9, 17, 60, 181, 467, 1257, 3158, 7593, 17829, 0, 10, 19, 72, 222, 597, 1673, 4357, 10920, 26706, 62870
Offset: 1

Views

Author

R. H. Hardin, Mar 18 2011

Keywords

Comments

Table starts
.....0.....0.....0.....0.....0.....0.....0.....0....0....0...0...0..0..0.0
.....1.....2.....3.....4.....5.....6.....7.....8....9...10..11..12.13.14
.....3.....5.....7.....9....11....13....15....17...19...21..23..25.27
.....9....15....22....30....39....49....60....72...85...99.114.130
....36....57....82...111...144...181...222...267..316..369.426
...117...181...260...355...467...597...746...915.1105.1317
...411...632...912..1257..1673..2166..2742..3407.4167
..1452..2199..3158..4357..5825..7592..9689.12148
..5040..7593.10920.15146.20404.26835.34588
.17829.26706.38385.53379.72246.95590

Examples

			Some solutions for n=5 k=3
.-3...-6...-5...-3...-3...-6...-4...-4...-1...-4...-2...-4...-4...-2...-3...-5
.-3...-3...-5...-1...-3...-5...-1...-2...-1...-4...-2...-2...-4...-1....1...-1
.-2...-3...-2....1...-3...-5....0...-2....0...-4...-1....2...-3....1....1....1
..2....4....2....2...-3....6....0....3....0...-4....1....3....3....1....1....4
..4....6....6....2....5....6....4....4....1....6....3....3....5....1....1....4
		

Crossrefs

Row n=4 is A055999(k+1). A187989 (n=5), A187990 (n=6), A187991 (n=7), A187992 (n=8), A187979 (k=n), A187980 (k=1), A187981 (k=2), A187982 (k=3), A187983 (k=4), A187984 (k=5), A187985 (k=6).

Programs

  • Maple
    AatE := proc(n,nminusfE,E)
        option remember ;
        local a,fEminus, fEplus,f0,resn ;
        if E = 0 then
            if n =0 then
                1;
            else
                0;
            end if;
        else
            a :=0 ;
            for fEminus from 0 to nminusfE do
                for fEplus from 0 to nminusfE-fEminus do
                    f0 := nminusfE-fEminus-fEplus ;
                    resn := n-(2^E+1)*fEminus+(2^E-1)*fEplus ;
                    if abs (resn) <= (1+2^(E-1))*f0 then
                        a := a+procname(resn,f0,E-1) ;
                    end if;
                end do:
            end do:
            a ;
        end if;
    end proc:
    A187988 := proc(n,k)
        AatE(n,n,n+k-2) ;
    end proc:
    seq(seq( A187988(n, d-n), n=1..d-1), d=2..15) ; # R. J. Mathar, May 12 2023
  • Mathematica
    AatE[n_, nminusfE_, E_] := AatE[n, nminusfE, E] = Module[{a, fEminus, fEplus, f0, resn}, If[E == 0, If[n == 0, 1, 0], a = 0; For[fEminus = 0, fEminus <= nminusfE, fEminus++, For[fEplus = 0, fEplus <= nminusfE - fEminus, fEplus++, f0 = nminusfE - fEminus - fEplus; resn = n-(2^E+1)*fEminus + (2^E-1)*fEplus; If[Abs[resn] <= (1+2^(E-1))*f0, a = a + AatE[resn, f0, E-1]]]]; a]];
    A187988[n_, k_] := AatE[n, n, n+k-2];
    Table[Table[ A187988[n, d-n], {n, 1, d-1}], {d, 2, 15}] // Flatten (* Jean-François Alcover, Sep 18 2024, after R. J. Mathar *)

A168077 a(2n) = A129194(2n)/2; a(2n+1) = A129194(2n+1).

Original entry on oeis.org

0, 1, 1, 9, 4, 25, 9, 49, 16, 81, 25, 121, 36, 169, 49, 225, 64, 289, 81, 361, 100, 441, 121, 529, 144, 625, 169, 729, 196, 841, 225, 961, 256, 1089, 289, 1225, 324, 1369, 361, 1521, 400, 1681, 441, 1849, 484, 2025, 529, 2209, 576, 2401, 625, 2601
Offset: 0

Views

Author

Paul Curtz, Nov 18 2009

Keywords

Comments

From Paul Curtz, Mar 26 2011: (Start)
Successive A026741(n) * A026741(n+p):
p=0: 0, 1, 1, 9, 4, 25, 9, a(n),
p=1: 0, 1, 3, 6, 10, 15, 21, A000217,
p=2: 0, 3, 2, 15, 6, 35, 12, A142705,
p=3: 0, 2, 5, 9, 14, 20, 27, A000096,
p=4: 0, 5, 3, 21, 8, 45, 15, A171621,
p=5: 0, 3, 7, 12, 18, 25, 33, A055998,
p=6: 0, 7, 4, 27, 10, 55, 18,
p=7: 0, 4, 9, 15, 22, 30, 39, A055999,
p=8: 0, 9, 5, 33, 12, 65, 21, (see A061041),
p=9: 0, 5, 11, 18, 26, 35, 45, A056000. (End)
The moment generating function of p(x, m=2, n=1, mu=2) = 4*x*E(x, 2, 1), see A163931 and A274181, is given by M(a) = (-4 * log(1-a) - 4 * polylog(2, a))/a^2. The series expansion of M(a) leads to the sequence given above. - Johannes W. Meijer, Jul 03 2016
Multiplicative because both A129194 and A040001 are. - Andrew Howroyd, Jul 26 2018

Crossrefs

Programs

  • Magma
    I:=[0,1,1,9,4,25]; [n le 6 select I[n] else 3*Self(n-2)-3*Self(n-4)+Self(n-6): n in [1..60]]; // Vincenzo Librandi, Jul 10 2016
    
  • Maple
    a := proc(n): n^2*(5-3*(-1)^n)/8 end: seq(a(n), n=0..46); # Johannes W. Meijer, Jul 03 2016
  • Mathematica
    LinearRecurrence[{0,3,0,-3,0,1},{0,1,1,9,4,25},60] (* Harvey P. Dale, May 14 2011 *)
    f[n_] := Numerator[(n/2)^2]; Array[f, 60, 0] (* Robert G. Wilson v, Dec 18 2012 *)
    CoefficientList[Series[x(1+x+6x^2+x^3+x^4)/((1-x)^3(1+x)^3), {x,0,60}], x] (* Vincenzo Librandi, Jul 10 2016 *)
  • PARI
    concat(0, Vec(x*(1+x+6*x^2+x^3+x^4)/((1-x)^3*(1+x)^3) + O(x^60))) \\ Altug Alkan, Jul 04 2016
    
  • PARI
    a(n) = lcm(4, n^2)/4; \\ Andrew Howroyd, Jul 26 2018
    
  • Sage
    (x*(1+x+6*x^2+x^3+x^4)/(1-x^2)^3).series(x, 60).coefficients(x, sparse=False) # G. C. Greubel, Feb 20 2019

Formula

From R. J. Mathar, Jan 22 2011: (Start)
G.f.: x*(1 + x + 6*x^2 + x^3 + x^4) / ((1-x)^3*(1+x)^3).
a(n) = 3*a(n-2) - 3*a(n-4) + a(n-6).
a(n) = n^2*(5 - 3*(-1)^n)/8. (End)
a(n) = A026741(n)^2.
a(2*n) = A000290(n); a(2*n+1) = A016754(n).
a(n) - a(n-4) = 4*A064680(n+2). - Paul Curtz, Mar 27 2011
4*a(n) = A061038(n) * A010121(n+2) = A109043(n)^2, n >= 2. - Paul Curtz, Apr 07 2011
a(n) = A129194(n) / A040001(n). - Andrew Howroyd, Jul 26 2018
From Peter Bala, Feb 19 2019: (Start)
a(n) = numerator(n^2/(n^2 + 4)) = n^2/(gcd(n^2,4)) = (n/gcd(n,2))^2.
a(n) = n^2/b(n), where b(n) = [1, 4, 1, 4, ...] is a purely periodic sequence of period 2. Thus a(n) is a quasi-polynomial in n.
O.g.f.: x*(1 + x)/(1 - x)^3 - 3*x^2*(1 + x^2)/(1 - x^2)^3.
Cf. A181318. (End)
From Werner Schulte, Aug 30 2020: (Start)
Multiplicative with a(2^e) = 2^(2*e-2) for e > 0, and a(p^e) = p^(2*e) for prime p > 2.
Dirichlet g.f.: zeta(s-2) * (1 - 3/2^s).
Dirichlet convolution with A259346 equals A000290.
Sum_{n>0} 1/a(n) = Pi^2 * 7 / 24. (End)
Sum_{k=1..n} a(k) ~ (5/24) * n^3. - Amiram Eldar, Nov 28 2022

A098832 Square array read by antidiagonals: even-numbered rows of the table are of the form n*(n+m) and odd-numbered rows are of the form n*(n+m)/2.

Original entry on oeis.org

1, 3, 3, 6, 8, 2, 10, 15, 5, 5, 15, 24, 9, 12, 3, 21, 35, 14, 21, 7, 7, 28, 48, 20, 32, 12, 16, 4, 36, 63, 27, 45, 18, 27, 9, 9, 45, 80, 35, 60, 25, 40, 15, 20, 5, 55, 99, 44, 77, 33, 55, 22, 33, 11, 11, 66, 120, 54, 96, 42, 72, 30, 48, 18, 24, 6, 78, 143, 65, 117, 52, 91, 39, 65, 26, 39, 13, 13
Offset: 1

Views

Author

Eugene McDonnell (eemcd(AT)mac.com), Nov 02 2004

Keywords

Comments

The rows of this table and that in A098737 are related. Given a function f = n/( 1 + (1+n) mod(2) ), row n of A098737 can be derived from row n of T by multiplying the latter by f(n); row n of T can be derived from row n of A098737 by dividing the latter by f(n).

Examples

			Array begins as:
  1,  3,  6, 10, 15, 21,  28,  36,  45 ... A000217;
  3,  8, 15, 24, 35, 48,  63,  80,  99 ... A005563;
  2,  5,  9, 14, 20, 27,  35,  44,  54 ... A000096;
  5, 12, 21, 32, 45, 60,  77,  96, 117 ... A028347;
  3,  7, 12, 18, 25, 33,  42,  52,  63 ... A027379;
  7, 16, 27, 40, 55, 72,  91, 112, 135 ... A028560;
  4,  9, 15, 22, 30, 39,  49,  60,  72 ... A055999;
  9, 20, 33, 48, 65, 84, 105, 128, 153 ... A028566;
  5, 11, 18, 26, 35, 45,  56,  68,  81 ... A056000;
Antidiagonals begin as:
   1;
   3,  3;
   6,  8,  2;
  10, 15,  5,  5;
  15, 24,  9, 12,  3;
  21, 35, 14, 21,  7,  7;
  28, 48, 20, 32, 12, 16,  4;
  36, 63, 27, 45, 18, 27,  9,  9;
  45, 80, 35, 60, 25, 40, 15, 20,  5;
  55, 99, 44, 77, 33, 55, 22, 33, 11, 11;
		

Crossrefs

Row m of array: A000217 (m=1), A005563 (m=2), A000096 (m=3), A028347 (m=4), A027379 (m=5), A028560 (m=6), A055999 (m=7), A028566 (m=8), A056000 (m=9), A098603 (m=10), A056115 (m=11), A098847 (m=12), A056119 (m=13), A098848 (m=14), A056121 (m=15), A098849 (m=16), A056126 (m=17), A098850 (m=18), A051942 (m=19).
Column m of array: A026741 (m=1), A022998 (m=2), A165351 (m=3).

Programs

  • Magma
    A098832:= func< n,k | (1/4)*(3+(-1)^k)*(n+1)*(n-k+1) >;
    [A098832(n,k): k in [1..n], n in [1..15]]; // G. C. Greubel, Jul 31 2022
    
  • Mathematica
    A098832[n_, k_]:= (1/4)*(3+(-1)^k)*(n+1)*(n-k+1);
    Table[A098832[n,k], {n,15}, {k,n}]//Flatten (* G. C. Greubel, Jul 31 2022 *)
  • SageMath
    def A098832(n,k): return (1/4)*(3+(-1)^k)*(n+1)*(n-k+1)
    flatten([[A098832(n,k) for k in (1..n)] for n in (1..15)]) # G. C. Greubel, Jul 31 2022

Formula

Item m of row n of T is given (in infix form) by: n T m = n * (n + m) / (1 + m (mod 2)). E.g. Item 4 of row 3 of T: 3 T 4 = 14.
From G. C. Greubel, Jul 31 2022: (Start)
A(n, k) = (1/4)*(3 + (-1)^n)*k*(k+n) (array).
T(n, k) = (1/4)*(3 + (-1)^k)*(n+1)*(n-k+1) (antidiagonal triangle).
Sum_{k=1..n} T(n, k) = (1/8)*(n+1)*( (3*n-1)*(n+1) + (1+(-1)^n)/2 ).
T(2*n-1, n) = A181900(n).
T(2*n+1, n) = 2*A168509(n+1). (End)

Extensions

Missing terms added by G. C. Greubel, Jul 31 2022

A069270 Third level generalization of Catalan triangle (0th level is Pascal's triangle A007318; first level is Catalan triangle A009766; 2nd level is A069269).

Original entry on oeis.org

1, 1, 1, 1, 2, 4, 1, 3, 9, 22, 1, 4, 15, 52, 140, 1, 5, 22, 91, 340, 969, 1, 6, 30, 140, 612, 2394, 7084, 1, 7, 39, 200, 969, 4389, 17710, 53820, 1, 8, 49, 272, 1425, 7084, 32890, 135720, 420732, 1, 9, 60, 357, 1995, 10626, 53820, 254475, 1068012, 3362260
Offset: 0

Views

Author

Henry Bottomley, Mar 12 2002

Keywords

Comments

For the m-th level generalization of Catalan triangle T(n,k) = C(n+mk,k)*(n-k+1)/(n+(m-1)k+1); for n >= k+m: T(n,k) = T(n-m+1,k+1) - T(n-m,k+1); and T(n,n) = T(n+m-1,n-1) = C((m+1)n,n)/(mn+1).
Antidiagonals of convolution matrix of Table 1.5, p. 397, of Hoggatt and Bicknell. - Tom Copeland, Dec 25 2019

Examples

			Rows start
  1;
  1,   1;
  1,   2,   4;
  1,   3,   9,  22;
  1,   4,  15,  52, 140;
etc.
		

Crossrefs

Columns include A000012, A000027, A055999.
Right-hand diagonals include A002293, A069271, A006632.
Cf. A130458 (row sums).

Programs

  • Maple
    A069270 := proc(n,k)
            binomial(n+3*k,k)*(n-k+1)/(n+2*k+1) ;
    end proc: # R. J. Mathar, Oct 11 2015
  • Mathematica
    Table[Binomial[n + 3 k, k] (n - k + 1)/(n + 2 k + 1), {n, 0, 10}, {k, 0, n}] // Flatten (* Michael De Vlieger, Dec 27 2019 *)

Formula

T(n, k) = C(n+3k, k)*(n-k+1)/(n+2k+1).
For n >= k+3: T(n, k) = T(n-2, k+1)-T(n-3, k+1).
T(n, n) = T(n+2, n-1) = C(4n, n)/(3n+1).

A337940 Triangle read by rows: T(n, k) = T(n+2) - T(n-k), with the triangular numbers T = A000217, for n >= 1, k = 1, 2, ..., n.

Original entry on oeis.org

6, 9, 10, 12, 14, 15, 15, 18, 20, 21, 18, 22, 25, 27, 28, 21, 26, 30, 33, 35, 36, 24, 30, 35, 39, 42, 44, 45, 27, 34, 40, 45, 49, 52, 54, 55, 30, 38, 45, 51, 56, 60, 63, 65, 66, 33, 42, 50, 57, 63, 68, 72, 75, 77, 78, 36, 46, 55, 63, 70, 76, 81, 85, 88, 90, 91
Offset: 1

Views

Author

Wolfdieter Lang, Nov 23 2020

Keywords

Comments

This number triangle results from the array A(n, m) = T(n+m+1) - T(n-1), with T = A000217, for n, m >= 1. For this array see the example by Bob Selcoe, in A111774 (but with rows continued). The present triangle is obtained by reading the array by upwards antidiagonals: T(n, k) = A(n+1-k, k). See also the Jul 09 2019 comment by Ralf Steiner with the formula c_k(n) (rows k >= 1, columns n >= 3), rewritten for A(n, m) = (m+2)*(2*n+m+1)/2, leading to T(n, k) = (k+2)*(2*n-k+3)/2.
Therefore this triangle is related to the problem of giving the numbers which are sums of at least three consecutive positive integers given as sequence A111774. It allows us to find the multiplicities for the numbers of A111774. They are given in A338428(n).
To obtain the multiplicity for number N (>= 6) from A111774 one has to consider only the triangle rows n = 1, 2, ..., floor((N-3)/3).
The row reversed triangle, considered by Bob Selcoe in A111774, is T(n, n-k+1) = T(n+2) - T(k-1), for n >= 1, and k=1, 2, ..., n.
This triangle contains no odd prime numbers and no exact powers 2^m, for m >= 0. This can be seen by considering the diagonal sequences D(d, k), for d >= 1, k >= 1 or the row sequences of the array A(n, m), for n >= 1 and m >= 1. The result is A(r+1, s-2) = s*(s + 2*r + 1)/2, for r >= 0 and s >= 3 (from the g.f. of the diagonals of T given below). This is also given in the Jul 09 2019 comment by Ralf Steiner in A111774. Therefore A(r+1, s-2) is a product of two numbers >= 2, hence not a prime. And in both cases (i) s/2 integer or (ii) (s + 2*r + 1)/2 integer not both numbers can be powers of 2 by simple parity arguments.
The previous comment means that each T(n, k) has at least one odd prime as a proper divisor.
A number N appears in this triangle, or in A111774, if and only if floor(N/2) - delta(N) >= 1, where delta(N) = A055034(N). For the sequence b(n) := floor(n/2) - delta(n), for n >= 2, see A219839(n), b(1) = -1. See a W. Lang comment in A111774 for the proof.

Examples

			The triangle T(n, k) begins:
n \ k  1  2  3  4  5   6   7   8   9  10  11  12  13  14  15 ...
1:     6
2:     9 10
3:    12 14 15
4:    15 18 20 21
5:    18 22 25 27 28
6:    21 26 30 33 35  36
7:    24 30 35 39 42  44  45
8:    27 34 40 45 49  52  54  55
9:    30 38 45 51 56  60  63  65  66
10:   33 42 50 57 63  68  72  75  77  78
11:   36 46 55 63 70  76  81  85  88  90  91
12:   39 50 60 69 77  84  90  95  99 102 104 105
13:   42 54 65 75 84  92  99 105 110 114 117 119 120
14:   45 58 70 81 91 100 108 115 121 126 130 133 135 136
15:   48 62 75 87 98 108 117 125 132 138 143 147 150 152 153
...
N = 15 appears precisely twice from the sums 4+5+6 = A(4, 1) = T(4, 1), and (1+2+3)+4+5 = A(1, 3) = T(3, 3), i.e., with a sum of 3 and 5 consecutive positive integers.
N = 42 appears three times from the sums 13+14+15 = A(13, 1) = T(13, 1), 9+10+11 +12 = A(9, 2) = T(10, 2), 3+4+5+6+7+8+9 = A(3, 5) = T(7, 5); i.e., 42 can be written as a sum of 3, 4 and 7 consecutive positive integers.
		

Crossrefs

Cf. A055034, A111774, A338428 (multiplicities), A219839.
For columns k = 1, 2, ..., 10 see A008585, A016825, A008587, A016945, A008589, A017113, A008591, A017329, A008593, A017593.
For diagonals d = 1, 2, ..., 10 see A000217, A000096, A055998, A055999, A056000, A056115, A056119 , A056121, A056126, A051942.

Programs

  • Mathematica
    Flatten[Table[((n+2)*(n+3)-(n-k)*(n-k+1))/2,{n,11},{k,n}]] (* Stefano Spezia, Nov 24 2020 *)

Formula

T(n, k) = ((n+2)*(n+3) - (n-k)*(n-k+1))/2, for n >= 1 and k = 1, 2, ..., n (see the name).
T(n, k) = (k+2)*(2*n-k+3)/2 (factorized).
G.f. columns k = 2*j+1, for j >= 0: Go(j, x) = x^(2*j+1)*(2*j+3)*(j+2 - (j+1)*x)/(1-x)^2,
G.f. columns k = 2*j, for j >= 1: Ge(j, x) = x^(2*j)*(j+1)*(2*j+3 - (2*j+1)*x)/(1-x)^2.
G.f. row polynomials: G(z,x) = z*x*(1 + z*x)^3*{3*(2-z) - (8-3*z)*(z*x) + (3-z)*(z*x)^2}/((1 - z)^2*(1 - (z*x)^2)^3).
G.f. diagonals d >= 1: GD(d, x) = ((d+1)*3 - (5*d+3)*x + (2*d+1)*x^2)/(1-x)^3.
G.f. of GD(d, x): GGD(z,x) = (6-8*x+3*x^2 - (3-3*x+x^2)*z)/((1-x)^3*(1-z)^2).

A020705 a(n) = n + 4.

Original entry on oeis.org

4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78
Offset: 0

Views

Author

Keywords

Comments

Pisot sequences E(4,5), P(4,5), T(4,5).

Crossrefs

See A008776 for definitions of Pisot sequences.

Programs

Formula

a(n) = 2*a(n-1) - a(n-2).
From Elmo R. Oliveira, Oct 30 2024: (Start)
G.f.: (4 - 3*x)/(1 - x)^2.
E.g.f.: (4 + x)*exp(x).
a(n) = A020744(n)/2 = A055999(n+1) - A055999(n). (End)

A074171 a(1) = 1. For n >= 2, a(n) is either a(n-1)+n or a(n-1)-n; we use the minus sign only if a(n-1) is prime. E.g., since a(2)=3 is prime, a(3)=a(2)-3=0.

Original entry on oeis.org

1, 3, 0, 4, 9, 15, 22, 30, 39, 49, 60, 72, 85, 99, 114, 130, 147, 165, 184, 204, 225, 247, 270, 294, 319, 345, 372, 400, 429, 459, 490, 522, 555, 589, 624, 660, 697, 735, 774, 814, 855, 897, 940, 984, 1029, 1075, 1122, 1170, 1219, 1269, 1320, 1372, 1425, 1479
Offset: 1

Views

Author

Amarnath Murthy, Aug 30 2002

Keywords

Comments

In spite of the definition, this is simply 1, 3, then numbers of the form n*(n+7)/2 (A055999). In other words, a(n) = (n-3)*(n+4)/2 for n >= 3. The proof is by induction: For n > 3, a(n-1) = (n-4)*(n+3)/2 is composite, so a(n) = a(n-1) + n = (n-3)*(n+4)/2. - Dean Hickerson, T. D. Noe, Paul C. Leopardi, Labos Elemer and others, Oct 04 2004
If a 2-set Y and a 3-set Z, having one element in common, are subsets of an n-set X then a(n) is the number of 3-subsets of X intersecting both Y and Z. - Milan Janjic, Oct 03 2007

Examples

			a(1) = 1
a(2) = a(1) + 2 = 3, which is prime, so
a(3) = a(2) - 3 = 0, which is not prime, so
a(4) = a(3) + 4 = 4, which is not prime, etc.
		

Crossrefs

Programs

  • Mathematica
    {ta={1, 3}, tb={{0}}};Do[s=Last[ta]; If[PrimeQ[s], ta=Append[ta, s-n]]; If[ !PrimeQ[s], ta=Append[ta, s+n]]; Print[{a=Last[ta], b=(n-3)*(n+4)/2, a-b}]; tb=Append[tb, a-b], {n, 3, 100000}]; {ta, {tb, Union[tb]}} (* Labos Elemer, Oct 07 2004 *)

Formula

a(1) = 1, a(2) = 3; a(n+1) = a(n)+n if a(n) is not a prime; a(n+1) = a(n)-n if a(n) is prime.

Extensions

More terms from Jason Earls, Sep 01 2002
More terms from Labos Elemer, Oct 07 2004
Previous Showing 11-20 of 30 results. Next