cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 39 results. Next

A010054 a(n) = 1 if n is a triangular number, otherwise 0.

Original entry on oeis.org

1, 1, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
Offset: 0

Views

Author

Keywords

Comments

This is essentially the q-expansion of the Jacobi theta function theta_2(q). (In theta_2 one has to ignore the initial factor of 2*q^(1/4) and then replace q by q^(1/2). See also A005369.) - N. J. A. Sloane, Aug 03 2014
Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
Ramanujan's theta function f(a, b) = Sum_{n=-inf..inf} a^(n*(n+1)/2) * b^(n*(n-1)/2).
This sequence is the concatenation of the base-b digits in the sequence b^n, for any base b >= 2. - Davis Herring (herring(AT)lanl.gov), Nov 16 2004
Number of partitions of n into distinct parts such that the greatest part equals the number of all parts, see also A047993; a(n)=A117195(n,0) for n > 0; a(n) = 1-A117195(n,1) for n > 1. - Reinhard Zumkeller, Mar 03 2006
Triangle T(n,k), 0 <= k <= n, read by rows, given by A000007 DELTA A000004 where DELTA is the operator defined in A084938. - Philippe Deléham, Jan 03 2009
Convolved with A000041 = A022567, the convolution square of A000009. - Gary W. Adamson, Jun 11 2009
A008441(n) = Sum_{k=0..n} a(k)*a(n-k). - Reinhard Zumkeller, Nov 03 2009
Polcoeff inverse with alternate signs = A006950: (1, 1, 1, 2, 3, 4, 5, 7, ...). - Gary W. Adamson, Mar 15 2010
This sequence is related to Ramanujan's two-variable theta functions because this sequence is also the characteristic function of generalized hexagonal numbers. - Omar E. Pol, Jun 08 2012
Number 3 of the 14 primitive eta-products which are holomorphic modular forms of weight 1/2 listed by D. Zagier on page 30 of "The 1-2-3 of Modular Forms". - Michael Somos, May 04 2016
Number of partitions of n into consecutive parts that contain 1 as a part, n >= 1. - Omar E. Pol, Nov 27 2020
The constant whose decimal expansion is this sequence is irrational (Mahler, 1981). The constant whose expansion in any base b >= 2 is this sequence is irrational (Bundschuh, 1984). - Amiram Eldar, Mar 23 2025

Examples

			G.f. = 1 + x + x^3 + x^6 + x^10 + x^15 + x^21 + x^28 + x^36 + x^45 + x^55 + x^66 + ...
G.f. for B(q) = q * A(q^8): q + q^9 + q^25 + q^49 + q^81 + q^121 + q^169 + q^225 + q^289 + q^361 + ...
From _Philippe Deléham_, Jan 04 2008: (Start)
As a triangle this begins:
  1;
  1, 0;
  1, 0, 0;
  1, 0, 0, 0;
  1, 0, 0, 0, 0;
  1, 0, 0, 0, 0, 0;
  ...  (End)
		

References

  • J. H. Conway and N. J. A. Sloane, Sphere Packings, Lattices and Groups, Springer-Verlag, 1999, p. 103.
  • Michael D. Hirschhorn, The Power of q, Springer, 2017. See Psi, page 9.
  • Jules Tannery and Jules Molk, Eléments de la Théorie des Fonctions Elliptiques, Vol. 2, Gauthier-Villars, Paris, 1902; Chelsea, NY, 1972, see p. 27.
  • Edmund T. Whittaker and George N. Watson, A Course of Modern Analysis, Cambridge Univ. Press, 4th ed., 1963, p. 464.

Crossrefs

Number of ways of writing n as a sum of k triangular numbers, for k=1,...: A010054, A008441, A008443, A008438, A008439, A008440, A226252, A007331, A226253, A226254, A226255, A014787, A014809.
Cf. A106507 (reciprocal series).

Programs

  • Clojure
    (def A010054 (mapcat #(cons 1 (replicate % 0)) (range))) ; Tony Zorman, Apr 03 2023
  • Haskell
    a010054 = a010052 . (+ 1) . (* 8)
    a010054_list = concatMap (\x -> 1 : replicate x 0) [0..]
    -- Reinhard Zumkeller, Feb 12 2012, Oct 22 2011, Apr 02 2011
    
  • Magma
    Basis( ModularForms( Gamma0(16), 1/2), 362) [2] ; /* Michael Somos, Jun 10 2014 */
    
  • Maple
    A010054 := proc(n)
        if issqr(1+8*n) then
            1;
        else
            0;
        end if;
    end proc:
    seq(A010054(n),n=0..80) ; # R. J. Mathar, Feb 22 2021
  • Mathematica
    a[ n_] := SquaresR[ 1, 8 n + 1] / 2; (* Michael Somos, Nov 15 2011 *)
    a[ n_] := If[ n < 0, 0, SeriesCoefficient[ (Series[ EllipticTheta[ 3, Log[y] / (2 I), x^2], {x, 0, n + Floor @ Sqrt[n]}] // Normal // TrigToExp) /. {y -> x}, {x, 0, n}]]; (* Michael Somos, Nov 15 2011 *)
    Table[If[IntegerQ[(Sqrt[8n+1]-1)/2],1,0],{n,0,110}] (* Harvey P. Dale, Oct 29 2012 *)
    a[ n_] := SeriesCoefficient[ EllipticTheta[ 2, 0, q^(1/2)] / (2 q^(1/8)), {q, 0, n}]; (* Michael Somos, Jul 01 2014 *)
    Module[{tr=Accumulate[Range[20]]},If[MemberQ[tr,#],1,0]&/@Range[Max[tr]]] (* Harvey P. Dale, Mar 13 2023 *)
  • PARI
    {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^2 + A)^2 / eta(x + A), n))}; /* Michael Somos, Mar 14 2011 */
    
  • PARI
    {a(n) = issquare( 8*n + 1)}; /* Michael Somos, Apr 27 2000 */
    
  • PARI
    a(n) = ispolygonal(n, 3); \\ Michel Marcus, Jan 22 2015
    
  • Python
    from sympy import integer_nthroot
    def A010054(n): return int(integer_nthroot((n<<3)+1,2)[1]) # Chai Wah Wu, Nov 15 2022
    
  • Sage
    # uses[EulerTransform from A166861]
    b = BinaryRecurrenceSequence(-1, 0)
    a = EulerTransform(b)
    print([a(n) for n in range(88)]) # Peter Luschny, Nov 17 2022
    

Formula

Expansion of f(x, x^3) in powers of x where f(, ) is Ramanujan's general theta function.
Expansion of q^(-1) * (phi(q) - phi(q^4)) / 2 in powers of q^8. - Michael Somos, Jul 01 2014
Expansion of q^(-1/8) * eta(q^2)^2 / eta(q) in powers of q. - Michael Somos, Apr 13 2005
Euler transform of period 2 sequence [ 1, -1, ...]. - Michael Somos, Mar 24 2003
Given g.f. A(x), then B(q) = q * A(q^8) satisfies 0 = f(B(q), B(q^2), B(q^3), B(q^6)) where f(u1, u2, u3, u6) = u1*u6^3 + u2*u3^3 - u1*u2^2*u6. - Michael Somos, Apr 13 2005
a(n) = b(8*n + 1) where b()=A098108() is multiplicative with b(2^e) = 0^e, b(p^e) = (1 + (-1)^e) / 2 if p > 2. - Michael Somos, Jun 06 2005
a(n) = A005369(2*n). - Michael Somos, Apr 29 2003
G.f.: theta_2(sqrt(q)) / (2 * q^(1/8)).
G.f.: 1 / (1 - x / (1 + x / (1 + x^1 / (1 - x / (1 + x / (1 + x^2 / (1 - x / (1 + x / (1 + x^3 / ...))))))))). - Michael Somos, May 11 2012
G.f.: Product_{k>0} (1-x^(2*k))/(1-x^(2*k-1)). - Vladeta Jovovic, May 02 2002
a(0)=1; for n>0, a(n) = A002024(n+1)-A002024(n). - Benoit Cloitre, Jan 05 2004
G.f.: Sum_{j>=0} Product_{k=0..j} x^j. - Jon Perry, Mar 30 2004
a(n) = floor((1-cos(Pi*sqrt(8*n+1)))/2). - Carl R. White, Mar 18 2006
a(n) = round(sqrt(2n+1)) - round(sqrt(2n)). - Hieronymus Fischer, Aug 06 2007
a(n) = ceiling(2*sqrt(2n+1)) - floor(2*sqrt(2n)) - 1. - Hieronymus Fischer, Aug 06 2007
a(n) = f(n,0) with f(x,y) = if x > 0 then f(x-y,y+1), otherwise 0^(-x). - Reinhard Zumkeller, Sep 27 2008
a(n) = A035214(n) - 1.
From Mikael Aaltonen, Jan 22 2015: (Start)
Since the characteristic function of s-gonal numbers is given by floor(sqrt(2n/(s-2) + ((s-4)/(2s-4))^2) + (s-4)/(2s-4)) - floor(sqrt(2(n-1)/(s-2) + ((s-4)/(2s-4))^2) + (s-4)/(2s-4)), by setting s = 3 we get the following: For n > 0, a(n) = floor(sqrt(2*n+1/4)-1/2) - floor(sqrt(2*(n-1)+1/4)-1/2).
(End)
a(n) = (-1)^n * A106459(n). - Michael Somos, May 04 2016
G.f. is a period 1 Fourier series which satisfies f(-1 / (16 t)) = 2^(-1/2) (t/i)^(1/2) g(t) where q = exp(2 Pi i t) and g() is the g.f. for A002448. - Michael Somos, May 05 2016
G.f.: Sum_{n >= 0} x^(n*(n+1)/2) = Product_{n >= 1} (1 - x^n)*(1 + x^n)^2 = Product_{n >= 1} (1 - x^(2*n))*(1 + x^n) = Product_{n >= 1} (1 - x^(2*n))/(1 - x^(2*n-1)). From the sum and product representations of theta_2(0, sqrt(q))/(2*q^(1/8)) function. The last product, given by Vladeta Jovovic above, is obtained from the second to last one by an Euler identity, proved via f(x) := Product_{n >= 1} (1 - x^(2*n-1))*Product_{n >= 1} (1 + x^n) = f(x^2), by moving the odd-indexed factors of the second product to the first product. This leads to f(x) = f(0) = 1. - Wolfdieter Lang, Jul 05 2016
a(0) = 1, a(n) = (1/n)*Sum_{k=1..n} A002129(k)*a(n-k) for n > 0. - Seiichi Manyama, Apr 08 2017
G.f.: Sum_{n >= 0} x^n * Product_{k >= n+1} (1 - x^(2*k)) = 1/(1 - x) * Sum_{n >= 0} x^(3*n) * Product_{k >= n+1} (1 - x^(2*k)) = 1/((1 - x)*(1 - x^3)) * Sum_{n >= 0} x^(5*n) * Product_{k >= n+1} (1 - x^(2*k)) = .... - Peter Bala, Jun 24 2025

Extensions

Additional comments from Michael Somos, Apr 27 2000

A038040 a(n) = n*d(n), where d(n) = number of divisors of n (A000005).

Original entry on oeis.org

1, 4, 6, 12, 10, 24, 14, 32, 27, 40, 22, 72, 26, 56, 60, 80, 34, 108, 38, 120, 84, 88, 46, 192, 75, 104, 108, 168, 58, 240, 62, 192, 132, 136, 140, 324, 74, 152, 156, 320, 82, 336, 86, 264, 270, 184, 94, 480, 147, 300, 204, 312, 106, 432, 220, 448, 228, 232, 118
Offset: 1

Views

Author

Keywords

Comments

Dirichlet convolution of sigma(n) (A000203) with phi(n) (A000010). - Michael Somos, Jun 08 2000
Dirichlet convolution of f(n)=n with itself. See the Apostol reference for Dirichlet convolutions. - Wolfdieter Lang, Sep 09 2008
Sum of all parts of all partitions of n into equal parts. - Omar E. Pol, Jan 18 2013

Examples

			For n = 6 the partitions of 6 into equal parts are [6], [3, 3], [2, 2, 2], [1, 1, 1, 1, 1, 1]. The sum of all parts is 6 + 3 + 3 + 2 + 2 + 2 + 1 + 1 + 1 + 1 + 1 + 1 = 24 equalling 6 times the number of divisors of 6, so a(6) = 24. - _Omar E. Pol_, May 08 2021
		

References

  • Tom M. Apostol, Introduction to Analytic Number Theory, Springer-Verlag, 1976, pp. 29 ff.
  • James J. Tattersall, Elementary Number Theory in Nine Chapters, Cambridge University Press, 1999, page 162.

Crossrefs

Cf. A038044, A143127 (partial sums), A328722 (Dirichlet inverse).
Column 1 of A329323.

Programs

  • Haskell
    a038040 n = a000005 n * n  -- Reinhard Zumkeller, Jan 21 2014
    
  • Maple
    with(numtheory): A038040 := n->tau(n)*n;
  • Mathematica
    a[n_] := DivisorSigma[0, n]*n; Table[a[n], {n, 1, 60}] (* Jean-François Alcover, Sep 03 2012 *)
  • MuPAD
    n*numlib::tau (n)$ n=1..90 // Zerinvary Lajos, May 13 2008
    
  • PARI
    a(n)=if(n<1,0,direuler(p=2,n,1/(1-p*X)^2)[n])
    
  • PARI
    a(n)=if(n<1,0,polcoeff(sum(k=1,n,k*x^k/(x^k-1)^2,x*O(x^n)),n)) /* Michael Somos, Jan 29 2005 */
    
  • PARI
    a(n) = n*numdiv(n); \\ Michel Marcus, Oct 24 2020
    
  • Python
    from sympy import divisor_count as d
    def a(n): return n*d(n)
    print([a(n) for n in range(1, 60)]) # Michael S. Branicky, Mar 15 2022
    
  • SageMath
    [n*sigma(n,0) for n in range(1, 60)] # Stefano Spezia, Jul 20 2025

Formula

Dirichlet g.f.: zeta(s-1)^2.
G.f.: Sum_{n>=1} n*x^n/(1-x^n)^2. - Vladeta Jovovic, Dec 30 2001
Sum_{k=1..n} sigma(gcd(n, k)). Multiplicative with a(p^e) = (e+1)*p^e. - Vladeta Jovovic, Oct 30 2001
Equals A127648 * A127093 * the harmonic series, [1/1, 1/2, 1/3, ...]. - Gary W. Adamson, May 10 2007
Equals row sums of triangle A127528. - Gary W. Adamson, May 21 2007
a(n) = n*A000005(n) = A066186(n) - n*(A000041(n) - A000005(n)) = A066186(n) - n*A144300(n). - Omar E. Pol, Jan 18 2013
a(n) = A000203(n) * A240471(n) + A106315(n). - Reinhard Zumkeller, Apr 06 2014
L.g.f.: Sum_{k>=1} x^k/(1 - x^k) = Sum_{n>=1} a(n)*x^n/n. - Ilya Gutkovskiy, May 13 2017
a(n) = Sum_{d|n} A018804(d). - Amiram Eldar, Jun 23 2020
a(n) = Sum_{d|n} phi(d)*sigma(n/d). - Ridouane Oudra, Jan 21 2021
G.f.: Sum_{n >= 1} q^(n^2)*(n^2 + 2*n*q^n - n^2*q^(2*n))/(1 - q^n)^2. - Peter Bala, Jan 22 2021
a(n) = Sum_{k=1..n} sigma(n/gcd(n,k))*phi(gcd(n,k))/phi(n/gcd(n,k)). - Richard L. Ollerton, May 07 2021
Define f(x) = #{n <= x: a(n) <= x}. Gabdullin & Iudelevich show that f(x) ~ x/sqrt(log x). That is, there are 0 < A < B such that Ax/sqrt(log x) < f(x) < Bx/sqrt(log x). - Charles R Greathouse IV, Mar 15 2022
Sum_{k=1..n} a(k) ~ n^2*log(n)/2 + (gamma - 1/4)*n^2, where gamma is Euler's constant (A001620). - Amiram Eldar, Oct 25 2022
Mobius transform of A060640. - R. J. Mathar, Feb 07 2023

A094587 Triangle of permutation coefficients arranged with 1's on the diagonal. Also, triangle of permutations on n letters with exactly k+1 cycles and with the first k+1 letters in separate cycles.

Original entry on oeis.org

1, 1, 1, 2, 2, 1, 6, 6, 3, 1, 24, 24, 12, 4, 1, 120, 120, 60, 20, 5, 1, 720, 720, 360, 120, 30, 6, 1, 5040, 5040, 2520, 840, 210, 42, 7, 1, 40320, 40320, 20160, 6720, 1680, 336, 56, 8, 1, 362880, 362880, 181440, 60480, 15120, 3024, 504, 72, 9, 1, 3628800, 3628800
Offset: 0

Views

Author

Paul Barry, May 13 2004

Keywords

Comments

Also, table of Pochhammer sequences read by antidiagonals (see Rudolph-Lilith, 2015). - N. J. A. Sloane, Mar 31 2016
Reverse of A008279. Row sums are A000522. Diagonal sums are A003470. Rows of inverse matrix begin {1}, {-1,1}, {0,-2,1}, {0,0,-3,1}, {0,0,0,-4,1} ... The signed lower triangular matrix (-1)^(n+k)n!/k! has as row sums the signed rencontres numbers Sum_{k=0..n} (-1)^(n+k)n!/k!. (See A000166). It has matrix inverse 1 1,1 0,2,1 0,0,3,1 0,0,0,4,1,...
Exponential Riordan array [1/(1-x),x]; column k has e.g.f. x^k/(1-x). - Paul Barry, Mar 27 2007
From Tom Copeland, Nov 01 2007: (Start)
T is the umbral extension of n!*Lag[n,(.)!*Lag[.,x,-1],0] = (1-D)^(-1) x^n = (-1)^n * n! * Lag(n,x,-1-n) = Sum_{j=0..n} binomial(n,j) * j! * x^(n-j) = Sum_{j=0..n} (n!/j!) x^j. The inverse operator is A132013 with generalizations discussed in A132014.
b = T*a can be characterized several ways in terms of a(n) and b(n) or their o.g.f.'s A(x) and B(x).
1) b(n) = n! Lag[n,(.)!*Lag[.,a(.),-1],0], umbrally,
2) b(n) = (-1)^n n! Lag(n,a(.),-1-n)
3) b(n) = Sum_{j=0..n} (n!/j!) a(j)
4) B(x) = (1-xDx)^(-1) A(x), formally
5) B(x) = Sum_{j=0,1,...} (xDx)^j A(x)
6) B(x) = Sum_{j=0,1,...} x^j * D^j * x^j A(x)
7) B(x) = Sum_{j=0,1,...} j! * x^j * L(j,-:xD:,0) A(x) where Lag(n,x,m) are the Laguerre polynomials of order m, D the derivative w.r.t. x and (:xD:)^j = x^j * D^j. Truncating the operator series at the j = n term gives an o.g.f. for b(0) through b(n).
c = (0!,1!,2!,3!,4!,...) is the sequence associated to T under the list partition transform and the associated operations described in A133314 so T(n,k) = binomial(n,k)*c(n-k). The reciprocal sequence is d = (1,-1,0,0,0,...). (End)
From Peter Bala, Jul 10 2008: (Start)
This array is the particular case P(1,1) of the generalized Pascal triangle P(a,b), a lower unit triangular matrix, shown below:
n\k|0.....................1...............2.......3......4
----------------------------------------------------------
0..|1.....................................................
1..|a....................1................................
2..|a(a+b)...............2a..............1................
3..|a(a+b)(a+2b).........3a(a+b).........3a........1......
4..|a(a+b)(a+2b)(a+3b)...4a(a+b)(a+2b)...6a(a+b)...4a....1
...
The entries A(n,k) of this array satisfy the recursion A(n,k) = (a+b*(n-k-1))*A(n-1,k) + A(n-1,k-1), which reduces to the Pascal formula when a = 1, b = 0.
Various cases are recorded in the database, including: P(1,0) = Pascal's triangle A007318, P(2,0) = A038207, P(3,0) = A027465, P(2,1) = A132159, P(1,3) = A136215 and P(2,3) = A136216.
When b <> 0 the array P(a,b) has e.g.f. exp(x*y)/(1-b*y)^(a/b) = 1 + (a+x)*y + (a*(a+b)+2a*x+x^2)*y^2/2! + (a*(a+b)*(a+2b) + 3a*(a+b)*x + 3a*x^2+x^3)*y^3/3! + ...; the array P(a,0) has e.g.f. exp((x+a)*y).
We have the matrix identities P(a,b)*P(a',b) = P(a+a',b); P(a,b)^-1 = P(-a,b).
An analog of the binomial expansion for the row entries of P(a,b) has been proved by [Echi]. Introduce a (generally noncommutative and nonassociative) product ** on the ring of polynomials in two variables by defining F(x,y)**G(x,y) = F(x,y)G(x,y) + by^2*d/dy(G(x,y)).
Define the iterated product F^(n)(x,y) of a polynomial F(x,y) by setting F^(1) = F(x,y) and F^(n)(x,y) = F(x,y)**F^(n-1)(x,y) for n >= 2. Then (x+a*y)^(n) = x^n + C(n,1)*a*x^(n-1)*y + C(n,2)*a*(a+b)*x^(n-2)*y^2 + ... + C(n,n)*a*(a+b)*(a+2b)*...*(a+(n-1)b)*y^n. (End)
(n+1) * n-th row = reversal of triangle A068424: (1; 2,2; 6,6,3; ...) - Gary W. Adamson, May 03 2009
Let G(m, k, p) = (-p)^k*Product_{j=0..k-1}(j - m - 1/p) and T(n,k,p) = G(n-1,n-k,p) then T(n, k, 1) is this sequence, T(n, k, 2) = A112292(n, k) and T(n, k, 3) = A136214. - Peter Luschny, Jun 01 2009, revised Jun 18 2019
The higher order exponential integrals E(x,m,n) are defined in A163931. For a discussion of the asymptotic expansions of the E(x,m=1,n) ~ (exp(-x)/x)*(1 - n/x + (n^2+n)/x^2 - (2*n+3*n^2+n^3)/x^3 + (6*n+11*n^2+6*n^3+n^4)/x^3 - ...) see A130534. The asymptotic expansion of E(x,m=1,n) leads for n >= 1 to the left hand columns of the triangle given above. Triangle A165674 is generated by the asymptotic expansions of E(x,m=2,n). - Johannes W. Meijer, Oct 07 2009
T(n,k) = n!/k! = number of permutations of [n+1] with exactly k+1 cycles and with elements 1,2,...,k+1 in separate cycles. See link and example below. - Dennis P. Walsh, Jan 24 2011
T(n,k) is the number of n permutations that leave some size k subset of {1,2,...,n} fixed. Sum_{k=0..n}(-1)^k*T(n,k) = A000166(n) (the derangements). - Geoffrey Critzer, Dec 11 2011
T(n,k) = A162995(n-1,k-1), 2 <= k <= n; T(n,k) = A173333(n,k), 1 <= k <= n. - Reinhard Zumkeller, Jul 05 2012
The row polynomials form an Appell sequence. The matrix is a special case of a group of general matrices sketched in A132382. - Tom Copeland, Dec 03 2013
For interpretations in terms of colored necklaces, see A213936 and A173333. - Tom Copeland, Aug 18 2016
See A008279 for a relation of this entry to the e.g.f.s enumerating the faces of permutahedra and stellahedra. - Tom Copeland, Nov 14 2016
Also, T(n,k) is the number of ways to arrange n-k nonattacking rooks on the n X (n-k) chessboard. - Andrey Zabolotskiy, Dec 16 2016
The infinitesimal generator of this triangle is the generalized exponential Riordan array [-log(1-x), x] and equals the unsigned version of A238363. - Peter Bala, Feb 13 2017
Formulas for exponential and power series infinitesimal generators for this triangle T are given in Copeland's 2012 and 2014 formulas as T = unsigned exp[(I-A238385)] = 1/(I - A132440), where I is the identity matrix. - Tom Copeland, Jul 03 2017
If A(0) = 1/(1-x), and A(n) = d/dx(A(n-1)), then A(n) = n!/(1-x)^(n+1) = Sum_{k>=0} (n+k)!/k!*x^k = Sum_{k>=0} T(n+k, k)*x^k. - Michael Somos, Sep 19 2021

Examples

			Rows begin {1}, {1,1}, {2,2,1}, {6,6,3,1}, ...
For n=3 and k=1, T(3,1)=6 since there are exactly 6 permutations of {1,2,3,4} with exactly 2 cycles and with 1 and 2 in separate cycles. The permutations are (1)(2 3 4), (1)(2 4 3), (1 3)(2 4), (1 4)(2 3), (1 3 4)(2), and (1 4 3)(2). - _Dennis P. Walsh_, Jan 24 2011
Triangle begins:
     1,
     1,    1,
     2,    2,    1,
     6,    6,    3,    1,
    24,   24,   12,    4,    1,
   120,  120,   60,   20,    5,    1,
   720,  720,  360,  120,   30,    6,    1,
  5040, 5040, 2520,  840,  210,   42,    7,    1
The production matrix is:
      1,     1,
      1,     1,     1,
      2,     2,     1,    1,
      6,     6,     3,    1,    1,
     24,    24,    12,    4,    1,   1,
    120,   120,    60,   20,    5,   1,   1,
    720,   720,   360,  120,   30,   6,   1,   1,
   5040,  5040,  2520,  840,  210,  42,   7,   1,   1,
  40320, 40320, 20160, 6720, 1680, 336,  56,   8,   1,   1
which is the exponential Riordan array A094587, or [1/(1-x),x], with an extra superdiagonal of 1's.
Inverse begins:
   1,
  -1,  1,
   0, -2,  1,
   0,  0, -3,  1,
   0,  0,  0, -4,  1,
   0,  0,  0,  0, -5,  1,
   0,  0,  0,  0,  0, -6,  1,
   0,  0,  0,  0,  0,  0, -7,  1
		

Crossrefs

Programs

  • Haskell
    a094587 n k = a094587_tabl !! n !! k
    a094587_row n = a094587_tabl !! n
    a094587_tabl = map fst $ iterate f ([1], 1)
       where f (row, i) = (map (* i) row ++ [1], i + 1)
    -- Reinhard Zumkeller, Jul 04 2012
    
  • Maple
    T := proc(n, m): n!/m! end: seq(seq(T(n, m), m=0..n), n=0..9);  # Johannes W. Meijer, Oct 07 2009, revised Nov 25 2012
    # Alternative: Note that if you leave out 'abs' you get A021009.
    T := proc(n, k) option remember; if n = 0 and k = 0 then 1 elif k < 0 or k > n then 0 else abs((n + k)*T(n-1, k) - T(n-1, k-1)) fi end: #  Peter Luschny, Dec 30 2021
  • Mathematica
    Flatten[Table[Table[n!/k!, {k,0,n}], {n,0,10}]] (* Geoffrey Critzer, Dec 11 2011 *)
  • Sage
    def A094587_row(n): return (factorial(n)*exp(x).taylor(x,0,n)).list()
    for n in (0..7): print(A094587_row(n)) # Peter Luschny, Sep 28 2017

Formula

T(n, k) = n!/k! if n >= k >= 0, otherwise 0.
T(n, k) = Sum_{i=k..n} |S1(n+1, i+1)*S2(i, k)| * (-1)^i, with S1, S2 the Stirling numbers.
T(n,k) = (n-k)*T(n-1,k) + T(n-1,k-1). E.g.f.: exp(x*y)/(1-y) = 1 + (1+x)*y + (2+2*x+x^2)*y^2/2! + (6+6*x+3*x^2+x^3)*y^3/3!+ ... . - Peter Bala, Jul 10 2008
A094587 = 1 / ((-1)*A129184 * A127648 + I), I = Identity matrix. - Gary W. Adamson, May 03 2009
From Johannes W. Meijer, Oct 07 2009: (Start)
The o.g.f. of right hand column k is Gf(z;k) = (k-1)!/(1-z)^k, k => 1.
The recurrence relations of the right hand columns lead to Pascal's triangle A007318. (End)
Let f(x) = (1/x)*exp(-x). The n-th row polynomial is R(n,x) = (-x)^n/f(x)*(d/dx)^n(f(x)), and satisfies the recurrence equation R(n+1,x) = (x+n+1)*R(n,x)-x*R'(n,x). Cf. A132159. - Peter Bala, Oct 28 2011
A padded shifted version of this lower triangular matrix with zeros in the first column and row except for a one in the diagonal position is given by integral(t=0 to t=infinity) exp[-t(I-P)] = 1/(I-P) = I + P^2 + P^3 + ... where P is the infinitesimal generator matrix A218234 and I the identity matrix. The non-padded version is given by P replaced by A132440. - Tom Copeland, Oct 25 2012
From Peter Bala, Aug 28 2013: (Start)
The row polynomials R(n,x) form a Sheffer sequence of polynomials with associated delta operator equal to d/dx. Thus d/dx(R(n,x)) = n*R(n-1,x). The Sheffer identity is R(n,x + y) = Sum_{k=0..n} binomial(n,k)*y^(n-k)*R(k,x).
Let P(n,x) = Product_{k=0..n-1} (x + k) denote the rising factorial polynomial sequence with the convention that P(0,x) = 1. Then this is triangle of connection constants when expressing the basis polynomials P(n,x + 1) in terms of the basis P(n,x). For example, row 3 is (6, 6, 3, 1) so P(3,x + 1) = (x + 1)*(x + 2)*(x + 3) = 6 + 6*x + 3*x*(x + 1) + x*(x + 1)*(x + 2). (End)
From Tom Copeland, Apr 21 & 26, and Aug 13 2014: (Start)
T-I = M = -A021009*A132440*A021009 with e.g.f. y*exp(x*y)/(1-y). Cf. A132440. Dividing the n-th row of M by n generates the (n-1)th row of T.
T = 1/(I - A132440) = {2*I - exp[(A238385-I)]}^(-1) = unsigned exp[(I-A238385)] = exp[A000670(.)*(A238385-I)] = , umbrally, where I = identity matrix.
The e.g.f. is exp(x*y)/(1-y), so the row polynomials form an Appell sequence with lowering operator d/dx and raising operator x + 1/(1-D).
With L(n,m,x)= Laguerre polynomials of order m, the row polynomials are (-1)^n*n!*L(n,-1-n,x) = (-1)^n*(-1!/(-1-n)!)*K(-n,-1-n+1,x) = n!* K(-n,-n,x) where K is Kummer's confluent hypergeometric function (as a limit of n+s as s tends to zero).
Operationally, (-1)^n*n!*L(n,-1-n,-:xD:) = (-1)^n*x^(n+1)*:Dx:^n*x^(-1-n) = (-1)^n*x*:xD:^n*x^(-1) = (-1)^n*n!*binomial(xD-1,n) = n!*K(-n,-n,-:xD:) where :AB:^n = A^n*B^n for any two operators. Cf. A235706 and A132159.
The n-th row of signed M has the coefficients of d[(-:xD:)^n]/d(:Dx:)= f[d/d(-:xD:)](-:xD:)^n with f(y)=y/(y-1), :Dx:^n= n!L(n,0,-:xD:), and (-:xD:)^n = n!L(n,0,:Dx:). M has the coefficients of [D/(1-D)]x^n. (End)
From Tom Copeland, Nov 18 2015: (Start)
Coefficients of the row polynomials of the e.g.f. Sum_{n>=0} P_n(b1,b2,..,bn;t) x^n/n! = e^(P.(..;t) x) = e^(xt) / (1-b.x) = (1 + b1 x + b2 x^2 + b3 x^3 + ...) e^(xt) = 1 + (b1 + t) x + (2 b2 + 2 b1 t + t^2) x^2/2! + (6 b3 + 6 b2 t + 3 b1 t^2 + t^3) x^3/3! + ... , with lowering operator L = d/dt, i.e., L P_n(..;t) = n * P_(n-1)(..;t), and raising operator R = t + d[log(1 + b1 D + b2 D^2 + ...)]/dD = t - Sum_{n>=1} F(n,b1,..,bn) D^(n-1), i.e., R P_n(..,;t) = P_(n+1)(..;t), where D = d/dt and F(n,b1,..,bn) are the Faber polynomials of A263916.
Also P_n(b1,..,bn;t) = CIP_n(t-F(1,b1),-F(2,b1,b2),..,-F(n,b1,..,bn)), the cycle index polynomials A036039.
(End)
The raising operator R = x + 1/(1-D) = x + 1 + D + D^2 + ... in matrix form acting on an o.g.f. (formal power series) is the transpose of the production matrix M below. The linear term x is the diagonal of ones after transposition. The other transposed diagonals come from D^m x^n = n! / (n-m)! x^(n-m). Then P(n,x) = (1,x,x^2,..) M^n (1,0,0,..)^T is a matrix representation of R P(n-1,x) = P(n,x). - Tom Copeland, Aug 17 2016
The row polynomials have e.g.f. e^(xt)/(1-t) = exp(t*q.(x)), umbrally. With p_n(x) the row polynomials of A132013, q_n(x) = v_n(p.(u.(x))), umbrally, where u_n(x) = (-1)^n v_n(-x) = (-1)^n Lah_n(x), the Lah polynomials with e.g.f. exp[x*t/(t-1)]. This has the matrix form [T] = [q] = [v]*[p]*[u]. Conversely, p_n(x) = u_n (q.(v.(x))). - Tom Copeland, Nov 10 2016
From the Appell sequence formalism, 1/(1-b.D) t^n = P_n(b1,b2,..,bn;t), the generalized row polynomials noted in the Nov 18 2015 formulas, consistent with the 2007 comments. - Tom Copeland, Nov 22 2016
From Peter Bala, Feb 18 2017: (Start)
G.f.: Sum_{n >= 1} (n*x)^(n-1)/(1 + (n - t)*x)^n = 1 + (1 + t)*x + (2 + 2*t + t^2)*x^2 + ....
n-th row polynomial R(n,t) = Sum_{k = 0..n} (-1)^(n-k)*binomial(n,k)*(x + k)^k*(x + k - t)^(n-k) = Sum_{k = 0..n} (-1)^(n-k)*binomial(n,k)*(x + k)^(n-k)*(x + k + t)^k, for arbitrary x. The particular case of the latter sum when x = 0 and t = 1 is identity 10.35 in Gould, Vol.4. (End)
Rodrigues-type formula for the row polynomials: R(n, x) = -exp(x)*Int(exp(-x)* x^n, x), for n >= 0. Recurrence: R(n, x) = x^n + n*R(n-1, x), for n >= 1, and R(0, x) = 1. d/dx(R(n, x)) = R(n, x) - x^n, for n >= 0 (compare with the formula from Peter Bala, Aug 28 2013). - Wolfdieter Lang, Dec 23 2019
T(n, k) = Sum_{i=0..n-k} A048994(n-k, i) * n^i for 0 <= k <= n. - Werner Schulte, Jul 26 2022

Extensions

Edited by Johannes W. Meijer, Oct 07 2009
New description from Dennis P. Walsh, Jan 24 2011

A127773 Triangle read by rows: row n consists of n-1 zeros followed by n(n+1)/2.

Original entry on oeis.org

1, 0, 3, 0, 0, 6, 0, 0, 0, 10, 0, 0, 0, 0, 15, 0, 0, 0, 0, 0, 21, 0, 0, 0, 0, 0, 0, 28, 0, 0, 0, 0, 0, 0, 0, 36, 0, 0, 0, 0, 0, 0, 0, 0, 45, 0, 0, 0, 0, 0, 0, 0, 0, 0, 55, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 66, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 78
Offset: 1

Views

Author

Gary W. Adamson, Jan 28 2007

Keywords

Examples

			First few rows of the triangle are:
  1;
  0, 3;
  0, 0, 6;
  0, 0, 0, 10;
  0, 0, 0, 0, 15;
  ...
		

Crossrefs

Programs

  • Mathematica
    Flatten[Table[{(n(n+1))/2,Table[0,{n}]},{n,10}]]  (* Harvey P. Dale, Apr 03 2011 *)
    Table[PadLeft[{n (n+1)/2},n,0],{n,10}]//Flatten (* Harvey P. Dale, Jan 18 2025 *)
  • Python
    from sympy.ntheory.primetest import is_square
    def A127773(n): return n if is_square((n<<3)+1) else 0 # Chai Wah Wu, Jun 09 2025

A103406 Triangle read by rows: n-th row = unsigned coefficients of the characteristic polynomials of an n X n matrix with 2's on the diagonal and 1's elsewhere.

Original entry on oeis.org

1, 1, 2, 1, 4, 3, 1, 6, 9, 4, 1, 8, 18, 16, 5, 1, 10, 30, 40, 25, 6, 1, 12, 45, 80, 75, 36, 7, 1, 14, 63, 140, 175, 126, 49, 8, 1, 16, 84, 224, 350, 336, 196, 64, 9, 1, 18, 108, 336, 630, 756, 588, 288, 81, 10, 1, 20, 135, 480, 1050, 1512, 1470, 960, 405, 100, 11, 1, 22, 165
Offset: 0

Views

Author

Gary W. Adamson, Feb 04 2005

Keywords

Comments

This triangle * [1/1, 1/2, 1/3, ...] = (1, 2, 4, 8, 16, 32, ...). - Gary W. Adamson, Nov 15 2007
Triangle read by rows: T(n,k) = (k+1)*binomial(n,k), 0 <= k <= n. - Philippe Deléham, Apr 20 2009

Examples

			Characteristic polynomial of 3 X 3 matrix [2 1 1 / 1 2 1 / 1 1 2] = x^3 - 6x^2 + 9x - 4.
The first few characteristic polynomials are:
  1
  x - 2
  x^2 - 4x + 3
  x^3 - 6x^2 + 9x - 4
  x^4 - 8x^3 + 18x^2 - 16x + 5
		

Crossrefs

Row sums = A001792: 1, 3, 8, 20, 48, 112, ...
See A103283 for the mirror image.

Programs

  • Maple
    with(linalg): printf(`%d,`,1): for n from 1 to 15 do mymat:=array(1..n, 1..n): for i from 1 to n do for j from 1 to n do if i=j then mymat[i,j]:=2 else mymat[i,j]:=1 fi: od: od: temp:=charpoly(mymat,x): for j from n to 0 by -1 do printf(`%d,`,abs(coeff(temp, x, j))) od: od: # James Sellers, Apr 22 2005
    p := (n,x) -> (x+1)^(n-1)+(x+1)^(n-2)*(n-1);
    seq(seq(coeff(p(n,x),x,n-j-1),j=0..n-1),n=1..11); # Peter Luschny, Feb 25 2014
  • Mathematica
    t[n_, k_] := (k+1)*Binomial[n, k]; Table[t[n, k], {n, 0, 11}, {k, 0, n}] // Flatten (* Jean-François Alcover, Oct 09 2012, after Philippe Deléham *)

Formula

Binomial transform of A127648. - Gary W. Adamson, Nov 15 2007
Equals A128064 * A007318. - Gary W. Adamson, Jan 03 2008
T(n,k) = (k+1)*A007318(n,k). - Philippe Deléham, Apr 20 2009
T(n,k) = Sum_{i=1..k+1} i*binomial(k+1,i)*binomial(n-k,k+1-i). - Mircea Merca, Apr 11 2012
O.g.f.: (1 - y)/(1 - y - x*y)^2 = 1 + (1 + 2*x)*y + (1 + 4*x + 3*x*2)*y^2 + .... - Peter Bala, Oct 18 2023

Extensions

More terms from James Sellers, Apr 22 2005

A132812 Triangle read by rows, n>=1, 1<=k<=n, T(n,k) = k*binomial(n,k)^2/(n-k+1).

Original entry on oeis.org

1, 2, 2, 3, 9, 3, 4, 24, 24, 4, 5, 50, 100, 50, 5, 6, 90, 300, 300, 90, 6, 7, 147, 735, 1225, 735, 147, 7, 8, 224, 1568, 3920, 3920, 1568, 224, 8, 9, 324, 3024, 10584, 15876, 10584, 3024, 324, 9, 10, 450, 5400, 25200, 52920, 52920, 25200, 5400, 450, 10
Offset: 1

Views

Author

Gary W. Adamson, Sep 01 2007

Keywords

Comments

A127648 * A001263. (Original name by Gary W. Adamson.)
Let a meander be defined as in the link and m = 2. Then T(n,k) counts the invertible meanders of length m(n+1) built from arcs with central angle 360/m whose binary representation have mk '1's. - Peter Luschny, Dec 19 2011
Antidiagonal sums = A110320. - Philippe Deléham, Jun 08 2013

Examples

			First few rows of the triangle are:
  1;
  2, 2;
  3, 9, 3;
  4, 24, 24, 4;
  5, 50, 100, 50, 5;
  6, 90, 300, 300, 90, 6;
  ...
Row 4 = (4, 24, 24, 4) = 4 * (1, 6, 6, 1), where (1, 6, 6, 1) = row 4 of the Narayana triangle. - _Gary W. Adamson_
T(3,1) = 3 because the invertible meanders of length 8 and central angle 180 degree which have two '1's in their binary representation are {10000100, 10010000, 11000000}. - _Peter Luschny_, Dec 19 2011
		

Crossrefs

Programs

  • Maple
    A132812 := (n,k) -> k*binomial(n,k)^2/(n-k+1);
    seq(print(seq(A132812(n,k),k=0..n-1)),n=1..6); # Peter Luschny, Dec 19 2011
  • Mathematica
    Table[k Binomial[n, k]^2/(n - k + 1), {n, 10}, {k, n}] // Flatten (* Michael De Vlieger, Nov 15 2017 *)

Formula

A127648 * A001263 as infinite lower triangular matrices.
a(n) = n * A001263(n,k).
T(n,k) = binomial(n,k)*binomial(n,k-1). - Philippe Deléham, Jun 08 2013
G.f.: x*d(N(x,y))/dx, where N(x,y) is g.f. for Narayana numbers A001263. - Vladimir Kruchinin, Oct 22 2021

Extensions

New name from Peter Luschny, Dec 19 2011
a(53) corrected by Michael De Vlieger, Nov 15 2017

A127368 Relative prime triangle, read by rows.

Original entry on oeis.org

1, 1, 0, 1, 2, 0, 1, 0, 3, 0, 1, 2, 3, 4, 0, 1, 0, 0, 0, 5, 0, 1, 2, 3, 4, 5, 6, 0, 1, 0, 3, 0, 5, 0, 7, 0, 1, 2, 0, 4, 5, 0, 7, 8, 0, 1, 0, 3, 0, 0, 0, 7, 0, 9, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 0, 1, 0, 0, 0, 5, 0, 7, 0, 0, 0, 11, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 0
Offset: 1

Views

Author

Gary W. Adamson, Jan 11 2007

Keywords

Comments

Row sums = A023896, (reduced residue system mod n): (1, 1, 3, 4, 10, 6, 21, ...). - Gary W. Adamson, Aug 27 2008

Examples

			Row 4 = (1, 0, 3, 0) since 1 and 3 are relative primes of 4.
First few rows of the triangle are:
  1;
  1, 0;
  1, 2, 0;
  1, 0, 3, 0;
  1, 2, 3, 4, 0;
  1, 0, 0, 0, 5, 0;
  1, 2, 3, 4, 5, 6, 0;
  ...
		

Crossrefs

Programs

  • PARI
    T127368(n,k)={gcd(n,k)==1 & return(k)}
    A127368(n)=T127368( t=(sqrt(8*n)+1)\2, n-binomial(t, 2)) \\ M. F. Hasler, Mar 02 2012

Formula

T(n,k) = k if a relative prime of n; 0 otherwise. Replace the "1's" of A054521 with their corresponding column numbers; leaving the zeros.
Equals A054521 * A127648 as infinite lower triangular matrices. - Gary W. Adamson, Aug 27 2008

Extensions

Corrected at the suggestion of Kevin Ryde by Alois P. Heinz, Mar 02 2012

A127775 Triangle read by rows: row n consists of n-1 zeros followed by 2n-1.

Original entry on oeis.org

1, 0, 3, 0, 0, 5, 0, 0, 0, 7, 0, 0, 0, 0, 9, 0, 0, 0, 0, 0, 11, 0, 0, 0, 0, 0, 0, 13, 0, 0, 0, 0, 0, 0, 0, 15, 0, 0, 0, 0, 0, 0, 0, 0, 17, 0, 0, 0, 0, 0, 0, 0, 0, 0, 19, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 21, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 23, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 25, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
Offset: 1

Views

Author

Gary W. Adamson, Jan 28 2007

Keywords

Comments

a(A000217(n)) = A005408(n-1), T(n,n) = 2*n - 1. - Reinhard Zumkeller, Feb 11 2007

Examples

			First few rows of the triangle are:
1;
0, 3;
0, 0, 5;
0, 0, 0, 7;
...
		

Crossrefs

Formula

T(n,k) = (2*n - 1) * 0^(n - k), 1<=k<=n. - Reinhard Zumkeller, Feb 11 2007

Extensions

More terms from Reinhard Zumkeller, Feb 11 2007

A125093 Triangle T(n,k) = n*A054525(n,k) read by rows.

Original entry on oeis.org

1, -2, 2, -3, 0, 3, 0, -4, 0, 4, -5, 0, 0, 0, 5, 6, -6, -6, 0, 0, 6, -7, 0, 0, 0, 0, 0, 7, 0, 0, 0, -8, 0, 0, 0, 8, 0, 0, -9, 0, 0, 0, 0, 0, 9, 10, -10, 0, 0, -10, 0, 0, 0, 0, 10, -11, 0, 0, 0, 0, 0, 0, 0, 0, 0, 11, 0, 12, 0, -12, 0, -12, 0, 0, 0, 0, 0, 12, -13, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 13, 14, -14, 0, 0, 0, 0, -14, 0, 0, 0, 0, 0, 0, 14, 15, 0, -15, 0
Offset: 1

Views

Author

Gary W. Adamson, Jan 22 2007

Keywords

Examples

			First few rows of the triangle are:
1;
-2, 2;
-3, 0, 3;
0, -4, 0, 4;
-5, 0, 0, 0, 5;
6, -6, -6, 0, 0, 6;
-7, 0, 0, 0, 0, 0, 7;
...
		

Crossrefs

Programs

  • Maple
    A125093 := proc(n,k) if n = k then n; elif n mod k = 0 then n*numtheory[mobius](n/k) ; else 0; end if; end proc:
    seq(seq(A125093(n,k),k=1..n),n=1..16) ; # R. J. Mathar, Apr 10 2011

Formula

T(n,1) = n*mu(n) = A055615(n).

Extensions

Offset and definition corrected by R. J. Mathar, Apr 10 2011

A127638 A054525 * A127640, where A127640 = infinite lower triangular matrix with the sequence of primes in the main diagonal and the rest zeros.

Original entry on oeis.org

2, -2, 3, -2, 0, 5, 0, -3, 0, 7, -2, 0, 0, 0, 11, 2, -3, -5, 0, 0, 13, -2, 0, 0, 0, 0, 0, 17, 0, 0, 0, -7, 0, 0, 0, 19, 0, 0, -5, 0, 0, 0, 0, 0, 23, 2, -3, 0, 0, -11, 0, 0, 0, 0, 29, -2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 31, 0, 3, 0, -7, 0, -13, 0, 0, 0, 0, 0, 37, -2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 41, 2, -3, 0, 0, 0, 0, -17, 0, 0, 0, 0, 0, 0, 43, 2, 0, -5, 0, -11, 0, 0
Offset: 1

Views

Author

Gary W. Adamson, Jan 21 2007

Keywords

Comments

Right diagonal = primes: (2, 3, 5, 7, ...). Row sums = the Mobius transform of primes, A007444: (2, 1, 3, 4, 9, 7, ...).

Examples

			First few rows of the triangle:
   2;
  -2,  3;
  -2,  0,  5;
   0, -3,  0, 7;
  -2,  0,  0, 0, 11;
   2, -3, -5, 0,  0, 13;
  ...
		

Crossrefs

Programs

  • Maple
    A054525 := proc(n,k) if n mod k = 0 then numtheory[mobius](n/k) ; else 0 ; fi ; end: A127648 := proc(n,k) A054525(n,k)*ithprime(k) ; end: for n from 1 to 16 do for k from 1 to n do printf("%d,", A127648(n,k)) ; od ; od ; # R. J. Mathar, Mar 14 2007

Extensions

More terms from R. J. Mathar, Mar 14 2007
Previous Showing 21-30 of 39 results. Next