Original entry on oeis.org
1, 49, 5329, 717409, 106523041, 16735820689, 2727812288881, 456250924320961, 77788137919752001, 13459803510972477169, 2356471368269511061009, 416518496068852312607521, 74207592486779379593752801, 13309569813247406938272432721, 2400816685486139045360488325809
Offset: 0
G.f.: A(x) = 1 + 49*x + 5329*x^2 + 717409*x^3 + 106523041*x^4 +...
-
[Evaluate(LegendrePolynomial(n),7)^2 : n in [0..40]]; // G. C. Greubel, May 17 2023
-
Table[Sum[12^k * Binomial[2*k, k]^2 * Binomial[n+k, n-k], {k,0,n}], {n,0,20}] (* Vaclav Kotesovec, Sep 28 2019 *)
CoefficientList[Series[2*EllipticK[1 - (1-x)^2/(1 - 194*x + x^2)] / (Pi*Sqrt[1 - 194*x + x^2]), {x, 0, 20}], x] (* Vaclav Kotesovec, Sep 28 2019 *)
LegendreP[Range[0, 40], 7]^2 (* G. C. Greubel, May 17 2023 *)
-
{a(n) = sum(k=0, n, 12^k * binomial(2*k, k)^2 * binomial(n+k, n-k) )}
for(n=0, 20, print1(a(n), ", "))
-
{a(n) = sum(k=0, n, 3^k * binomial(2*k, k) * binomial(n+k, n-k) )^2}
for(n=0, 20, print1(a(n), ", "))
-
/* Using AGM: */
{a(n)=polcoeff( 1 / agm(1-x, sqrt((1+x)^2 - 14^2*x +x*O(x^n))), n)}
for(n=0, 20, print1(a(n), ", ")) \\ Paul D. Hanna, Aug 30 2014
-
[gen_legendre_P(n,0,7)^2 for n in range(41)] # G. C. Greubel, May 17 2023
A330205
Composite numbers k such that P(k, 7) == 7 (mod k), where P(k, 7) = A084768(k) is the k-th Legendre polynomial evaluated at 7.
Original entry on oeis.org
6, 15, 21, 22, 105, 119, 231, 426, 483, 1290, 1939, 4429, 4450, 4578, 10609, 12999, 14118, 16899, 23262, 26733, 37401, 39858, 82194, 108345, 121335, 127434, 302253, 380757, 724647, 836437, 840147, 1078270, 1522677, 2007411, 15009050, 28913991
Offset: 1
6 is in the sequence since it is composite and P(6, 7) = 1651609 == 7 (mod 6).
-
Select[Range[2000], CompositeQ[#] && Divisible[LegendreP[#, 7] - 7, #] &]
-
isok(k) = Mod(subst(pollegendre(k), x, 7), k) == 7;
forcomposite (k=1, 10000, if (isok(k), print1(k, ", "))); \\ Michel Marcus, Dec 06 2019
-
a, b = 1, 7
for n in range(2, 10000):
a, b = b, ((14*n-7)*b - (n-1)*a)//n
if (b%n == 7%n) and (not Integer(n).is_prime()): print(n) # Robin Visser, Aug 18 2023
A006442
Expansion of 1/sqrt(1 - 10*x + x^2).
Original entry on oeis.org
1, 5, 37, 305, 2641, 23525, 213445, 1961825, 18205345, 170195525, 1600472677, 15122515985, 143457011569, 1365435096485, 13033485491077, 124715953657025, 1195966908404545, 11490534389896325, 110584004488276645, 1065853221648055025
Offset: 0
- Seiichi Manyama, Table of n, a(n) for n = 0..1000 (terms 0..200 from T. D. Noe)
- Hacène Belbachir and Abdelghani Mehdaoui, Recurrence relation associated with the sums of square binomial coefficients, Quaestiones Mathematicae (2021) Vol. 44, Issue 5, 615-624.
- Hacène Belbachir, Abdelghani Mehdaoui and László Szalay, Diagonal Sums in the Pascal Pyramid, II: Applications, J. Int. Seq., Vol. 22 (2019), Article 19.3.5.
- Ömür Deveci and Anthony G. Shannon, Some aspects of Neyman triangles and Delannoy arrays, Mathematica Montisnigri (2021) Vol. L, 36-43.
- Tony D. Noe, On the Divisibility of Generalized Central Trinomial Coefficients, Journal of Integer Sequences, Vol. 9 (2006), Article 06.2.7.
- T. R. S. Walsh, Number of sensed planar maps with n edges and m vertices
-
[Evaluate(LegendrePolynomial(n), 5): n in [0..40]]; // G. C. Greubel, May 21 2023
-
seq(orthopoly[P](n,5), n = 0 .. 20); # Robert Israel, Aug 18 2014
-
Table[LegendreP[n, 5], {n, 0, 19}] (* Arkadiusz Wesolowski, Aug 13 2012 *)
CoefficientList[Series[1 / Sqrt[1 - 10 x + x^2], {x, 0, 20}], x] (* Vincenzo Librandi, Nov 23 2014 *)
-
a(n)=subst(pollegendre(n),x,5)
-
/* as lattice paths: same as in A092566 but use */
steps=[[1,0], [1,0], [0,1], [1,1]]; /* note the double [1,0] */
/* Joerg Arndt, Jul 01 2011 */
-
{a(n)=sum(k=0,n,binomial(n,k)^2*2^k*3^(n-k))} /* Paul D. Hanna */
-
{a(n) = sum(k=0, n, 2^k * binomial(2*k, k) * binomial(n+k, n-k) )}
for(n=0, 25, print1(a(n), ", ")) \\ Paul D. Hanna, Aug 17 2014
-
[gen_legendre_P(n,0,5) for n in range(41)] # G. C. Greubel, May 21 2023
A084769
a(n) = P_n(9), where P_n is n-th Legendre polynomial; also, a(n) = central coefficient of (1 + 9*x + 20*x^2)^n.
Original entry on oeis.org
1, 9, 121, 1809, 28401, 458649, 7544041, 125700129, 2114588641, 35836273449, 610897146201, 10463745263409, 179939616743121, 3104680678772409, 53721299280288201, 931852905510160449, 16198821321758152641
Offset: 0
- Vincenzo Librandi, Table of n, a(n) for n = 0..200
- Hacène Belbachir and Abdelghani Mehdaoui, Recurrence relation associated with the sums of square binomial coefficients, Quaestiones Mathematicae (2021) Vol. 44, Issue 5, 615-624.
- Hacène Belbachir, Abdelghani Mehdaoui, and László Szalay, Diagonal Sums in the Pascal Pyramid, II: Applications, J. Int. Seq., Vol. 22 (2019), Article 19.3.5.
- Vaclav Kotesovec, Asymptotic of a sums of powers of binomial coefficients * x^k, 2012.
- Tony D. Noe, On the Divisibility of Generalized Central Trinomial Coefficients, Journal of Integer Sequences, Vol. 9 (2006), Article 06.2.7.
-
[Evaluate(LegendrePolynomial(n), 9) : n in [0..40]]; // G. C. Greubel, May 17 2023
-
Table[SeriesCoefficient[1/Sqrt[1-18*x+x^2],{x,0,n}],{n,0,20}] (* Vaclav Kotesovec, Oct 14 2012 *)
LegendreP[Range[0, 40], 9] (* G. C. Greubel, May 17 2023 *)
a[n_] := 4^n*Sum[(5/4)^k*Binomial[n, k]^2, {k, 0, n}];
Table[a[n], {n, 0, 16}] (* Detlef Meya, May 22 2024 *)
-
for(n=0,30,print1(subst(pollegendre(n),x,9)","))
-
{a(n)=sum(k=0, n, binomial(n, k)^2*4^k*5^(n-k))} \\ Paul D. Hanna, Sep 29 2012
-
[gen_legendre_P(n,0,9) for n in range(41)] # G. C. Greubel, May 17 2023
A355585
T(j,k) are the numerators s in the representation R = s/t + (2*sqrt(3)/Pi)*u/v of the resistance between two nodes separated by the distance (j,k) in an infinite triangular lattice of one-ohm resistors, where T(j,k), j >= 0, 0 <= k <= floor(j/2) is an irregular triangle read by rows.
Original entry on oeis.org
0, 1, 8, -2, 27, -5, 928, -70, 16, 11249, -2671, 123, 46872, -34354, 5992, -438, 1792225, -445535, 28075, -10303, 23152256, -5824226, 1168304, -178754, 38336, 100685835, -25547957, 5343755, -885717, 101355, 3970817992, -338056246, 72962904, -12914726, 1825464, -386166
Offset: 0
The triangle begins:
0;
1;
8, -2;
27, -5;
928, -70, 16;
11249, -2671, 123;
46872, -34354, 5992, -438;
1792225, -445535, 28075, -10303;
23152256, -5824226, 1168304, -178754, 38336;
100685835, -25547957, 5343755, -885717, 101355;
. The combined triangles used to calculate the resistances are:
\ j 0 | 1 |
k\---------- s/t ----------- u/v -|----------- s/t ----------- u/v -|
0| 0/1 0/ 1 | . . |
1| 1/3 0/ 1 | . . |
2| 8/3 -2/ 1 | -2/3 1/ 1 |
3| 27/1 -24/ 1 | -5/1 5/ 1 |
4| 928/3 -280/ 1 | -70/1 64/ 1 |
5| 11249/3 -3400/ 1 | -2671/3 808/ 1 |
6| 46872/1 -212538/ 5 | -34354/3 51929/ 5 |
7| 1792225/3 -2708944/ 5 | -445535/3 673429/ 5 |
8| 23152256/3 -244962336/35 | -5824226/3 61623224/35 |
9| 100685835/1 -3195918288/35 | -25547957/1 810930216/35 |
10| 3970817992/3 -42013225014/35 | -338056246/1 2146081719/ 7 |
11| 52514317745/3 -111125508824/ 7 | -13481564911/3 142641647567/35 |
.
continued
\ j 2 | 3 |
k\-------- s/t ---------- u/v -|--------- s/t -------- u/v -|
4| 16/1 -14/ 1 | . . |
5| 123/1 -111/ 1 | . . |
6| 5992/3 -9054/ 5 | -438/1 1989/5 |
7| 28075/1 -127303/ 5 | -10303/3 15576/5 |
8| 1168304/3 -12361214/35 | -178754/3 1891328/35 |
9| 5343755/1 -169618717/35 | -885717/1 28113999/35 |
10| 72962904/1 -2315951182/35 | -12914726/1 81986531/ 7 |
11| 993810715/1 -31545031729/35 | -184858117/1 5867671888/35 |
.
continued
\ j 4 | 5 |
k\------- s/t -------- u/v -|------- s/t ------- u/v -|
8| 38336/3 -405592/35 | . . |
9| 101355/1 -3217136/35 | . . |
10| 1825464/1 -57942922/35 | -386166/1 12257507/35 |
11| 28123355/1 -892677136/35 | -3085317/1 97932579/35 |
.
Using the terms for (j,k) = (10,5) with {s, t, u, v} = {-386166, 1, 12257507, 35} the resistance is R = T(10,5)/A355586(10,5) + (2*sqrt(3)/Pi) * A355587(10,5)/A355588(10,5) = -386166/1 + (2*sqrt(3)/Pi)*12257507/35 = 0.731139136228538824636... . This equals the integral for the resistance distance R(j,k) after substitution of j=10 and k=5.
- See A211074 for more references and links (with alternatives).
- D. Atkinson and F. J. van Steenwijk, Infinite resistive lattices, Am. J. Phys. 67 (1999), 486-492.
- R. J. Mathar, Recurrence for the Atkinson-Steenwijk Integrals for Resistors in the Infinite Triangular Lattice, viXra:2208.0111 (2022).
- Hugo Pfoertner, PARI program for inverse problem, (2022). Finds the grid point [x,y] that leads to the best approximation of a given resistance distance R (ohms) between [0,0] and [x,y].
A355586 are the corresponding denominators t.
Cf.
A307012 (discussion of oblique coordinate system).
Cf.
A084768 (when divided by 3 apparently gives the difference between successive values of s/t in column 0).
-
Rtri(n,p)={my(alphat(beta)=acosh(2/cos(beta)-cos(beta))); intnum (beta=0, Pi/2, (1 - exp (-abs(n-p) * alphat(beta))*cos((n+p)*beta)) / (cos(beta)*sinh(alphat(beta)))) / Pi};
searchr (target, maxn=1000000, maxd=10, maxrat=1000, minn=0, mind=1) = {my (Rcons=2*sqrt(3)/Pi, delta=oo); for (d=mind, maxd, my(PP=Rcons/d); for (nn=minn, maxn, foreach ([-nn,nn], n, my (P=PP*n, T=target-P, Q = bestappr(T,maxrat), D=abs(target-P-Q)); if(D
-
\\ Alternative method using a recurrence; calculates triangle of s/t
jk(j,k) = {my(jj=j,kk=k); if(k<1,jj=j-k+1;kk=2-k); my(km=(jj+1)/2); if(kk>km, kk=2*km-kk); [jj,kk]};
D(n) = subst(pollegendre(n), 'x, 7);
ST(nend) = {my(nmax=nend+1, N=matrix(nmax,(nmax+1)\2)); for (n=2, nmax, N[n,1]=(1/3) * sum(k=0,n-2,D(k))); for (n=3, nmax, N[n,2] = (1/2)*(6*N[n-1,1] - 2*N[jk(n-1,2)[1],jk(n-1,2)[2]] - N[n-2,1] - N[n,1])); for (n=5, nmax, for (m=3, (n+1)\2, N[n,m] = 6*N[jk(n-1,m-1)[1],jk(n-1,m-1)[2]] - N[jk(n-1,m)[1],jk(n-1,m)[2]] - N[jk(n-2,m-1)[1],jk(n-2,m-1)[2]] - N[jk(n-2,m-2)[1],jk(n-2,m-2)[2]] - N[jk(n-1,m-2)[1],jk(n-1,m-2)[2]] - N[jk(n,m-1)[1],jk(n,m-1)[2]] )); N};
ST(11)
A335333
Square array T(n,k), n >= 0, k >= 0, read by antidiagonals, where column k is the expansion of 1/sqrt(1 - 2*(2*k+1)*x + x^2).
Original entry on oeis.org
1, 1, 1, 1, 3, 1, 1, 5, 13, 1, 1, 7, 37, 63, 1, 1, 9, 73, 305, 321, 1, 1, 11, 121, 847, 2641, 1683, 1, 1, 13, 181, 1809, 10321, 23525, 8989, 1, 1, 15, 253, 3311, 28401, 129367, 213445, 48639, 1, 1, 17, 337, 5473, 63601, 458649, 1651609, 1961825, 265729, 1
Offset: 0
Square array begins:
1, 1, 1, 1, 1, 1, ...
1, 3, 5, 7, 9, 11, ...
1, 13, 37, 73, 121, 181, ...
1, 63, 305, 847, 1809, 3311, ...
1, 321, 2641, 10321, 28401, 63601, ...
1, 1683, 23525, 129367, 458649, 1256651, ...
-
T[n_, k_] := LegendreP[n, 2*k + 1]; Table[T[k, n - k], {n, 0, 9}, {k, 0, n}] // Flatten (* Amiram Eldar, May 03 2021 *)
-
T(n, k) = pollegendre(n, 2*k+1);
A300946
Rectangular array A(n, k) = (-1)^k*hypergeom([-k, k + n/2 - 1/2], [1], 4) with row n >= 0 and k >= 0, read by ascending antidiagonals.
Original entry on oeis.org
1, 1, 1, 1, 3, 19, 1, 5, 33, 239, 1, 7, 51, 387, 3011, 1, 9, 73, 587, 4737, 38435, 1, 11, 99, 847, 7123, 59523, 496365, 1, 13, 129, 1175, 10321, 89055, 761121, 6470385, 1, 15, 163, 1579, 14499, 129367, 1135005, 9854211, 84975315
Offset: 0
Array starts:
[0] 1, 1, 19, 239, 3011, 38435, 496365, 6470385, ... [A299864]
[1] 1, 3, 33, 387, 4737, 59523, 761121, 9854211, ... [A299507]
[2] 1, 5, 51, 587, 7123, 89055, 1135005, 14660805, ... [A245926]
[3] 1, 7, 73, 847, 10321, 129367, 1651609, 21360031, ... [A084768]
[4] 1, 9, 99, 1175, 14499, 183195, 2351805, 30539241, ... [A245927]
[5] 1, 11, 129, 1579, 19841, 253707, 3284737, 42924203, ...
[6] 1, 13, 163, 2067, 26547, 344535, 4508877, 59402397, ...
-
Arow[n_, len_] := Table[(-1)^k Hypergeometric2F1[-k, k + n/2 - 1/2, 1, 4], {k, 0, len}]; Table[Print[Arow[n, 7]], {n, 0, 6}];
A331656
a(n) = Sum_{k=0..n} binomial(n,k) * binomial(n+k,k) * n^k.
Original entry on oeis.org
1, 3, 37, 847, 28401, 1256651, 69125869, 4548342975, 348434664769, 30463322582899, 2993348092318101, 326572612514776079, 39170287549040392369, 5123157953193993402171, 725662909285939100555101, 110662236267661479984580351, 18077209893508013563092846849
Offset: 0
-
Join[{1}, Table[Sum[Binomial[n, k] Binomial[n + k, k] n^k, {k, 0, n}], {n, 1, 16}]]
Table[SeriesCoefficient[1/Sqrt[1 - 2 (2 n + 1) x + x^2], {x, 0, n}], {n, 0, 16}]
Table[LegendreP[n, 2 n + 1], {n, 0, 16}]
Table[Hypergeometric2F1[-n, n + 1, 1, -n], {n, 0, 16}]
-
a(n) = {sum(k=0, n, binomial(n,k) * binomial(n+k,k) * n^k)} \\ Andrew Howroyd, Jan 23 2020
A331657
a(n) = Sum_{k=0..n} (-1)^(n - k) * binomial(n,k) * binomial(n+k,k) * n^k.
Original entry on oeis.org
1, 1, 13, 305, 10321, 458649, 25289461, 1666406209, 127779121345, 11178899075537, 1098961472475901, 119937806278590321, 14389588419704763409, 1882432013890951832425, 266678501426944160023653, 40673387011956179149166849, 6644919093900517186643470081
Offset: 0
-
[&+[(-1)^(n-k)*Binomial(n,k)*Binomial(n+k,k)*n^k:k in [0..n]]:n in [0..16]]; // Marius A. Burtea, Jan 23 2020
-
Join[{1}, Table[Sum[(-1)^(n - k) Binomial[n, k] Binomial[n + k, k] n^k, {k, 0, n}], {n, 1, 16}]]
Table[SeriesCoefficient[1/Sqrt[1 - 2 (2 n - 1) x + x^2], {x, 0, n}], {n, 0, 16}]
Table[LegendreP[n, 2 n - 1], {n, 0, 16}]
Table[(-1)^n Hypergeometric2F1[-n, n + 1, 1, n], {n, 0, 16}]
-
a(n) = {sum(k=0, n, (-1)^(n - k) * binomial(n,k) * binomial(n+k,k) * n^k)} \\ Andrew Howroyd, Jan 23 2020
A299507
a(n) = (-1)^n*hypergeom([-n, n], [1], 4).
Original entry on oeis.org
1, 3, 33, 387, 4737, 59523, 761121, 9854211, 128772609, 1694927619, 22437369633, 298419470979, 3984500221569, 53376363001731, 717044895641121, 9656091923587587, 130310873022310401, 1761872309456567811, 23861153881099854369, 323634591584064809859
Offset: 0
-
seq(simplify( (-1)^n*hypergeom([-n, n], [1], 4)), n = 0..20); # Peter Bala, Apr 18 2024
-
a[n_] := (-1)^n Hypergeometric2F1[-n, n, 1, 4]; Table[a[n], {n, 0, 19}]
Showing 1-10 of 13 results.
Comments