cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 34 results. Next

A098658 a(n) = 3^n*(2*n)!/(n!)^2.

Original entry on oeis.org

1, 6, 54, 540, 5670, 61236, 673596, 7505784, 84440070, 956987460, 10909657044, 124965162504, 1437099368796, 16581915793800, 191876454185400, 2225766868550640, 25874539846901190, 301362287628613860
Offset: 0

Views

Author

Paul Barry, Sep 20 2004

Keywords

Comments

Number of lattice paths from (0,0) to (n,n) using steps (0,1) and three kinds of steps (1,0). - Joerg Arndt, Jul 01 2011
Sixth binomial transform of 1/sqrt(1-36*x^2).
Diagonal of the rational function 1 / (1 - 3*x - y). - Ilya Gutkovskiy, Apr 24 2025

Crossrefs

Programs

  • Magma
    [3^n*Factorial(2*n)/Factorial(n)^2: n in [0..20]]; // Vincenzo Librandi, Jul 05 2011
  • Mathematica
    Table[3^n (2n)!/(n!)^2,{n,0,20}] (* Harvey P. Dale, Dec 14 2011 *)
  • PARI
    /* same as in A092566 but use */
    steps=[[1,0], [1,0], [1,0], [0,1]]; /* note the triple [1,0] */
    /* Joerg Arndt, Jun 30 2011 */
    

Formula

G.f.: 1/sqrt((1-6*x)^2-36*x^2) = 1/sqrt(1-12*x).
E.g.f.: exp(6*x)*BesselI(0, 6x).
a(n) = [t^n](1+6*t+9*t^2)^n.
a(n) = 3^n*A000984(n). - R. J. Mathar, Oct 10 2012
G.f.: Q(0), where Q(k) = 1 + 12*x*(4*k+1)/( 4*k+2 - 12*x*(4*k+2)*(4*k+3)/(12*x*(4*k+3) + 4*(k+1)/Q(k+1) )); (continued fraction). - Sergei N. Gladkovskii, Sep 14 2013
n*a(n) +6*(-2*n+1)*a(n-1)=0. - R. J. Mathar, Nov 27 2014
exp( Sum_{n >= 1} a(n)*x^n/n ) = 1 + 6*x + 45*x^2 + 378*x^3 + ... is the o.g.f. for A101600. - Peter Bala, Jul 16 2015
From Amiram Eldar, Jul 21 2020: (Start)
Sum_{n>=0} 1/a(n) = 12/11 + 12*sqrt(11)*arcsin(1/sqrt(12))/121.
Sum_{n>=0} (-1)^n/a(n) = 12/13 - 12*sqrt(13)*arcsinh(1/sqrt(12))/169. (End)
From Peter Bala, Oct 12 2024: (Start)
a(n) = Integral_{x = 0..12} x^n * w(x) dx, where w(x) = 1/( Pi*sqrt(x*(12 - x)) ) is positive on the interval (0, 12). The weight function w(x) is singular at x = 0 and at x = 12 and is the solution of the Hausdorff moment problem.
Binomial transform of A322246.
The Gauss congruences hold: a(n*p^r) == a(n*p^(r-1)) (mod p^r) for all primes p and positive integers n and r. (End)

A154690 Triangle read by rows: T(n, k) = (2^(n-k) + 2^k)*binomial(n,k), 0 <= k <= n.

Original entry on oeis.org

2, 3, 3, 5, 8, 5, 9, 18, 18, 9, 17, 40, 48, 40, 17, 33, 90, 120, 120, 90, 33, 65, 204, 300, 320, 300, 204, 65, 129, 462, 756, 840, 840, 756, 462, 129, 257, 1040, 1904, 2240, 2240, 2240, 1904, 1040, 257, 513, 2322, 4752, 6048, 6048, 6048, 6048, 4752, 2322, 513
Offset: 0

Views

Author

Roger L. Bagula and Gary W. Adamson, Jan 14 2009

Keywords

Comments

From G. C. Greubel, Jan 18 2025: (Start)
A more general triangle of coefficients may be defined by T(n, k, p, q) = (p^(n-k)*q^k + p^k*q^(n-k))*A007318(n, k). When (p, q) = (2, 1) this sequence is obtained.
Some related triangles are:
(p, q) = (1, 1) : 2*A007318(n,k).
(p, q) = (2, 2) : 2*A038208(n,k).
(p, q) = (3, 2) : A154692(n,k).
(p, q) = (3, 3) : 2*A038221(n,k). (End)

Examples

			Triangle begins as:
     2;
     3,    3;
     5,    8,     5;
     9,   18,    18,     9;
    17,   40,    48,    40,    17;
    33,   90,   120,   120,    90,    33;
    65,  204,   300,   320,   300,   204,    65;
   129,  462,   756,   840,   840,   756,   462,   129;
   257, 1040,  1904,  2240,  2240,  2240,  1904,  1040,   257;
   513, 2322,  4752,  6048,  6048,  6048,  6048,  4752,  2322,  513;
  1025, 5140, 11700, 16320, 16800, 16128, 16800, 16320, 11700, 5140, 1025;
		

Crossrefs

Cf. A215149.
Sums include: A008776 (row), A010673 (alternating sign row).
Columns k: A000051 (k=0).
Main diagonal: A059304.

Programs

  • Magma
    A154690:= func< n,k | (2^(n-k)+2^k)*Binomial(n,k) >;
    [A154690(n,k): k in [0..n], n in [0..12]]; // G. C. Greubel, Jan 18 2025
    
  • Maple
    A154690 := proc(n,m) binomial(n,m)*(2^(n-m)+2^m) ; end proc: # R. J. Mathar, Jan 13 2011
  • Mathematica
    T[n_, m_]:= (2^(n-m) + 2^m)*Binomial[n,m];
    Table[T[n,m], {n,0,12}, {m,0,n}]//Flatten
  • Python
    from sage.all import *
    def A154690(n,k): return (pow(2,n-k)+pow(2,k))*binomial(n,k)
    print(flatten([[A154690(n,k) for k in range(n+1)] for n in range(13)])) # G. C. Greubel, Jan 18 2025

Formula

T(n, k) = (2^(n-k) + 2^k)*A007318(n, k).
Sum_{k=0..n} T(n, k) = A008776(n) = A025192(n+1).
From G. C. Greubel, Jan 18 2025: (Start)
T(n, n-k) = T(n, k) (symmetry).
T(n, 1) = n + A215149(n), n >= 1.
T(2*n-1, n) = 3*A069720(n).
Sum_{k=0..n} (-1)^k*T(n, k) = A010673(n+1).
Sum_{k=0..floor(n/2)} T(n-k, k) = A000129(n+1) + A001045(n+1).
Sum_{k=0..floor(n/2)} (-1)^k*T(n-k, k) = n+1 + A107920(n+1). (End)

A303872 Triangle read by rows: T(0,0) = 1; T(n,k) = -T(n-1,k) + 2 T(n-1,k-1) for k = 0,1,...,n; T(n,k)=0 for n or k < 0.

Original entry on oeis.org

1, -1, 2, 1, -4, 4, -1, 6, -12, 8, 1, -8, 24, -32, 16, -1, 10, -40, 80, -80, 32, 1, -12, 60, -160, 240, -192, 64, -1, 14, -84, 280, -560, 672, -448, 128, 1, -16, 112, -448, 1120, -1792, 1792, -1024, 256, -1, 18, -144, 672, -2016, 4032, -5376, 4608, -2304, 512
Offset: 0

Views

Author

Shara Lalo, May 25 2018

Keywords

Comments

Row n gives coefficients in expansion of (-1+2x)^n. Row sums=1.
In the center-justified triangle, the numbers in skew diagonals pointing top-Left give the triangle in A133156 (coefficients of Chebyshev polynomials of the second kind), and the numbers in skew diagonals pointing top-right give the triangle in A305098. The coefficients in the expansion of 1/(1-x) are given by the sequence generated by the row sums. The generating function of the central terms is 1/sqrt(1+8x), signed version of A059304.

Examples

			Triangle begins:
   1;
  -1,   2;
   1,  -4,   4;
  -1,   6, -12,    8;
   1,  -8,  24,  -32,   16;
  -1,  10, -40,   80,  -80,    32;
   1, -12,  60, -160,  240,  -192,   64;
  -1,  14, -84,  280, -560,   672, -448,   128;
   1, -16, 112, -448, 1120, -1792, 1792, -1024, 256;
		

References

  • Shara Lalo and Zagros Lalo, Polynomial Expansion Theorems and Number Triangles, Zana Publishing, 2018, ISBN: 978-1-9995914-0-3, pp. 389-391.

Crossrefs

Row sums give A000012.
Signed version of A013609 ((1+2*x)^n).
Cf. A033999 (column 0).

Programs

  • Mathematica
    T[0, 0] = 1; T[n_, k_] := If[n < 0 || k < 0, 0, - T[n - 1, k] + 2 T[n - 1, k - 1]]; Table[T[n, k], {n, 0, 9}, {k, 0, n}] // Flatten
    For[i = 0, i < 4, i++, Print[CoefficientList[Expand[(-1 +2 x)^i], x]]]
  • PARI
    T(n, k) = if ((n<0) || (k<0), 0, if ((n==0) && (k==0), 1, -T(n-1, k) + 2*T(n-1, k-1)));
    tabl(nn) = for (n=0, nn, for (k=0, n, print1(T(n,k), ", ")); print); \\ Michel Marcus, May 26 2018

Formula

G.f.: 1 / (1 + t - 2t*x).
T(n,k) = (-1)^(n+k)*2^k*binomial(n,k). - Stefano Spezia, Aug 08 2025

A069722 Number of rooted unicursal planar maps with n edges and exactly one vertex of valency 1 (unicursal means that exactly two vertices are of odd valency; there is an Eulerian path).

Original entry on oeis.org

0, 4, 24, 160, 1120, 8064, 59136, 439296, 3294720, 24893440, 189190144, 1444724736, 11076222976, 85201715200, 657270374400, 5082890895360, 39392404439040, 305870434467840, 2378992268083200, 18531097667174400, 144542561803960320, 1128808577897594880
Offset: 1

Views

Author

Valery A. Liskovets, Apr 07 2002

Keywords

Crossrefs

Programs

  • Magma
    [0] cat[2^(n-1)*Binomial(2*n-2, n-1): n in [2..20]]; // Vincenzo Librandi, Nov 17 2011
  • Maple
    Z:=(1-sqrt(1-z))*8^n/sqrt(1-z): Zser:=series(Z, z=0, 32): seq(coeff(Zser, z, n), n=0..19); # Zerinvary Lajos, Jan 01 2007
  • Mathematica
    Join[{0},Table[2^(n-1) Binomial[2n-2,n-1],{n,2,20}]] (* Harvey P. Dale, Nov 16 2011 *)

Formula

a(n) = 2^(n-1)*binomial(2n-2, n-1), n>1.
a(n) = 2*A069723(n), n>1.
G.f. for a(n)^2: 1/AGM(1, (1-64*x)^(1/2)). - Benoit Cloitre, Jan 01 2004
a(n) = A059304(n-1), n>1. [R. J. Mathar, Sep 29 2008]
a(n) ~ 2^(3*n-3)/sqrt(Pi*n). - Vaclav Kotesovec, Sep 28 2019
E.g.f.: x * (exp(4*x) * (BesselI(0,4*x) - BesselI(1,4*x)) - 1). - Ilya Gutkovskiy, Nov 03 2021
From Amiram Eldar, Jan 16 2024: (Start)
Sum_{n>=2} 1/a(n) = 1/7 + 8*arcsin(1/(2*sqrt(2)))/(7*sqrt(7)).
Sum_{n>=2} (-1)^n/a(n) = 1/9 + 4*log(2)/27. (End)

A119309 a(n) = binomial(2*n,n) * 6^n.

Original entry on oeis.org

1, 12, 216, 4320, 90720, 1959552, 43110144, 960740352, 21616657920, 489977579520, 11171488813056, 255928652808192, 5886359014588416, 135839054182809600, 3143703825373593600, 72933928748667371520
Offset: 0

Views

Author

Reinhard Zumkeller, May 14 2006

Keywords

Comments

Number of lattice paths from (0,0) to (n,n) using three kinds of steps (1,0) and two kinds of steps (0,1). - Joerg Arndt, Jul 01 2011
Central terms of the triangles in A013620 and A038220.

Examples

			a(3) = binomial(2*3,3) * (6^3) = 20 * 216 = 4320. - _Indranil Ghosh_, Mar 03 2017
		

Crossrefs

Programs

  • Mathematica
    Table[Binomial[2n,n]*(6^n), {n, 0, 15}] (* Indranil Ghosh, Mar 03 2017 *)
  • PARI
    /* same as in A092566 but use */
    steps=[[1,0], [1,0], [1,0], [0,1], [0,1]]; /* note repeated entries */
    /* Joerg Arndt, Jun 30 2011 */
    
  • PARI
    a(n)=binomial(2*n,n)*6^n \\ Charles R Greathouse IV, Mar 03 2017
    
  • Python
    import math
    f=math.factorial
    def C(n,r): return f(n)//f(r)//f(n-r)
    def A119309(n): return C(2*n,n)*(6**n) # Indranil Ghosh, Mar 03 2017

Formula

a(n) = 6^n * A000984(n).
G.f.: 1/sqrt(1-24*x). - Zerinvary Lajos, Dec 20 2008 [Corrected by Joerg Arndt, Jul 01 2011]
D-finite with recurrence: n*a(n) +12*(-2*n+1)*a(n-1)=0. - R. J. Mathar, Jan 20 2020
a(n) = 2^n*A098658(n) = 3^n*A059304(n). - R. J. Mathar, Jan 20 2020
From Amiram Eldar, Jul 21 2020: (Start)
Sum_{n>=0} 1/a(n) = 24/23 + 24*sqrt(23)*arcsin(1/sqrt(24))/529.
Sum_{n>=0} (-1)^n/a(n) = 24/25 - 24*arcsinh(1/sqrt(24))/125. (End)
E.g.f.: exp(12*x) * BesselI(0,12*x). - Ilya Gutkovskiy, Sep 14 2021

A248168 Expansion of g.f. 1/sqrt((1-3*x)*(1-11*x)).

Original entry on oeis.org

1, 7, 57, 511, 4849, 47607, 477609, 4862319, 50026977, 518839783, 5414767897, 56795795679, 598213529809, 6322787125207, 67026654455433, 712352213507151, 7587639773475777, 80977812878889927, 865716569022673401, 9269461606674304959, 99387936492243451569, 1066975862517563301303
Offset: 0

Views

Author

Paul D. Hanna, Oct 03 2014

Keywords

Examples

			G.f.: A(x) = 1 + 7*x + 57*x^2 + 511*x^3 + 4849*x^4 + 47607*x^5 +...
where A(x)^2 = 1/((1-3*x)*(1-11*x)):
A(x)^2 = 1 + 14*x + 163*x^2 + 1820*x^3 + 20101*x^4 + 221354*x^5 +...
		

Crossrefs

Programs

  • Magma
    [n le 2 select 7^(n-1) else (7*(2*n-3)*Self(n-1) - 33*(n-2)*Self(n-2))/(n-1) : n in [1..40]]; // G. C. Greubel, May 31 2025
    
  • Mathematica
    CoefficientList[Series[1/Sqrt[(1-3*x)*(1-11*x)], {x, 0, 20}], x] (* Vaclav Kotesovec, Oct 03 2014 *)
  • PARI
    {a(n)=polcoeff( 1 / sqrt((1-3*x)*(1-11*x) +x*O(x^n)), n) }
    for(n=0, 25, print1(a(n), ", "))
    
  • PARI
    {a(n)=polcoeff( (1 + 7*x + 4*x^2 +x*O(x^n))^n, n) }
    for(n=0, 25, print1(a(n), ", "))
    
  • PARI
    {a(n)=sum(k=0,n, 3^(n-k)*2^k*binomial(n,k)*binomial(2*k,k))}
    for(n=0, 25, print1(a(n), ", "))
    
  • SageMath
    @CachedFunction
    def A248168(n):
         if (n<2): return 7^n
         else: return (7*(2*n-1)*A248168(n-1) - 33*(n-1)*A248168(n-2))//n
    print([A248168(n) for n in range(41)]) # G. C. Greubel, May 31 2025

Formula

a(n) equals the central coefficient in (1 + 7*x + 4*x^2)^n, n>=0.
a(n) = Sum_{k=0..n} 3^(n-k) * 2^k * C(n,k) * C(2*k,k).
a(n) = Sum_{k=0..n} 11^(n-k) * (-2)^k * C(n,k) * C(2*k,k). - Paul D. Hanna, Apr 20 2019
a(n)^2 = A248167(n), which gives the coefficients in 1 / AGM(1-3*11*x, sqrt((1-3^2*x)*(1-11^2*x))).
Equals the binomial transform of 2^n*A026375(n).
Equals the second binomial transform of A084771.
Equals the third binomial transform of A059304(n) = 2^n*(2*n)!/(n!)^2.
a(n) ~ 11^(n+1/2)/(2*sqrt(2*Pi*n)). - Vaclav Kotesovec, Oct 03 2014
D-finite with recurrence: n*a(n) +7*(-2*n+1)*a(n-1) +33*(n-1)*a(n-2)=0. [Belbachir]
a(n) = (1/4)^n * Sum_{k=0..n} 3^k * 11^(n-k) * binomial(2*k,k) * binomial(2*(n-k),n-k). - Seiichi Manyama, Aug 18 2025

A307910 Square array A(n,k), n >= 0, k >= 0, read by antidiagonals, where column k is the expansion of 1/sqrt(1 - 2*k*x + k*(k-4)*x^2).

Original entry on oeis.org

1, 1, 0, 1, 1, 0, 1, 2, 3, 0, 1, 3, 8, 7, 0, 1, 4, 15, 32, 19, 0, 1, 5, 24, 81, 136, 51, 0, 1, 6, 35, 160, 459, 592, 141, 0, 1, 7, 48, 275, 1120, 2673, 2624, 393, 0, 1, 8, 63, 432, 2275, 8064, 15849, 11776, 1107, 0, 1, 9, 80, 637, 4104, 19375, 59136, 95175, 53344, 3139, 0
Offset: 0

Views

Author

Seiichi Manyama, May 05 2019

Keywords

Examples

			Square array begins:
   1,   1,     1,     1,      1,       1,       1, ...
   0,   1,     2,     3,      4,       5,       6, ...
   0,   3,     8,    15,     24,      35,      48, ...
   0,   7,    32,    81,    160,     275,     432, ...
   0,  19,   136,   459,   1120,    2275,    4104, ...
   0,  51,   592,  2673,   8064,   19375,   40176, ...
   0, 141,  2624, 15849,  59136,  168125,  400896, ...
   0, 393, 11776, 95175, 439296, 1478125, 4053888, ...
		

Crossrefs

Columns k=0..4 give A000007, A002426, A006139, A122868, A059304.
Main diagonal gives A092366.

Programs

  • Mathematica
    A[n_, k_] := k^n Hypergeometric2F1[(1-n)/2, -n/2, 1, 4/k]; A[0, ] = 1; A[, 0] = 0; Table[A[n-k, k], {n, 0, 10}, {k, n, 0, -1}] // Flatten (* Jean-François Alcover, May 07 2019 *)

Formula

A(n,k) is the coefficient of x^n in the expansion of (1 + k*x + k*x^2)^n.
A(n,k) = Sum_{j=0..floor(n/2)} k^(n-j) * binomial(n,j) * binomial(n-j,j) = Sum_{j=0..floor(n/2)} k^(n-j) * binomial(n,2*j) * binomial(2*j,j).
n * A(n,k) = k * (2*n-1) * A(n-1,k) - k * (k-4) * (n-1) * A(n-2,k).

A098660 E.g.f. BesselI(0,2*sqrt(2)*x) + BesselI(1,2*sqrt(2)*x)/sqrt(2).

Original entry on oeis.org

1, 1, 4, 6, 24, 40, 160, 280, 1120, 2016, 8064, 14784, 59136, 109824, 439296, 823680, 3294720, 6223360, 24893440, 47297536, 189190144, 361181184, 1444724736, 2769055744, 11076222976, 21300428800, 85201715200, 164317593600
Offset: 0

Views

Author

Paul Barry, Sep 20 2004

Keywords

Comments

Third binomial transform (shifted right) is A047781. Hankel transform is A166232(n+1).

Crossrefs

Cf. A059304, A069720 (bisections).

Programs

  • Magma
    m:=30; R:=PowerSeriesRing(Rationals(), m); Coefficients(R!((1+4*x-Sqrt(1-8*x^2))/(4*x*Sqrt(1-8*x^2)))); // G. C. Greubel, Aug 17 2018
  • Mathematica
    nmax = 30; CoefficientList[Series[BesselI[0, 2*Sqrt[2]*x] + BesselI[1, 2*Sqrt[2]*x]/Sqrt[2], {x, 0, nmax}], x] * Range[0, nmax]! (* Vaclav Kotesovec, Nov 13 2017 *)
  • PARI
    x='x+O('x^30); Vec((1+4*x-sqrt(1-8*x^2))/(4*x*sqrt(1-8*x^2))) \\ G. C. Greubel, Aug 17 2018
    

Formula

G.f.: 1/sqrt(1-8*x^2)+(1-sqrt(1-8*x^2))/(4*x*sqrt(1-8*x^2)) = (1+4*x-sqrt(1-8*x^2))/(4*x*sqrt(1-8*x^2)).
a(n) = binomial(n, floor(n/2))2^floor(n/2).
a(n+1) = (1/Pi)*int(x^n*(x+4)/sqrt(8-x^2),x,-2*sqrt(2),2*sqrt(2)) if n is odd [corrected by Vaclav Kotesovec, Nov 13 2017].
Conjecture: (n+1)*a(n) +(n-1)*a(n-1) -n*a(n-2) +(2-n)*a(n-3) = 0. - R. J. Mathar, Nov 15 2011

A135838 Triangle read by rows: T(n,k) = 2^floor(n/2)*binomial(n-1,k-1).

Original entry on oeis.org

1, 2, 2, 2, 4, 2, 4, 12, 12, 4, 4, 16, 24, 16, 4, 8, 40, 80, 80, 40, 8, 8, 48, 120, 160, 120, 48, 8, 16, 112, 336, 560, 560, 336, 112, 16, 16, 128, 448, 896, 1120, 896, 448, 128, 16, 32, 288, 1152, 2688, 4032, 4032, 2688, 1152, 288, 32
Offset: 1

Views

Author

Gary W. Adamson, Dec 01 2007

Keywords

Examples

			First few rows of the triangle are:
  1;
  2,  2;
  2,  4,  2;
  4, 12, 12,  4;
  4, 16, 24, 16,  4;
  8, 40, 80, 80, 40, 8;
  ...
		

Crossrefs

Programs

  • Maple
    A135838 := proc(n,k)
        2^floor(n/2)*binomial(n-1,k-1) ;
    end proc:
    seq(seq( A135838(n,k),k=1..n),n=1..10) ; # R. J. Mathar, Aug 15 2022
  • Mathematica
    T[n_, k_]:= 2^Floor[n/2]*Binomial[n-1, k-1];
    Table[T[n, k], {n,12}, {k,n}] //Flatten (* G. C. Greubel, Feb 07 2022 *)
  • PARI
    A(n,k) = 2^(n\2)*binomial(n-1,k-1);
    concat(vector(10, n, vector(n, k, A(n,k))))  \\ Gheorghe Coserea, May 18 2016
    
  • Sage
    flatten([[2^(n//2)*binomial(n-1, k-1) for k in (1..n)] for n in (1..12)]) # G. C. Greubel, Feb 07 2022

Formula

M * Pascal's triangle as infinite lower triangular matrices, where M = a triangle with (1, 2, 2, 4, 4, 8, 8, 16, 16, ...) in the main diagonal and the rest zeros.
Sum_{k=1..n} T(n, k) = A094015(n-1).
From G. C. Greubel, Feb 07 2022: (Start)
T(n, n-k) = T(n, k).
T(n, 1) = A016116(n).
T(n, 2) = 2*A093968(n-1).
T(2*n-1, n) = A059304(n-1).
T(2*n, n) = 2*A069720(n). (End)

A158687 Riordan array (1/(1-x),x(1+x)^2/(1-x)).

Original entry on oeis.org

1, 1, 1, 1, 4, 1, 1, 8, 7, 1, 1, 12, 24, 10, 1, 1, 16, 56, 49, 13, 1, 1, 20, 104, 160, 83, 16, 1, 1, 24, 168, 400, 351, 126, 19, 1, 1, 28, 248, 832, 1120, 656, 178, 22, 1, 1, 32, 344, 1520, 2912, 2561, 1102, 239, 25, 1
Offset: 0

Views

Author

Paul Barry, Mar 24 2009

Keywords

Comments

Row sums are A077936. Diagonal sums are A129847. Central terms are A059304.
Inverse of alternating signed version is A100326.

Examples

			Number triangle begins
1,
1, 1,
1, 4, 1,
1, 8, 7, 1,
1, 12, 24, 10, 1,
1, 16, 56, 49, 13, 1,
1, 20, 104, 160, 83, 16, 1
		

Crossrefs

Formula

Number triangle T(n,k) = Sum_{j=0..n-k} C(n-j,k)*C(2k,j).
T(n,k) = T(n-1,k) + T(n-1,k-1) + 2*T(n-2,k-1) + T(n-3,k-1), T(0,0) = T(1,0) = T(1,1) = 1, T(n,k) = 0 if k<0 or if k>n. - Philippe Deléham, Nov 11 2013
G.f.: 1/(1-y-x*(1+y)^2). - Vladimir Kruchinin, Apr 21 2015
Previous Showing 11-20 of 34 results. Next