cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 29 results. Next

A000588 a(n) = 7*binomial(2n,n-3)/(n+4).

Original entry on oeis.org

0, 0, 0, 1, 7, 35, 154, 637, 2548, 9996, 38760, 149226, 572033, 2187185, 8351070, 31865925, 121580760, 463991880, 1771605360, 6768687870, 25880277150, 99035193894, 379300783092, 1453986335186, 5578559816632, 21422369201800, 82336410323440, 316729578421620
Offset: 0

Views

Author

Keywords

Comments

a(n-5) is the number of n-th generation vertices in the tree of sequences with unit increase labeled by 6 (cf. Zoran Sunic reference). - Benoit Cloitre, Oct 07 2003
Number of lattice paths from (0,0) to (n,n) with steps E=(1,0) and N=(0,1) which touch but do not cross the line x-y=3. Example: For n=3 there is only one path EEENNN. - Herbert Kociemba, May 24 2004
Number of standard tableaux of shape (n+3,n-3). - Emeric Deutsch, May 30 2004

Examples

			G.f. = x^3 + 7*x^4 + 35*x^5 + 154*x^6 + 637*x^7 + 2548*x^8 + 9996*x^9 + ...
		

References

  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

First differences are in A026014.
A diagonal of any of the essentially equivalent arrays A009766, A030237, A033184, A059365, A099039, A106566, A130020, A047072.

Programs

  • Mathematica
    a[n_] := 7*Binomial[2n, n-3]/(n + 4); Table[a[n],{n,0,27}] (* James C. McMahon, Dec 05 2023 *)
  • PARI
    A000588(n)=7*binomial(2*n,n-3)/(n+4) \\ M. F. Hasler, Aug 25 2012
    
  • PARI
    my(x='x+O('x^50)); concat([0, 0, 0], Vec(x^3*((1-(1-4*x)^(1/2))/(2*x))^7)) \\ Altug Alkan, Nov 01 2015

Formula

Expansion of x^3*C^7, where C = (1-(1-4*x)^(1/2))/(2*x) is the g.f. for the Catalan numbers, A000108. - Philippe Deléham, Feb 03 2004
Let A be the Toeplitz matrix of order n defined by: A[i,i-1]=-1, A[i,j]=Catalan(j-i), (i<=j), and A[i,j]=0, otherwise. Then, for n>=6, a(n-3)=(-1)^(n-6)*coeff(charpoly(A,x),x^6). - Milan Janjic, Jul 08 2010
a(n) = A214292(2*n-1,n-4) for n > 3. - Reinhard Zumkeller, Jul 12 2012
From Ilya Gutkovskiy, Jan 22 2017: (Start)
E.g.f.: (1/6)*x^3*1F1(7/2; 8; 4*x).
a(n) ~ 7*4^n/(sqrt(Pi)*n^(3/2)). (End)
0 = a(n)*(+1456*a(n+1) - 87310*a(n+2) + 132834*a(n+3) - 68068*a(n+4) + 9724*a(n+5)) + a(n+1)*(+8918*a(n+1) - 39623*a(n+2) + 51726*a(n+3) - 299*a(n+4) - 1573*a(n+5)) + a(n+2)*(-24696*a(n+2) - 1512*a(n+3) + 1008*a(n+4)) for all n in Z. - Michael Somos, Jan 22 2017
From Amiram Eldar, Jan 02 2022: (Start)
Sum_{n>=3} 1/a(n) = 27/14 - 26*Pi/(63*sqrt(3)).
Sum_{n>=3} (-1)^(n+1)/a(n) = 11364*log(phi)/(175*sqrt(5)) - 4583/350, where phi is the golden ratio (A001622). (End)
a(n) = Integral_{x=0..4} x^(n)*W(x)dx, n>=0, where W(x) = sqrt(4/x - 1)*(x^3 - 5*x^2 + 6*x - 1)/(2*Pi). The function W(x) for x->0 tends to -infinity (which is its absolute minimum), and W(4) = 0. W(x) is a signed function on the interval x = (0, 4) where it has two maxima separated by one local minimum. - Karol A. Penson, Jun 17 2024
D-finite with recurrence -(n+4)*(n-3)*a(n) +2*n*(2*n-1)*a(n-1)=0. - R. J. Mathar, Jul 30 2024
a(n) = A000108(n+3) - 5*A000108(n+2) + 6*A000108(n+1) - A000108(n). - Taras Goy, Dec 21 2024

Extensions

More terms from N. J. A. Sloane, Jul 13 2010

A064062 Generalized Catalan numbers C(2; n).

Original entry on oeis.org

1, 1, 3, 13, 67, 381, 2307, 14589, 95235, 636925, 4341763, 30056445, 210731011, 1493303293, 10678370307, 76957679613, 558403682307, 4075996839933, 29909606989827, 220510631755773, 1632599134961667, 12133359132082173
Offset: 0

Views

Author

Wolfdieter Lang, Sep 13 2001

Keywords

Comments

a(n+1) = Y_{n}(n+1) = Z_{n}, n >= 0, in the Derrida et al. 1992 reference (see A064094) for alpha=2, beta=1 (or alpha=1, beta=2).
a(n) = number of Dyck n-paths (A000108) in which each upstep (U) not at ground level is colored red (R) or blue (B). For example, a(3)=3 counts URDD, UBDD, UDUD (D=downstep). - David Callan, Mar 30 2007
The Hankel transform of this sequence is A002416. - Philippe Deléham, Nov 19 2007
The sequence a(n)/2^n, with g.f. 1/(1-xc(x)/2), has Hankel transform 1/2^n. - Paul Barry, Apr 14 2008
The REVERT transform of the odd numbers [1,3,5,7,9,...] is [1, -3, 13, -67, 381, -2307, 14589, -95235, 636925, ...] - N. J. A. Sloane, May 26 2017

Crossrefs

Generalized Catalan numbers C(m; n): A000012 (m = 0), A000108 (m = 1), A064063 (m = 3) and A064087 - A064093 (m = 4 thru 10); A064310 (m = -1), A064311 (m = -2) and A064325 - A064333 (m = -3 thru -11).

Programs

  • Magma
    R:=PowerSeriesRing(Rationals(), 30);
    Coefficients(R!( (3 - Sqrt(1-8*x))/(2*(1+x)) )); // G. C. Greubel, Sep 27 2024
  • Maple
    1, seq(simplify(hypergeom([1-n,n],[-n],2)), n=1..100); # Robert Israel, Nov 30 2014
  • Mathematica
    a[0]=1; a[1]=1; a[n_]/;n>=2 := a[n] = a[n-1] + Sum[(a[k] + a[k-1])a[n-k],{k,n-1}]; Table[a[n],{n,0,10}] (* David Callan, Aug 27 2009 *)
    a[n_] := 2*Sum[ (-1)^j*2^(n-j-1)*Binomial[2*(n-j-1), n-j-1]/(n-j), {j, 0, n-1}] + (-1)^n; Table[a[n], {n, 0, 21}] (* Jean-François Alcover, Jul 03 2013 *)
  • PARI
    {a(n)=polcoeff((3-sqrt(1-8*x+x*O(x^n)))/(2+2*x),n)}
    
  • PARI
    {a(n)=local(A=1+x); for(i=1, n, A=1+A^4*intformal(1/(A^2+x*O(x^n)))); polcoeff(A, n)} \\ Paul D. Hanna, Dec 24 2013
    for(n=0, 25, print1(a(n), ", "))
    
  • PARI
    {a(n)=polcoeff(1/(1 - serreverse(x-2*x^2 +x^2*O(x^n))),n)}
    for(n=0,30,print1(a(n),", ")) \\ Paul D. Hanna, Nov 30 2014
    
  • Sage
    def a(n):
        if n==0: return 1
        return hypergeometric([1-n, n], [-n], 2).simplify()
    [a(n) for n in range(22)] # Peter Luschny, Dec 01 2014
    

Formula

G.f.: (1 + 2*x*C(2*x)) / (1+x) = 1/(1 - x*C(2*x)) with C(x) g.f. of Catalan numbers A000108.
a(n) = A062992(n-1) = Sum_{m = 0..n-1} (n-m)*binomial(n-1+m, m)*(2^m)/n, n >= 1, a(0) = 1.
a(n) = Sum_{k = 0..n} A059365(n, k)*2^(n-k). - Philippe Deléham, Jan 19 2004
G.f.: 1/(1-x/(1-2x/(1-2x/(1-2x/(1-.... = 1/(1-x-2x^2/(1-4x-4x^2/(1-4x-4x^2/(1-.... (continued fractions). - Paul Barry, Jan 30 2009
a(n) = (32/Pi)*Integral_{x = 0..1} (8*x)^(n-1)*sqrt(x*(1-x)) / (8*x+1). - Groux Roland, Dec 12 2010
a(n+2) = 8^(n+2)*( c(n+2)-c(1)*c(n+1) - Sum_{i=0..n-1} 8^(-i-2)*c(n-i)*a(i+2) ) with c(n) = Catalan(n+2)/2^(2*n+1). - Groux Roland, Dec 12 2010
a(n) = the upper left term in M^n, M = the production matrix:
1, 1
2, 2, 1
4, 4, 2, 1
8, 8, 4, 2, 1
... - Gary W. Adamson, Jul 08 2011
D-finite with recurrence: n*a(n) + (12-7n)*a(n-1) + 4*(3-2n)*a(n-2) = 0. - R. J. Mathar, Nov 16 2011 (This follows easily from the generating function. - Robert Israel, Nov 30 2014)
G.f. satisfies: A(x) = 1 + A(x)^4 * Integral 1/A(x)^2 dx. - Paul D. Hanna, Dec 24 2013
G.f. satisfies: Integral 1/A(x)^2 dx = x - x^2*G(x), where G(x) is the o.g.f. of A000257, the number of rooted bicubic maps. - Paul D. Hanna, Dec 24 2013
G.f. A(x) satisfies: A(x - 2*x^2) = 1/(1-x). - Paul D. Hanna, Nov 30 2014
a(n) = hypergeometric([1-n, n], [-n], 2) for n > 0. - Peter Luschny, Nov 30 2014
G.f.: (3 - sqrt(1-8*x))/(2*(x+1)). - Robert Israel, Nov 30 2014
a(n) ~ 2^(3*n+1) / (9*sqrt(Pi)*n^(3/2)). - Vaclav Kotesovec, Dec 22 2014
O.g.f. A(x) = 1 + series reversion of (x*(1 - x)/(1 + x)^2). Logarithmically differentiating (A(x) - 1)/x gives 3 + 17*x + 111*x^2 + ..., essentially a g.f for A119259. - Peter Bala, Oct 01 2015
From Peter Bala, Jan 06 2022: (Start)
exp( Sum_{n >= 1} a(n)*x^n/n ) = 1 + x + 2*x^2 + 6*x^3 + 23*x^4 + ... is a g.f. for A022558.
The Gauss congruences a(n*p^k) == a(n^p^(k-1)) (mod p^k) hold for prime p and positive integers n and k. (End)

A001392 a(n) = 9*binomial(2n,n-4)/(n+5).

Original entry on oeis.org

1, 9, 54, 273, 1260, 5508, 23256, 95931, 389367, 1562275, 6216210, 24582285, 96768360, 379629720, 1485507600, 5801732460, 22626756594, 88152205554, 343176898988, 1335293573130, 5193831553416, 20198233818840, 78542105700240, 305417807763705
Offset: 4

Views

Author

Keywords

Comments

Number of n-th generation vertices in the tree of sequences with unit increase labeled by 8 (cf. Zoran Sunic reference) - Benoit Cloitre, Oct 07 2003
Number of lattice paths from (0,0) to (n,n) with steps E=(1,0) and N=(0,1) which touch but do not cross the line x-y=4. - Herbert Kociemba, May 24 2004
Number of standard tableaux of shape (n+4,n-4). - Emeric Deutsch, May 30 2004

Examples

			G.f. = x^4 + 9*x^5 + 54*x^6 + 273*x^7 + 1260*x^8 + 5508*x^9 + 23256*x^10 + ...
		

References

  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

First differences are in A026015.
A diagonal of any of the essentially equivalent arrays A009766, A030237, A033184, A059365, A099039, A106566, A130020, A047072.

Programs

Formula

Expansion of x^4*C^9, where C = (1-(1-4*x)^(1/2))/(2*x) is g.f. for Catalan numbers, A000108. - Philippe Deléham, Feb 03 2004
Let A be the Toeplitz matrix of order n defined by: A[i,i-1]=-1, A[i,j]=Catalan(j-i), (i<=j), and A[i,j]=0, otherwise. Then, for n>=8, a(n-4)=(-1)^(n-8)*coeff(charpoly(A,x),x^8). - Milan Janjic, Jul 08 2010
a(n) = A214292(2*n-1,n-5) for n > 4. - Reinhard Zumkeller, Jul 12 2012
D-finite with recurrence -(n+5)*(n-4)*a(n) +2*n*(2*n-1)*a(n-1)=0. - R. J. Mathar, Jun 20 2013
From Ilya Gutkovskiy, Jan 22 2017: (Start)
E.g.f.: (1/24)*x^4*1F1(9/2; 10; 4*x).
a(n) ~ 9*4^n/(sqrt(Pi)*n^(3/2)). (End)
From Amiram Eldar, Jan 02 2022: (Start)
Sum_{n>=4} 1/a(n) = 158*Pi/(81*sqrt(3)) - 649/270.
Sum_{n>=4} (-1)^n/a(n) = 52076*log(phi)/(225*sqrt(5)) - 22007/450, where phi is the golden ratio (A001622). (End)

Extensions

More terms from Harvey P. Dale, Mar 03 2011

A003518 a(n) = 8*binomial(2*n+1,n-3)/(n+5).

Original entry on oeis.org

1, 8, 44, 208, 910, 3808, 15504, 62016, 245157, 961400, 3749460, 14567280, 56448210, 218349120, 843621600, 3257112960, 12570420330, 48507033744, 187187399448, 722477682080, 2789279908316, 10772391370048, 41620603020640, 160878516023680, 622147386185325
Offset: 3

Views

Author

Keywords

Comments

a(n-6) is the number of n-th generation nodes in the tree of sequences with unit increase labeled by 7 (cf. Zoran Sunic reference). - Benoit Cloitre, Oct 07 2003
Number of standard tableaux of shape (n+4,n-3). - Emeric Deutsch, May 30 2004

Examples

			G.f. = x^3 + 8*x^4 + 44*x^5 + 208*x^6 + 910*x^7 + 3808*x^8 + 15504*x^9 + ...
		

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A002057.
First differences are in A026018.
A diagonal of any of the essentially equivalent arrays A009766, A030237, A033184, A059365, A099039, A106566, A130020, A047072.

Programs

  • Magma
    [8*Binomial(2*n+1,n-3)/(n+5): n in [3..30]]; // Vincenzo Librandi, Jan 23 2017
  • Mathematica
    Table[8 Binomial[2 n + 1, n - 3]/(n + 5), {n, 3, 25}] (* Michael De Vlieger, Oct 26 2016 *)
    CoefficientList[Series[((1 - Sqrt[1 - 4 x])/(2 x))^8, {x, 0, 30}], x] (* Vincenzo Librandi, Jan 23 2017 *)
  • PARI
    {a(n) = if( n<3, 0, 8 * binomial(2*n + 1, n-3) / (n + 5))}; /* Michael Somos, Mar 14 2011 */
    
  • PARI
    my(x='x+O('x^50)); Vec(x^3*((1-(1-4*x)^(1/2))/(2*x))^8) \\ Altug Alkan, Nov 01 2015
    

Formula

G.f.: x^3*C(x)^8, where C(x)=(1-sqrt(1-4*x))/(2*x) is g.f. for the Catalan numbers (A000108). - Emeric Deutsch, May 30 2004
The convolution of A002057 with itself. - Gerald McGarvey, Nov 08 2007
Let A be the Toeplitz matrix of order n defined by: A[i,i-1]=-1, A[i,j]=Catalan(j-i), (i<=j), and A[i,j]=0, otherwise. Then, for n>=7, a(n-4)=(-1)^(n-7)*coeff(charpoly(A,x),x^7). - Milan Janjic, Jul 08 2010
a(n) = A214292(2*n,n-4) for n > 3. - Reinhard Zumkeller, Jul 12 2012
Integral representation as the n-th moment of the signed weight function W(x) on (0,4), i.e.: a(n+3) = Integral_{x=0..4} x^n*W(x) dx, n >= 0, with W(x) = (1/2)*x^(7/2)*(x-2)*(x^2-4*x+2)*sqrt(4-x)/Pi. - Karol A. Penson, Oct 26 2016
From Ilya Gutkovskiy, Jan 22 2017: (Start)
E.g.f.: 4*BesselI(4,2*x)*exp(2*x)/x.
a(n) ~ 4^(n+2)/(sqrt(Pi)*n^(3/2)). (End)
D-finite with recurrence: -(n+5)*(n-3)*a(n) +2*n*(2*n+1)*a(n-1)=0. - R. J. Mathar, Feb 20 2020
From Amiram Eldar, Jan 02 2022: (Start)
Sum_{n>=3} 1/a(n) = 43*Pi/(36*sqrt(3)) - 81/80.
Sum_{n>=3} (-1)^(n+1)/a(n) = 6213*log(phi)/(50*sqrt(5)) - 10339/400, where phi is the golden ratio (A001622). (End)

Extensions

More terms from Jon E. Schoenfield, May 06 2010

A030237 Catalan's triangle with right border removed (n > 0, 0 <= k < n).

Original entry on oeis.org

1, 1, 2, 1, 3, 5, 1, 4, 9, 14, 1, 5, 14, 28, 42, 1, 6, 20, 48, 90, 132, 1, 7, 27, 75, 165, 297, 429, 1, 8, 35, 110, 275, 572, 1001, 1430, 1, 9, 44, 154, 429, 1001, 2002, 3432, 4862, 1, 10, 54, 208, 637, 1638, 3640, 7072, 11934, 16796, 1, 11, 65, 273, 910, 2548, 6188, 13260, 25194, 41990, 58786
Offset: 1

Views

Author

Keywords

Comments

This triangle appears in the totally asymmetric exclusion process as Y(alpha=1,beta=1,n,m), written in the Derrida et al. reference as Y_n(m) for alpha=1, beta=1. - Wolfdieter Lang, Jan 13 2006

Examples

			Triangle begins as:
  1;
  1, 2;
  1, 3,  5;
  1, 4,  9,  14;
  1, 5, 14,  28,  42;
  1, 6, 20,  48,  90,  132;
  1, 7, 27,  75, 165,  297,  429;
  1, 8, 35, 110, 275,  572, 1001, 1430;
  1, 9, 44, 154, 429, 1001, 2002, 3432, 4862;
		

Crossrefs

Alternate versions of (essentially) the same Catalan triangle: A009766, A033184, A047072, A059365, A099039, A106566, A130020.
Row sums give A071724.

Programs

  • Haskell
    a030237 n k = a030237_tabl !! n !! k
    a030237_row n = a030237_tabl !! n
    a030237_tabl = map init $ tail a009766_tabl
    -- Reinhard Zumkeller, Jul 12 2012
    
  • Magma
    [(n-k+1)*Binomial(n+k, k)/(n+1): k in [0..n-1], n in [1..12]]; // G. C. Greubel, Mar 17 2021
  • Maple
    A030237 := proc(n,m)
        (n-m+1)*binomial(n+m,m)/(n+1) ;
    end proc: # R. J. Mathar, May 31 2016
    # Compare the analogue algorithm for the Bell numbers in A011971.
    CatalanTriangle := proc(len) local P, T, n; P := [1]; T := [[1]];
    for n from 1 to len-1 do P := ListTools:-PartialSums([op(P), P[-1]]);
    T := [op(T), P] od; T end: CatalanTriangle(6):
    ListTools:-Flatten(%); # Peter Luschny, Mar 26 2022
    # Alternative:
    ogf := n -> (1 - 2*x)/(1 - x)^(n + 2):
    ser := n -> series(ogf(n), x, n):
    row := n -> seq(coeff(ser(n), x, k), k = 0..n-1):
    seq(row(n), n = 1..11); # Peter Luschny, Mar 27 2022
  • Mathematica
    T[n_, k_]:= T[n, k] = Which[k==0, 1, k>n, 0, True, T[n-1, k] + T[n, k-1]];
    Table[T[n, k], {n,1,12}, {k,0,n-1}] // Flatten (* Jean-François Alcover, Nov 14 2017 *)
  • PARI
    T(n,k) = (n-k+1)*binomial(n+k, k)/(n+1) \\ Andrew Howroyd, Feb 23 2018
    
  • Sage
    flatten([[(n-k+1)*binomial(n+k, k)/(n+1) for k in (0..n-1)] for n in (1..12)]) # G. C. Greubel, Mar 17 2021
    

Formula

T(n, k) = (n-k+1)*binomial(n+k, k)/(n+1).
Sum_{k=0..n-1} T(n,k) = A000245(n). - G. C. Greubel, Mar 17 2021
T(n, k) = [x^k] ((1 - 2*x)/(1 - x)^(n + 2)). - Peter Luschny, Mar 27 2022

Extensions

Missing a(8) = T(7,0) = 1 inserted by Reinhard Zumkeller, Jul 12 2012

A064063 Generalized Catalan numbers C(3; n).

Original entry on oeis.org

1, 1, 4, 25, 190, 1606, 14506, 137089, 1338790, 13403950, 136846144, 1419257434, 14911016596, 158363649640, 1697452010230, 18338919413425, 199496184219910, 2183299541440150, 24021874198331080, 265559590979820910, 2948253066186839140, 32857382497018933060
Offset: 0

Views

Author

Wolfdieter Lang, Sep 13 2001

Keywords

Comments

a(n+1) = Y_{n}(n+1) = Z_{n}, n >= 0, in the Derrida et al. 1992 reference (see A064094) for alpha=3, beta =1 (or alpha=1, beta=3).
Hankel transform is A060722. - Paul Barry, Jan 30 2009

References

  • S. Ramanujan, Modular Equations and Approximations to pi, pp. 23-39 of Collected Papers of Srinivasa Ramanujan, Ed. G. H. Hardy et al., AMS Chelsea 2000. See page 39, equation (50).

Crossrefs

Cf. A064062 (C(2; n)).

Programs

  • Magma
    R:=PowerSeriesRing(Rationals(), 30); Coefficients(R!( 6/(5+Sqrt(1-12*x)) )); // G. C. Greubel, May 02 2019
  • Mathematica
    CoefficientList[Series[6/(5+Sqrt[1-12 x]),{x,0,50}],x]  (* Harvey P. Dale, Mar 11 2011 *)
  • PARI
    a(n)=if(n<0,0,polcoeff(serreverse((x-2*x^2)/(1+x)^2+O(x^(n+1))),n)) \\ Ralf Stephan, Jun 12 2004
    
  • PARI
    {a(n)= if(n<1, n==0, polcoeff( serreverse( (x-2*x^2)/ (1+x)^2 +x*O(x^n)), n))} /* Michael Somos, Apr 11 2007 */
    
  • Sage
    def a(n):
        if n==0: return 1
        return hypergeometric([1-n, n], [-n], 3).simplify()
    [a(n) for n in range(24)] # Peter Luschny, Nov 30 2014
    

Formula

G.f.: (1+3*x*c(3*x)/2)/(1+x/2) = 1/(1-x*c(3*x)) with c(x) g.f. of Catalan numbers A000108.
a(n) = Sum_{m=0..n-1} (n-m)*binomial(n-1+m, m)*(3^m)/n.
a(n) = (-1/2)^n * (1 - 3*Sum_{k=0..n-1} C(k)*(-6)^k), n >= 1, a(0) = 1, with C(n) = A000108(n) (Catalan).
a(n) = Sum_{k=0..n} A059365(n, k)*3^(n-k). - Philippe Deléham, Jan 19 2004
Given the semi-axes a,b of an ellipse, then Ramanujan gave the highly accurate formula for the perimeter p = Pi((a+b) + (3(a-b)^2)/(10(a+b) + sqrt(a^2 + 14ab + b^2))). If we let h = ((a-b)/(a+b))^2, then (p/(Pi(a+b))-1)/4 = (3/4)* h/(10 + sqrt(4 - 3*h)) = 1*(h/16) + 1*(h/16)^2 + 4*(h/16)^3 + 25*(h/16)^4 + ... . - Michael Somos, Apr 11 2007
G.f.: 1/(1-x/(1-3*x/(1-3*x/(1-3*x/(1-.... = 1/(1-x-3*x^2/(1-6*x-9*x^2/(1-6*x-9*x^2/(1-.... (continued fractions). - Paul Barry, Jan 30 2009
G.f.: 6/(5+sqrt(1-12*x)). - Harvey P. Dale, Mar 11 2011
From Gary W. Adamson, Jul 12 2011: (Start)
a(n) = upper left term in M^n, M = the infinite square production matrix:
1, 1, 0, 0, 0, 0, ...
3, 3, 3, 0, 0, 0, ...
3, 3, 3, 3, 0, 0, ...
3, 3, 3, 3, 3, 0, ...
3, 3, 3, 3, 3, 3, ...
... (End)
D-finite with recurrence: 2*n*a(n) + (-23*n+36)*a(n-1) + 6*(-2*n+3)*a(n-2) = 0. - R. J. Mathar, Dec 03 2012 (Formula verified and used for computations. - Fung Lam, Mar 05 2014)
a(n) ~ 3^(n+1) * 4^n / (25*n^(3/2)*sqrt(Pi)). - Vaclav Kotesovec, Mar 05 2014
a(n) = hypergeometric([1-n, n], [-n], 3) for n>0. - Peter Luschny, Nov 30 2014

A003519 a(n) = 10*C(2n+1, n-4)/(n+6).

Original entry on oeis.org

1, 10, 65, 350, 1700, 7752, 33915, 144210, 600875, 2466750, 10015005, 40320150, 161280600, 641886000, 2544619500, 10056336264, 39645171810, 155989499540, 612815891050, 2404551645100, 9425842448792, 36921502679600, 144539291740025, 565588532895750, 2212449261033375
Offset: 4

Views

Author

Keywords

Comments

Number of standard tableaux of shape (n+5,n-4). - Emeric Deutsch, May 30 2004
a(n) is the number of North-East paths from (0,0) to (n,n) that cross the diagonal y = x horizontally exactly twice. By symmetry, it is also the number of North-East paths from (0,0) to (n,n) that cross the diagonal y = x vertically exactly twice. Details can be found in Section 3.3 in Pan and Remmel's link. - Ran Pan, Feb 02 2016

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

A diagonal of any of the essentially equivalent arrays A009766, A030237, A033184, A059365, A099039, A106566, A130020, A047072.

Programs

  • Magma
    [10*Binomial(2*n+1, n-4)/(n+6): n in [4..35]]; // Vincenzo Librandi, Feb 03 2016
  • Maple
    seq(10*binomial(2*n+1,n-4)/(n+6), n=4..50); # Robert Israel, Feb 02 2016
  • Mathematica
    Table[10 Binomial[2 n + 1, n - 4]/(n + 6), {n, 4, 28}] (* Michael De Vlieger, Feb 03 2016 *)
  • PARI
    a(n) = 10*binomial(2*n+1, n-4)/(n+6); \\ Michel Marcus, Feb 02 2016
    

Formula

G.f.: x^4*C(x)^10, where C(x)=[1-sqrt(1-4x)]/(2x) is g.f. for the Catalan numbers (A000108). - Emeric Deutsch, May 30 2004
Let A be the Toeplitz matrix of order n defined by: A[i,i-1]=-1, A[i,j]=Catalan(j-i), (i<=j), and A[i,j]=0, otherwise. Then, for n>=9, a(n-5)=(-1)^(n-9)*coeff(charpoly(A,x),x^9). [Milan Janjic, Jul 08 2010]
a(n) = A214292(2*n,n-5) for n > 4. - Reinhard Zumkeller, Jul 12 2012
From Robert Israel, Feb 02 2016: (Start)
D-finite with recurrence a(n+1) = 2*(n+1)*(2n+3)/((n+7)*(n-3)) * a(n).
a(n) ~ 20 * 4^n/sqrt(Pi*n^3). (End)
E.g.f.: 5*BesselI(5,2*x)*exp(2*x)/x. - Ilya Gutkovskiy, Jan 23 2017
From Amiram Eldar, Jan 02 2022: (Start)
Sum_{n>=4} 1/a(n) = 34*Pi/(45*sqrt(3)) - 44/175.
Sum_{n>=4} (-1)^n/a(n) = 53004*log(phi)/(125*sqrt(5)) - 79048/875, where phi is the golden ratio (A001622). (End)

A100100 Triangle T(n,k) = binomial(2*n-k-1, n-k) read by rows.

Original entry on oeis.org

1, 1, 1, 3, 2, 1, 10, 6, 3, 1, 35, 20, 10, 4, 1, 126, 70, 35, 15, 5, 1, 462, 252, 126, 56, 21, 6, 1, 1716, 924, 462, 210, 84, 28, 7, 1, 6435, 3432, 1716, 792, 330, 120, 36, 8, 1, 24310, 12870, 6435, 3003, 1287, 495, 165, 45, 9, 1, 92378, 48620, 24310, 11440, 5005, 2002
Offset: 0

Views

Author

Paul Barry, Nov 08 2004

Keywords

Comments

Sometimes called a Catalan triangle, although there are many other triangles that carry that name - see A009766, A008315, A028364, A033184, A053121, A059365, A062103.
Number of nodes of outdegree k in all ordered trees with n edges. Equivalently, number of ascents of length k in all Dyck paths of semilength n. Example: T(3,2) = 3 because the Dyck paths of semilength 3 are UDUDUD, UD(UU)DD, (UU)DDUD, (UU)DUDD and UUUDDD, where U = (1,1), D = (1,-1), the ascents of length 2 being shown between parentheses. - Emeric Deutsch, Nov 19 2006
Riordan array (f(x), x*g(x)) where f(x) is the g.f. of A088218 and g(x) is the g.f. of A000108. - Philippe Deléham, Jan 23 2010
T(n,k) is the number of nonnegative paths of upsteps U = (1,1) and downsteps D = (1,-1) of length 2*n with k returns to ground level, the horizontal line through the initial vertex. Example: T(2,1) = 2 counts UDUU, UUDD. Also, T(n,k) = number of these paths whose last descent has length k, that is, k downsteps follow the last upstep. Example: T(2,1) = 2 counts UUUD, UDUD. - David Callan, Nov 21 2011
Belongs to the hitting-time subgroup of the Riordan group. Multiplying this triangle by the square Pascal matrix gives A092392 read as a square array. See the example below. - Peter Bala, Nov 03 2015

Examples

			From _Paul Barry_, Mar 15 2010: (Start)
Triangle begins in row n=0 with columns 0<=k<=n as:
    1;
    1,   1;
    3,   2,   1;
   10,   6,   3,  1;
   35,  20,  10,  4,  1;
  126,  70,  35, 15,  5, 1;
  462, 252, 126, 56, 21, 6, 1;
Production matrix begins
  1, 1;
  2, 1, 1;
  3, 1, 1, 1;
  4, 1, 1, 1, 1;
  5, 1, 1, 1, 1, 1;
  6, 1, 1, 1, 1, 1, 1;
  7, 1, 1, 1, 1, 1, 1, 1;
(End)
A092392 as a square array = A100100 * square Pascal matrix:
/1   1  1  1 ...\   / 1          \/1 1  1  1 ...\
|2   3  4  5 ...|   | 1 1        ||1 2  3  4 ...|
|6  10 15 21 ...| = | 3 2 1      ||1 3  6 10 ...|
|20 35 56 84 ...|   |10 6 3 1    ||1 4 10 20 ...|
|70 ...         |   |35 ...      ||1 ...        |
- _Peter Bala_, Nov 03 2015
		

Crossrefs

Row sums are A000984. Equivalent to A092392, to which A088218 has been added as a first column. Columns include A088218, A000984, A001700, A001791, A002054, A002694. Diagonal sums are A100217. Matrix inverse is A100218.
Cf. A059481 (mirrored). Cf. A033184, A094527, A113955.

Programs

  • Haskell
    a100100 n k = a100100_tabl !! n !! n
    a100100_row n = a100100_tabl !! n
    a100100_tabl = [1] : f a092392_tabl where
       f (us : wss'@(vs : wss)) = (vs !! 1 : us) : f wss'
    -- Reinhard Zumkeller, Jan 15 2014
    
  • Magma
    /* As triangle */ [[Binomial(2*n - k - 1, n - k): k in [0..n]]: n in [0.. 15]]; // Vincenzo Librandi, Nov 21 2018
  • Maple
    A100100 := proc(n,k)
        binomial(2*n-k-1,n-1) ;
    end proc:
    seq(seq(A100100(n,k),k=0..n),n=0..10) ; # R. J. Mathar, Feb 06 2015
  • Mathematica
    Flatten[Table[Binomial[2 n - k - 1, n - k], {n, 0, 11}, {k, 0, n}]] (* Vincenzo Librandi, Nov 21 2018 *)
  • PARI
    T(n,k)=binomial(2*n-k-1,n-k) \\ Charles R Greathouse IV, Jan 16 2012
    

Formula

From Peter Bala, Sep 06 2015: (Start)
Matrix product A094527 * P^(-1) = A113955 * P^(-2), where P denotes Pascal's triangle A007318.
Essentially, the logarithmic derivative of A033184. (End)
Let column(k) = [T(n, k), n >= k], then the generating function for column(k) is (2/(sqrt(1-4*x)+1))^(k-1)/sqrt(1-4*x). - Peter Luschny, Mar 19 2021
O.g.f. row polynomials R(n, x) := Sum_{k=0..n} T(n, k)*x^k, i.e. o.g.f. of the triangle, G(z,x) = 1/((2 - c(z))*(1 - x*z*c(z))), with c the o.g.f. of A000108 (Catalan). See the Riordan coomment by Philippe Deléham above. - Wolfdieter Lang, Apr 06 2021

A047072 Array A read by diagonals: A(h,k)=number of paths consisting of steps from (0,0) to (h,k) such that each step has length 1 directed up or right and no step touches the line y=x unless x=0 or x=h.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 2, 2, 2, 1, 1, 3, 2, 2, 3, 1, 1, 4, 5, 4, 5, 4, 1, 1, 5, 9, 5, 5, 9, 5, 1, 1, 6, 14, 14, 10, 14, 14, 6, 1, 1, 7, 20, 28, 14, 14, 28, 20, 7, 1, 1, 8, 27, 48, 42, 28, 42, 48, 27, 8, 1, 1, 9, 35, 75, 90, 42, 42, 90, 75, 35, 9, 1
Offset: 0

Views

Author

Keywords

Examples

			Array, A(n, k), begins as:
  1, 1,  1,  1,  1,   1,   1,   1, ...;
  1, 2,  1,  2,  3,   4,   5,   6, ...;
  1, 1,  2,  2,  5,   9,  14,  20, ...;
  1, 2,  2,  4,  5,  14,  28,  48, ...;
  1, 3,  5,  5, 10,  14,  42,  90, ...;
  1, 4,  9, 14, 14,  28,  42, 132, ...;
  1, 5, 14, 28, 42,  42,  84, 132, ...;
  1, 6, 20, 48, 90, 132, 132, 264, ...;
Antidiagonals, T(n, k), begins as:
  1;
  1,  1;
  1,  2,  1;
  1,  1,  1,  1;
  1,  2,  2,  2,  1;
  1,  3,  2,  2,  3,  1;
  1,  4,  5,  4,  5,  4,  1;
  1,  5,  9,  5,  5,  9,  5,  1;
  1,  6, 14, 14, 10, 14, 14,  6,  1;
		

Crossrefs

The following are all versions of (essentially) the same Catalan triangle: A009766, A030237, A033184, A059365, A099039, A106566, A130020, A047072.

Programs

  • Magma
    b:= func< n | n eq 0 select 1 else 2*Catalan(n-1) >;
    function A(n,k)
      if k eq n then return b(n);
      elif k gt n then return Binomial(n+k-1, n) - Binomial(n+k-1, n-1);
      else return Binomial(n+k-1, k) - Binomial(n+k-1, k-1);
      end if; return A;
    end function;
    // [[A(n,k): k in [0..12]]: n in [0..12]];
    T:= func< n,k | A(n-k, k) >;
    [T(n,k): k in [0..n], n in [0..12]]; // G. C. Greubel, Oct 13 2022
    
  • Mathematica
    A[, 0]= 1; A[0, ]= 1; A[h_, k_]:= A[h, k]= If[(k-1>h || k-1Jean-François Alcover, Mar 06 2019 *)
  • SageMath
    def A(n,k):
        if (k==n): return 2*catalan_number(n-1) + 2*int(n==0)
        elif (k>n): return binomial(n+k-1, n) - binomial(n+k-1, n-1)
        else: return binomial(n+k-1, k) - binomial(n+k-1, k-1)
    def T(n,k): return A(n-k, k)
    # [[A(n,k) for k in range(12)] for n in range(12)]
    flatten([[T(n,k) for k in range(n+1)] for n in range(12)]) # G. C. Greubel, Oct 13 2022

Formula

A(n, n) = 2*[n=0] - A002420(n),
A(n, n+1) = 2*A000108(n-1), n >= 1.
From G. C. Greubel, Oct 13 2022: (Start)
T(n, n-1) = A000027(n-2) + 2*[n<3], n >= 1.
T(n, n-2) = A000096(n-4) + 2*[n<5], n >= 2.
T(n, n-3) = A005586(n-6) + 4*[n<7] - 2*[n=3], n >= 3.
T(2*n, n) = 2*A000108(n-1) + 3*[n=0].
T(2*n-1, n-1) = T(2*n+1, n+1) = A000180(n).
T(3*n, n) = A025174(n) + [n=0]
Sum_{k=0..n} T(n, k) = 2*A063886(n-2) + [n=0] - 2*[n=1]
Sum_{k=0..n} (-1)^k * T(n, k) = A000007(n).
Sum_{k=0..floor(n/2)} T(n, k) = A047079(n). (End)

A130020 Triangle T(n,k), 0<=k<=n, read by rows given by [1,0,0,0,0,0,0,...] DELTA [0,1,1,1,1,1,1,...] where DELTA is the operator defined in A084938 .

Original entry on oeis.org

1, 1, 0, 1, 1, 0, 1, 2, 2, 0, 1, 3, 5, 5, 0, 1, 4, 9, 14, 14, 0, 1, 5, 14, 28, 42, 42, 0, 1, 6, 20, 48, 90, 132, 132, 0, 1, 7, 27, 75, 165, 297, 429, 429, 0, 1, 8, 35, 110, 275, 572, 1001, 1430, 1430, 0, 1, 9, 44, 154, 429, 1001, 2002, 3432, 4862, 4862, 0
Offset: 0

Views

Author

Philippe Deléham, Jun 16 2007

Keywords

Comments

Reflected version of A106566.

Examples

			Triangle begins:
  1;
  1, 0;
  1, 1,  0;
  1, 2,  2,   0;
  1, 3,  5,   5,   0;
  1, 4,  9,  14,  14,    0;
  1, 5, 14,  28,  42,   42,    0;
  1, 6, 20,  48,  90,  132,  132,    0;
  1, 7, 27,  75, 165,  297,  429,  429,    0;
  1, 8, 35, 110, 275,  572, 1001, 1430, 1430,    0;
  1, 9, 44, 154, 429, 1001, 2002, 3432, 4862, 4862,  0;
  ...
		

Crossrefs

The following are all versions of (essentially) the same Catalan triangle: A009766, A030237, A033184, A047072, A059365, A099039, A106566, this sequence.
Cf. A000108 (Catalan numbers), A106566 (row reversal), A210736.

Programs

  • Magma
    A130020:= func< n,k | n eq 0 select 1 else (n-k)*Binomial(n+k-1, k)/n >;
    [A130020(n,k): k in [0..n], n in [0..12]]; // G. C. Greubel, Jun 14 2022
    
  • Mathematica
    T[n_, k_]:= (n-k)Binomial[n+k-1, k]/n; T[0, 0] = 1;
    Table[T[n, k], {n, 0, 10}, {k, 0, n}]//Flatten (* Jean-François Alcover, Jun 14 2019 *)
  • PARI
    {T(n, k) = if( k<0 || k>=n, n==0 && k==0, binomial(n+k, n) * (n-k)/(n+k))}; /* Michael Somos, Oct 01 2022 */
  • Sage
    @CachedFunction
    def A130020(n, k):
        if n==k: return add((-1)^j*binomial(n, j) for j in (0..n))
        return add(A130020(n-1, j) for j in (0..k))
    for n in (0..10) :
        [A130020(n, k) for k in (0..n)]  # Peter Luschny, Nov 14 2012
    

Formula

T(n, k) = A106566(n, n-k).
Sum_{k=0..n} T(n,k) = A000108(n).
T(n, k) = (n-k)*binomial(n+k-1, k)/n with T(0, 0) = 1. - Jean-François Alcover, Jun 14 2019
Sum_{k=0..floor(n/2)} T(n-k, k) = A210736(n). - G. C. Greubel, Jun 14 2022
G.f.: Sum_{n>=0, k>=0} T(n, k)*x^k*z^n = 1/(1 - z*c(x*z)) where c(z) = g.f. of A000108.
Previous Showing 11-20 of 29 results. Next