A098658
a(n) = 3^n*(2*n)!/(n!)^2.
Original entry on oeis.org
1, 6, 54, 540, 5670, 61236, 673596, 7505784, 84440070, 956987460, 10909657044, 124965162504, 1437099368796, 16581915793800, 191876454185400, 2225766868550640, 25874539846901190, 301362287628613860
Offset: 0
- Vincenzo Librandi, Table of n, a(n) for n = 0..200
- Hacène Belbachir and Abdelghani Mehdaoui, Recurrence relation associated with the sums of square binomial coefficients, Quaestiones Mathematicae (2021) Vol. 44, Issue 5, 615-624.
- Hacène Belbachir, Abdelghani Mehdaoui, and László Szalay, Diagonal Sums in the Pascal Pyramid, II: Applications, J. Int. Seq., Vol. 22 (2019), Article 19.3.5.
- Tony D. Noe, On the Divisibility of Generalized Central Trinomial Coefficients, Journal of Integer Sequences, Vol. 9 (2006), Article 06.2.7.
-
[3^n*Factorial(2*n)/Factorial(n)^2: n in [0..20]]; // Vincenzo Librandi, Jul 05 2011
-
Table[3^n (2n)!/(n!)^2,{n,0,20}] (* Harvey P. Dale, Dec 14 2011 *)
-
/* same as in A092566 but use */
steps=[[1,0], [1,0], [1,0], [0,1]]; /* note the triple [1,0] */
/* Joerg Arndt, Jun 30 2011 */
A154690
Triangle read by rows: T(n, k) = (2^(n-k) + 2^k)*binomial(n,k), 0 <= k <= n.
Original entry on oeis.org
2, 3, 3, 5, 8, 5, 9, 18, 18, 9, 17, 40, 48, 40, 17, 33, 90, 120, 120, 90, 33, 65, 204, 300, 320, 300, 204, 65, 129, 462, 756, 840, 840, 756, 462, 129, 257, 1040, 1904, 2240, 2240, 2240, 1904, 1040, 257, 513, 2322, 4752, 6048, 6048, 6048, 6048, 4752, 2322, 513
Offset: 0
Triangle begins as:
2;
3, 3;
5, 8, 5;
9, 18, 18, 9;
17, 40, 48, 40, 17;
33, 90, 120, 120, 90, 33;
65, 204, 300, 320, 300, 204, 65;
129, 462, 756, 840, 840, 756, 462, 129;
257, 1040, 1904, 2240, 2240, 2240, 1904, 1040, 257;
513, 2322, 4752, 6048, 6048, 6048, 6048, 4752, 2322, 513;
1025, 5140, 11700, 16320, 16800, 16128, 16800, 16320, 11700, 5140, 1025;
- G. C. Greubel, Rows n = 0..50 of the triangle, flattened
- A. Lakhtakia, R. Messier, V. K. Varadan, and V. V. Varadan, Use of combinatorial algebra for diffusion on fractals, Physical Review A, volume 34, Number 3 (1986) p. 2502, Fig. 3.
-
A154690:= func< n,k | (2^(n-k)+2^k)*Binomial(n,k) >;
[A154690(n,k): k in [0..n], n in [0..12]]; // G. C. Greubel, Jan 18 2025
-
A154690 := proc(n,m) binomial(n,m)*(2^(n-m)+2^m) ; end proc: # R. J. Mathar, Jan 13 2011
-
T[n_, m_]:= (2^(n-m) + 2^m)*Binomial[n,m];
Table[T[n,m], {n,0,12}, {m,0,n}]//Flatten
-
from sage.all import *
def A154690(n,k): return (pow(2,n-k)+pow(2,k))*binomial(n,k)
print(flatten([[A154690(n,k) for k in range(n+1)] for n in range(13)])) # G. C. Greubel, Jan 18 2025
A303872
Triangle read by rows: T(0,0) = 1; T(n,k) = -T(n-1,k) + 2 T(n-1,k-1) for k = 0,1,...,n; T(n,k)=0 for n or k < 0.
Original entry on oeis.org
1, -1, 2, 1, -4, 4, -1, 6, -12, 8, 1, -8, 24, -32, 16, -1, 10, -40, 80, -80, 32, 1, -12, 60, -160, 240, -192, 64, -1, 14, -84, 280, -560, 672, -448, 128, 1, -16, 112, -448, 1120, -1792, 1792, -1024, 256, -1, 18, -144, 672, -2016, 4032, -5376, 4608, -2304, 512
Offset: 0
Triangle begins:
1;
-1, 2;
1, -4, 4;
-1, 6, -12, 8;
1, -8, 24, -32, 16;
-1, 10, -40, 80, -80, 32;
1, -12, 60, -160, 240, -192, 64;
-1, 14, -84, 280, -560, 672, -448, 128;
1, -16, 112, -448, 1120, -1792, 1792, -1024, 256;
- Shara Lalo and Zagros Lalo, Polynomial Expansion Theorems and Number Triangles, Zana Publishing, 2018, ISBN: 978-1-9995914-0-3, pp. 389-391.
Signed version of
A013609 ((1+2*x)^n).
-
T[0, 0] = 1; T[n_, k_] := If[n < 0 || k < 0, 0, - T[n - 1, k] + 2 T[n - 1, k - 1]]; Table[T[n, k], {n, 0, 9}, {k, 0, n}] // Flatten
For[i = 0, i < 4, i++, Print[CoefficientList[Expand[(-1 +2 x)^i], x]]]
-
T(n, k) = if ((n<0) || (k<0), 0, if ((n==0) && (k==0), 1, -T(n-1, k) + 2*T(n-1, k-1)));
tabl(nn) = for (n=0, nn, for (k=0, n, print1(T(n,k), ", ")); print); \\ Michel Marcus, May 26 2018
A069722
Number of rooted unicursal planar maps with n edges and exactly one vertex of valency 1 (unicursal means that exactly two vertices are of odd valency; there is an Eulerian path).
Original entry on oeis.org
0, 4, 24, 160, 1120, 8064, 59136, 439296, 3294720, 24893440, 189190144, 1444724736, 11076222976, 85201715200, 657270374400, 5082890895360, 39392404439040, 305870434467840, 2378992268083200, 18531097667174400, 144542561803960320, 1128808577897594880
Offset: 1
-
[0] cat[2^(n-1)*Binomial(2*n-2, n-1): n in [2..20]]; // Vincenzo Librandi, Nov 17 2011
-
Z:=(1-sqrt(1-z))*8^n/sqrt(1-z): Zser:=series(Z, z=0, 32): seq(coeff(Zser, z, n), n=0..19); # Zerinvary Lajos, Jan 01 2007
-
Join[{0},Table[2^(n-1) Binomial[2n-2,n-1],{n,2,20}]] (* Harvey P. Dale, Nov 16 2011 *)
A119309
a(n) = binomial(2*n,n) * 6^n.
Original entry on oeis.org
1, 12, 216, 4320, 90720, 1959552, 43110144, 960740352, 21616657920, 489977579520, 11171488813056, 255928652808192, 5886359014588416, 135839054182809600, 3143703825373593600, 72933928748667371520
Offset: 0
a(3) = binomial(2*3,3) * (6^3) = 20 * 216 = 4320. - _Indranil Ghosh_, Mar 03 2017
-
Table[Binomial[2n,n]*(6^n), {n, 0, 15}] (* Indranil Ghosh, Mar 03 2017 *)
-
/* same as in A092566 but use */
steps=[[1,0], [1,0], [1,0], [0,1], [0,1]]; /* note repeated entries */
/* Joerg Arndt, Jun 30 2011 */
-
a(n)=binomial(2*n,n)*6^n \\ Charles R Greathouse IV, Mar 03 2017
-
import math
f=math.factorial
def C(n,r): return f(n)//f(r)//f(n-r)
def A119309(n): return C(2*n,n)*(6**n) # Indranil Ghosh, Mar 03 2017
A248168
Expansion of g.f. 1/sqrt((1-3*x)*(1-11*x)).
Original entry on oeis.org
1, 7, 57, 511, 4849, 47607, 477609, 4862319, 50026977, 518839783, 5414767897, 56795795679, 598213529809, 6322787125207, 67026654455433, 712352213507151, 7587639773475777, 80977812878889927, 865716569022673401, 9269461606674304959, 99387936492243451569, 1066975862517563301303
Offset: 0
G.f.: A(x) = 1 + 7*x + 57*x^2 + 511*x^3 + 4849*x^4 + 47607*x^5 +...
where A(x)^2 = 1/((1-3*x)*(1-11*x)):
A(x)^2 = 1 + 14*x + 163*x^2 + 1820*x^3 + 20101*x^4 + 221354*x^5 +...
- Seiichi Manyama, Table of n, a(n) for n = 0..961
- Hacène Belbachir, Abdelghani Mehdaoui, and László Szalay, Diagonal Sums in the Pascal Pyramid, II: Applications, J. Int. Seq., Vol. 22 (2019), Article 19.3.5.
- Paveł Szabłowski, Beta distributions whose moment sequences are related to integer sequences listed in the OEIS, Contrib. Disc. Math. (2024) Vol. 19, No. 4, 85-109. See p. 97.
-
[n le 2 select 7^(n-1) else (7*(2*n-3)*Self(n-1) - 33*(n-2)*Self(n-2))/(n-1) : n in [1..40]]; // G. C. Greubel, May 31 2025
-
CoefficientList[Series[1/Sqrt[(1-3*x)*(1-11*x)], {x, 0, 20}], x] (* Vaclav Kotesovec, Oct 03 2014 *)
-
{a(n)=polcoeff( 1 / sqrt((1-3*x)*(1-11*x) +x*O(x^n)), n) }
for(n=0, 25, print1(a(n), ", "))
-
{a(n)=polcoeff( (1 + 7*x + 4*x^2 +x*O(x^n))^n, n) }
for(n=0, 25, print1(a(n), ", "))
-
{a(n)=sum(k=0,n, 3^(n-k)*2^k*binomial(n,k)*binomial(2*k,k))}
for(n=0, 25, print1(a(n), ", "))
-
@CachedFunction
def A248168(n):
if (n<2): return 7^n
else: return (7*(2*n-1)*A248168(n-1) - 33*(n-1)*A248168(n-2))//n
print([A248168(n) for n in range(41)]) # G. C. Greubel, May 31 2025
A307910
Square array A(n,k), n >= 0, k >= 0, read by antidiagonals, where column k is the expansion of 1/sqrt(1 - 2*k*x + k*(k-4)*x^2).
Original entry on oeis.org
1, 1, 0, 1, 1, 0, 1, 2, 3, 0, 1, 3, 8, 7, 0, 1, 4, 15, 32, 19, 0, 1, 5, 24, 81, 136, 51, 0, 1, 6, 35, 160, 459, 592, 141, 0, 1, 7, 48, 275, 1120, 2673, 2624, 393, 0, 1, 8, 63, 432, 2275, 8064, 15849, 11776, 1107, 0, 1, 9, 80, 637, 4104, 19375, 59136, 95175, 53344, 3139, 0
Offset: 0
Square array begins:
1, 1, 1, 1, 1, 1, 1, ...
0, 1, 2, 3, 4, 5, 6, ...
0, 3, 8, 15, 24, 35, 48, ...
0, 7, 32, 81, 160, 275, 432, ...
0, 19, 136, 459, 1120, 2275, 4104, ...
0, 51, 592, 2673, 8064, 19375, 40176, ...
0, 141, 2624, 15849, 59136, 168125, 400896, ...
0, 393, 11776, 95175, 439296, 1478125, 4053888, ...
-
A[n_, k_] := k^n Hypergeometric2F1[(1-n)/2, -n/2, 1, 4/k]; A[0, ] = 1; A[, 0] = 0; Table[A[n-k, k], {n, 0, 10}, {k, n, 0, -1}] // Flatten (* Jean-François Alcover, May 07 2019 *)
A098660
E.g.f. BesselI(0,2*sqrt(2)*x) + BesselI(1,2*sqrt(2)*x)/sqrt(2).
Original entry on oeis.org
1, 1, 4, 6, 24, 40, 160, 280, 1120, 2016, 8064, 14784, 59136, 109824, 439296, 823680, 3294720, 6223360, 24893440, 47297536, 189190144, 361181184, 1444724736, 2769055744, 11076222976, 21300428800, 85201715200, 164317593600
Offset: 0
-
m:=30; R:=PowerSeriesRing(Rationals(), m); Coefficients(R!((1+4*x-Sqrt(1-8*x^2))/(4*x*Sqrt(1-8*x^2)))); // G. C. Greubel, Aug 17 2018
-
nmax = 30; CoefficientList[Series[BesselI[0, 2*Sqrt[2]*x] + BesselI[1, 2*Sqrt[2]*x]/Sqrt[2], {x, 0, nmax}], x] * Range[0, nmax]! (* Vaclav Kotesovec, Nov 13 2017 *)
-
x='x+O('x^30); Vec((1+4*x-sqrt(1-8*x^2))/(4*x*sqrt(1-8*x^2))) \\ G. C. Greubel, Aug 17 2018
A135838
Triangle read by rows: T(n,k) = 2^floor(n/2)*binomial(n-1,k-1).
Original entry on oeis.org
1, 2, 2, 2, 4, 2, 4, 12, 12, 4, 4, 16, 24, 16, 4, 8, 40, 80, 80, 40, 8, 8, 48, 120, 160, 120, 48, 8, 16, 112, 336, 560, 560, 336, 112, 16, 16, 128, 448, 896, 1120, 896, 448, 128, 16, 32, 288, 1152, 2688, 4032, 4032, 2688, 1152, 288, 32
Offset: 1
First few rows of the triangle are:
1;
2, 2;
2, 4, 2;
4, 12, 12, 4;
4, 16, 24, 16, 4;
8, 40, 80, 80, 40, 8;
...
-
A135838 := proc(n,k)
2^floor(n/2)*binomial(n-1,k-1) ;
end proc:
seq(seq( A135838(n,k),k=1..n),n=1..10) ; # R. J. Mathar, Aug 15 2022
-
T[n_, k_]:= 2^Floor[n/2]*Binomial[n-1, k-1];
Table[T[n, k], {n,12}, {k,n}] //Flatten (* G. C. Greubel, Feb 07 2022 *)
-
A(n,k) = 2^(n\2)*binomial(n-1,k-1);
concat(vector(10, n, vector(n, k, A(n,k)))) \\ Gheorghe Coserea, May 18 2016
-
flatten([[2^(n//2)*binomial(n-1, k-1) for k in (1..n)] for n in (1..12)]) # G. C. Greubel, Feb 07 2022
A158687
Riordan array (1/(1-x),x(1+x)^2/(1-x)).
Original entry on oeis.org
1, 1, 1, 1, 4, 1, 1, 8, 7, 1, 1, 12, 24, 10, 1, 1, 16, 56, 49, 13, 1, 1, 20, 104, 160, 83, 16, 1, 1, 24, 168, 400, 351, 126, 19, 1, 1, 28, 248, 832, 1120, 656, 178, 22, 1, 1, 32, 344, 1520, 2912, 2561, 1102, 239, 25, 1
Offset: 0
Number triangle begins
1,
1, 1,
1, 4, 1,
1, 8, 7, 1,
1, 12, 24, 10, 1,
1, 16, 56, 49, 13, 1,
1, 20, 104, 160, 83, 16, 1
Comments