cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 22 results. Next

A094262 Triangle read by rows: T(n,k) is the number of rooted trees with k nodes which are disjoint sets of labels with union {1..n}. If a node has an empty set of labels then it must have at least two children.

Original entry on oeis.org

1, 1, 2, 1, 1, 6, 12, 10, 3, 1, 14, 61, 124, 131, 70, 15, 1, 30, 240, 890, 1830, 2226, 1600, 630, 105, 1, 62, 841, 5060, 16990, 35216, 47062, 40796, 22225, 6930, 945, 1, 126, 2772, 25410, 127953, 401436, 836976, 1196532, 1182195, 795718, 349020, 90090, 10395
Offset: 1

Views

Author

André F. Labossière, Jun 01 2004

Keywords

Comments

The original name for this sequence was "Triangle read by rows giving the coefficients of formulas generating each variety of S2(n,k) (Stirling numbers of 2nd kind). The p-th row (p>=1) contains T(i,p) for i=1 to 2*p-1, where T(i,p) satisfies Sum_{i=1..2*p-1} T(i,p) * C(n-p,i-1)".
The terms of the n-th diagonal sequence of the triangle of Stirling numbers of the second kind A008277, i.e., (Stirling2(N + n - 1,N)), N>=1, are given by a polynomial in N of degree 2*n - 2. This polynomial may be expressed as a linear combination of the falling factorial polynomials binomial(N - n,0), binomial(N - n,1), ... , binomial(N - n,2*n - 2). This table gives the coefficients in these expansions.
The formulas obtained are those for Stirling2(N+1,N) (A000217), Stirling2(N+2,N) (A001296), Stirling2(N+3,N) (A001297), Stirling2(N+4,N) (A001298), Stirling2(N+5,N) (A112494), Stirling2(N+6,N) (A144969) and so on.

Examples

			Row 5 contains 1,30,240,890,1830,2226,1600,630,105, so the formula generating Stirling2(n+4,n) numbers (A001298) will be the following: 1 + 30*(n-5) + 240*C(n-5,2) + 890*C(n-5,3) + 1830*C(n-5,4) + 2226*C(n-5,5) + 1600*C(n-5,6) + 630*C(n-5,7) + 105*C(n-5,8). For example, taking n = 9 gives Stirling2(13,9) = 359502.
Triangle starts:
  1;
  1,  2,   1;
  1,  6,  12,  10,    3;
  1, 14,  61, 124,  131,   70,   15;
  1, 30, 240, 890, 1830, 2226, 1600, 630, 105;
  ...
From _Peter Bala_, Jun 14 2016: (Start)
Connection with row polynomials of A134991:
  R(2,z) = (1 + z)^2*z
  R(3,z) = (1 + z)^2*(z + 3*z^2)
  R(4,z) = (1 + z)^4*(z + 10*z^2 + 15*z^3)
  R(5,z) = (1 + z)^5*(z + 25*z^2 + 105*z^3 + 105*z^4). (End)
From _Andrew Howroyd_, Mar 28 2025: (Start)
The T(3,3) = 12 trees up to relabeling have one of the following 3 forms:
     {}         {1}        {1}
    /  \       /   \        |
  {1} {2,3}   {2}  {3}     {2}
                            |
                           {3}
(End)
		

Crossrefs

Programs

  • Maple
    row_poly := n -> (1+z)^(n+1)*add(z^k*add((-1)^(m+k)*binomial(n+k,n+m)*Stirling2(n+m,m), m=0..k), k=0..n): T_row := n -> seq(coeff(row_poly(n),z,j),j=1..2*n+1):
    seq(T_row(n),n=0..6); # Peter Luschny, Jun 15 2016
  • Mathematica
    Clear[T, q, u]; T[0] = q[1];T[n_] := Sum[m*(u^2*q[m] + 2*u*q[m+1] + q[m+2])*D[T[n-1], q[m]], {m, 1, 2*n+1}]; row[n_] := List @@ Expand[T[n-1]] /. {u -> 1, q[] -> 1}; Table[row[n], {n, 1, 7}] // Flatten (* _Jean-François Alcover, Jun 12 2015 *)
  • PARI
    T(n)={my(g=serreverse(log(((1+1/y)*x+1)/exp(x + O(x*x^n))))); [Vecrev(p/y) | p<-Vec(serlaplace(g))]}
    { my(A=T(5)); for(i=1, #A, print(A[i])) } \\ Andrew Howroyd, Mar 28 2025

Formula

Apparently, a raising operator for bivariate polynomials P(n,u,z) having these coefficients is R = (u+z)^2 * z * d/dz with P(0,u,z) = z. E.g., R P(1,u,z) = R^2 P(0,u,z) = R^2 z = u^4 z + 6 u^3 z^2 + 12 u^2 z^3 + 10 u z^4 + 3 z^5 = P(2,u,z). See the Kazarian link. - Tom Copeland, Jun 12 2015
Reverse polynomials seem to be generated by 1 + exp[t*(x+1+z)^2*(1+z)d/dz]z evaluated at z = 0. - Tom Copeland, Jun 13 2015
From Peter Bala, Jun 14 2016: (Start)
T(n,k) = k*T(n,k) + 2*(k - 1)*T(n,k-1) + (k - 2)*T(n,k-2).
n-th diagonal of A008277: Stirling2(N + n - 1,N) = Sum_{k = 1..2*n - 1} T(n,k)*binomial(N - n,k - 1) for N = 1,2,3,....
Row polynomials R(n,z) = Sum_{k >= 1} k^(n+k-1)*( z/(1 + z)*exp(-z/(1 + z)) )^k/k!, n = 1,2,..., follows from the formula given in A008277 for the o.g.f.'s of the diagonals of the Stirling numbers of the second kind.
Consequently, R(n+1,z) = (1 + z)^2*z*d/dz(R(n,z)) for n >= 1 as conjectured above by Copeland.
R(n,z) = (1 + z)^n*P(n,z) where P(n,z) are the row polynomials of A134991.
R(n,z) = (1 + z)^(2*n+1)*B(n,z/(1 + z)), where B(n,z) are the row polynomials of the triangle of second-order Eulerian numbers A008517 (see Barbero et al., Section 6, equation 27). (End)
Based on the comment of Bala the row polynomials have the explicit form R(n, z) = (1+z)^(n+1)*Sum_{k=0..n}(z^k*Sum_{m=0..k}((-1)^(m+k)*binomial(n+k, n+m)* Stirling2(n+m,m))). - Peter Luschny, Jun 15 2016
E.g.f. G(x,y) satisfies G(x,y) = y*(exp(x)*exp(G(x,y)) - G(x,y) - 1). - Andrew Howroyd, Mar 28 2025

Extensions

Edited and Name changed by Peter Bala, Jun 16 2016
Name changed by Andrew Howroyd, Mar 28 2025

A008791 a(n) = n^(n+5).

Original entry on oeis.org

0, 1, 128, 6561, 262144, 9765625, 362797056, 13841287201, 549755813888, 22876792454961, 1000000000000000, 45949729863572161, 2218611106740436992, 112455406951957393129, 5976303958948914397184, 332525673007965087890625
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

Formula

E.g.f.(x): T*(1 + 52*T + 328*T^2 + 444*T^3 + 120*T^4)*(1-T)^(-11); where T=T(x) is Euler's tree function (see A000169). - Len Smiley, Nov 17 2001
See A008517 and A134991 for similar e.g.f.s and diagonals of A048993. - Tom Copeland, Oct 03 2011
E.g.f.: d^5/dx^5 {x^5/(T(x)^5*(1-T(x)))}, where T(x) = Sum_{n>=1} n^(n-1)*x^n/n! is the tree function of A000169. - Peter Bala, Aug 05 2012

A112493 Triangle read by rows, T(n, k) = Sum_{j=0..n} C(n-j, n-k)*E2(n, j), where E2 are the second-order Eulerian numbers A201637, for n >= 0 and 0 <= k <= n.

Original entry on oeis.org

1, 1, 1, 1, 4, 3, 1, 11, 25, 15, 1, 26, 130, 210, 105, 1, 57, 546, 1750, 2205, 945, 1, 120, 2037, 11368, 26775, 27720, 10395, 1, 247, 7071, 63805, 247555, 460845, 405405, 135135, 1, 502, 23436, 325930, 1939630, 5735730, 8828820, 6756750, 2027025, 1
Offset: 0

Views

Author

Wolfdieter Lang, Oct 14 2005

Keywords

Comments

Previous name was: Coefficient triangle of polynomials used for e.g.f.s of Stirling2 diagonals.
For the o.g.f. of diagonal k of the Stirling2 triangle one has a similar result. See A008517 (second-order Eulerian triangle).
A(m,x), the o.g.f. for column m, satisfies the recurrence A(m,x) = x*(x*(d/dx)A(m-1,x) + m*A(m-1,x))/(1-(m+1)*x), for m >= 1 and A(0,x) = 1/(1-x).
The e.g.f. for the sequence in column k+1, k >= 0, of A008278, i.e., for the diagonal k >= 0 of the Stirling2 triangle A048993, is exp(x)*Sum_{m=0..k} a(k,m)*(x^(m+k))/(m+k)!.
It appears that the triangles in this sequence and A124324 have identical columns, except for shifts. - Jörgen Backelin, Jun 20 2022
A refined version of this triangle is given in A356145, which contains a link providing the precise relationship between A124324 and this entry, confirming Jörgen Backelin's observation above. - Tom Copeland, Sep 24 2022

Examples

			Triangle starts:
  [1]
  [1, 1]
  [1, 4,  3]
  [1, 11, 25,  15]
  [1, 26, 130, 210,  105]
  [1, 57, 546, 1750, 2205, 945]
  ...
The e.g.f. of [0,0,1,7,25,65,...], the k=3 column of A008278, but with offset n=0, is exp(x)*(1*(x^2)/2! + 4*(x^3)/3! + 3*(x^4)/4!).
Third row [1,4,3]: There are three plane increasing trees on 3 vertices. The number of colors are shown to the right of a vertex.
...................................................
....1o.(1+t)...........1o.t*(1+t).....1o.t*(1+t)...
....|................. /.\............/.\..........
....|................ /...\........../...\.........
....2o.(1+t)........2o.....3o......3o....2o........
....|..............................................
....|..............................................
....3o.............................................
...................................................
The total number of trees is (1+t)^2 + t*(1+t) + t*(1+t) = 1+4*t+3*t^2 = R(2,t).
		

Crossrefs

Row sums give A006351(k+1), k>=0.
The column sequences start with A000012 (powers of 1), A000295 (Eulerian numbers), A112495, A112496, A112497.
Antidiagonal sums give A000110.
Cf. A356145.

Programs

  • Maple
    T := (n, k) -> add(combinat:-eulerian2(n, j)*binomial(n-j, n-k), j=0..n):
    seq(seq(T(n, k), k=0..n), n=0..9); # Peter Luschny, Apr 11 2016
  • Mathematica
    max = 11; f[x_, t_] := -1 - (1 + t)/t*ProductLog[-t/(1 + t)*Exp[(x - t)/(1 + t)]]; coes = CoefficientList[ Series[f[x, t], {x, 0, max}, {t, 0, max}], {x, t}]* Range[0, max]!; Table[coes[[n, k]], {n, 0, max}, {k, 1, n - 1}] // Flatten (* Jean-François Alcover, Nov 22 2012, from e.g.f. *)

Formula

a(k, m) = 0 if k < m, a(k, -1):=0, a(0, 0)=1, a(k, m)=(m+1)*a(k-1, m) + (k+m-1)*a(k-1, m-1) else.
From Peter Bala, Sep 30 2011: (Start)
E.g.f.: A(x,t) = -1-((1+t)/t)*LambertW(-(t/(1+t))*exp((x-t)/(1+t))) = x + (1+t)*x^2/2! + (1+4*t+3*t^2)*x^3/3! + .... A(x,t) is the inverse function of (1+t)*log(1+x)-t*x.
A(x,t) satisfies the partial differential equation (1-x*t)*dA/dx = 1 + A + t*(1+t)*dA/dt. It follows that the row generating polynomials R(n,t) satisfy the recurrence R(n+1,t) =(n*t+1)*R(n,t) + t*(1+t)*dR(n,t)/dt. Cf. A054589 and A075856. The polynomials t/(1+t)*R(n,t) are the row polynomials of A134991.
The generating function A(x,t) satisfies the autonomous differential equation dA/dx = (1+A)/(1-t*A). Applying [Bergeron et al., Theorem 1] gives a combinatorial interpretation for the row generating polynomials R(n,t): R(n,t) counts plane increasing trees on n+1 vertices where the non-leaf vertices of outdegree k come in t^(k-1)*(1+t) colors. An example is given below. Cf. A006351, which corresponds to the case t = 1. Applying [Dominici, Theorem 4.1] gives the following method for calculating the row polynomials R(n,t): Let f(x) = (1+x)/(1-x*t). Then R(n,t) = (f(x)*d/dx)^n(f(x)) evaluated at x = 0. (End)
Sum_{j=0..n} T(n-j,j) = A000110(n). - Alois P. Heinz, Jun 20 2022
From Mikhail Kurkov, Apr 01 2025: (Start)
E.g.f.: B(y) = -w/(x*(1+w)) where w = LambertW(-x/(1+x)*exp((y-x)/(1+x))) satisfies the first-order ordinary differential equation (1+x)*B'(y) = B(y)*(1+x*B(y))^2, hence row polynomials are P(n,x) = P(n-1,x) + x*Sum_{j=0..n-1} binomial(n, j)*P(j,x)*P(n-j-1,x) for n > 0 with P(0,x) = 1 (see MathOverflow link).
Conjecture: row polynomials are P(n,x) = Sum_{i=0..n} Sum_{j=0..i} Sum_{k=0..j} (n+i)!*Stirling1(n+j-k,j-k)*x^k*(x+1)^(j-k)*(-1)^(j+k)/((n+j-k)!*(i-j)!*k!). (End)
Conjecture: g.f. satisfies 1/(1 - x - x*y/(1 - 2*x - 2*x*y/(1 - 3*x - 3*x*y/(1 - 4*x - 4*x*y/(1 - 5*x - 5*x*y/(1 - ...)))))) (see A383019 for conjectures about combinatorial interpretation and algorithm for efficient computing). - Mikhail Kurkov, Apr 21 2025

Extensions

New name from Peter Luschny, Apr 11 2016

A112486 Coefficient triangle for polynomials used for e.g.f.s for unsigned Stirling1 diagonals.

Original entry on oeis.org

1, 1, 1, 2, 5, 3, 6, 26, 35, 15, 24, 154, 340, 315, 105, 120, 1044, 3304, 4900, 3465, 945, 720, 8028, 33740, 70532, 78750, 45045, 10395, 5040, 69264, 367884, 1008980, 1571570, 1406790, 675675, 135135, 40320, 663696, 4302216, 14777620, 29957620
Offset: 0

Views

Author

Wolfdieter Lang, Sep 12 2005

Keywords

Comments

The k-th diagonal of |A008275| appears as the k-th column in |A008276| with k-1 leading zeros.
The recurrence, given below, is derived from (d/dx)g1(k,x) - g1(k,x)= x*(d/dx)g1(k-1,x) + g1(k-1,x), k >= 1, with input g(-1,x):=0 and initial condition g1(k,0)=1, k >= 0. This differential recurrence for the e.g.f. g1(k,x) follows from the one for unsigned Stirling1 numbers.
The column sequences start with A000142 (factorials), A001705, A112487- A112491, for m=0,...,5.
The main diagonal gives (2*k-1)!! = A001147(k), k >= 1.
This computation was inspired by the Bender article (see links), where the Stirling polynomials are discussed.
The e.g.f. for the k-th diagonal, k >= 1, of the unsigned Stirling1 triangle |A008275| with k-1 leading zeros is g1(k-1,x) = exp(x)*Sum_{m=0..k-1} a(k,m)*(x^(k-1+m))/(k-1+m)!.
a(k,n) = number of lists with entries from [n] such that (i) each element of [n] occurs at least once and at most twice, (ii) for each i that occurs twice, all entries between the two occurrences of i are > i, and (iii) exactly k elements of [n] occur twice. Example: a(1,2)=5 counts 112, 121, 122, 211, 221, and a(2,2)=3 counts 1122,1221,2211. - David Callan, Nov 21 2011

Examples

			Triangle begins:
    1;
    1,    1;
    2,    5,     3;
    6,   26,    35,    15;
   24,  154,   340,   315,   105;
  120, 1044,  3304,  4900,  3465,   945;
  720, 8028, 33740, 70532, 78750, 45045, 10395;
k=3 column of |A008276| is [0,0,2,11,35,85,175,...] (see A000914), its e.g.f. exp(x)*(2*x^2/2! + 5* x^3/3! + 3*x^4/4!).
		

Crossrefs

Cf. A112007 (triangle for o.g.f.s for unsigned Stirling1 diagonals). A112487 (row sums).

Programs

  • Maple
    A112486 := proc(n,k)
        if n < 0 or k<0 or  k> n then
            0 ;
        elif n = 0 then
            1 ;
        else
            (n+k)*procname(n-1,k)+(n+k-1)*procname(n-1,k-1) ;
        end if;
    end proc: # R. J. Mathar, Dec 19 2013
  • Mathematica
    A112486 [n_, k_] := A112486[n, k] = Which[n<0 || k<0 || k>n, 0, n == 0, 1, True, (n+k)*A112486[n-1, k]+(n+k-1)*A112486[n-1, k-1]]; Table[A112486[n, k], {n, 0, 9}, {k, 0, n}] // Flatten (* Jean-François Alcover, Mar 05 2014, after R. J. Mathar *)

Formula

a(k, m) = (k+m)*a(k-1, m) + (k+m-1)*a(k-1, m-1) for k >= m >= 0, a(0, 0)=1, a(k, -1):=0, a(k, m)=0 if k < m.
From Tom Copeland, Oct 05 2011: (Start)
With polynomials
P(0,t) = 0
P(1,t) = 1
P(2,t) = -(1 + t)
P(3,t) = 2 + 5 t + 3 t^2
P(4,t) = -( 6 + 26 t + 35 t^2 + 15 t^3)
P(5,t) = 24 + 154 t +340 t^2 + 315 t^3 + 105 t^4
Apparently, P(n,t) = (-1)^(n+1) PW[n,-(1+t)] where PW are the Ward polynomials A134991. If so, an e.g.f. for the polynomials is
A(x,t) = -(x+t+1)/t - LW{-((t+1)/t) exp[-(x+t+1)/t]}, where LW(x) is a suitable branch of the Lambert W Fct. (e.g., see A135338). The comp. inverse in x (about x = 0) is B(x) = x + (t+1) [exp(x) - x - 1]. See A112487 for special case t = 1. These results are a special case of A134685 with u(x) = B(x), i.e., u_1=1 and (u_n)=(1+t) for n>0.
Let h(x,t) = 1/(dB(x)/dx) = 1/[1+(1+t)*(exp(x)-1)], an e.g.f. in x for row polynomials in t of signed A028246 , then P(n,t), is given by
(h(x,t)*d/dx)^n x, evaluated at x=0, i.e., A(x,t)=exp(x*h(u,t)*d/du) u, evaluated at u=0. Also, dA(x,t)/dx = h(A(x,t),t).
The e.g.f. A(x,t) = -v * Sum_{j>=1} D(j-1,u) (-z)^j / j! where u=-(x+t+1)/t, v=1+u, z=(1+t*v)/(t*v^2) and D(j-1,u) are the polynomials of A042977. dA/dx = -1/[t*(v-A)].(End)
A133314 applied to the derivative of A(x,t) implies (a.+b.)^n = 0^n, for (b_n)=P(n+1,t) and (a_0)=1, (a_1)=t+1, and (a_n)=t*P(n,t) otherwise. E.g., umbrally, (a.+b.)^2 = a_2*b_0 + 2 a_1*b_1 + a_0*b_2 =0. - Tom Copeland, Oct 08 2011
The row polynomials R(n,x) may be calculated using R(n,x) = 1/x^(n+1)*D^n(x), where D is the operator (x^2+x^3)*d/dx. - Peter Bala, Jul 23 2012
For n>0, Sum_{k=0..n} a(n,k)*(-1/(1+W(t)))^(n+k+1) = (t d/dt)^(n+1) W(t), where W(t) is Lambert W function. For t=-x, this gives Sum_{k>=1} k^(k+n)*x^k/k! = - Sum_{k=0..n} a(n,k)*(-1/(1+W(-x)))^(n+k+1). - Max Alekseyev, Nov 21 2019
Conjecture: row polynomials are R(n,x) = Sum_{i=0..n} Sum_{j=0..i} Sum_{k=0..j} (n+i)!*Stirling2(n+j-k,j-k)*x^k*(x+1)^(j-k)*(-1)^(n+j+k)/((n+j-k)!*(i-j)!*k!). - Mikhail Kurkov, Apr 21 2025

A269939 Triangle read by rows, Ward numbers T(n, k) = Sum_{m=0..k} (-1)^(m + k) * binomial(n + k, n + m) * Stirling2(n + m, m), for n >= 0, 0 <= k <= n.

Original entry on oeis.org

1, 0, 1, 0, 1, 3, 0, 1, 10, 15, 0, 1, 25, 105, 105, 0, 1, 56, 490, 1260, 945, 0, 1, 119, 1918, 9450, 17325, 10395, 0, 1, 246, 6825, 56980, 190575, 270270, 135135, 0, 1, 501, 22935, 302995, 1636635, 4099095, 4729725, 2027025
Offset: 0

Views

Author

Peter Luschny, Mar 26 2016

Keywords

Comments

We propose to call this sequence the 'Ward set numbers' and sequence A269940 the 'Ward cycle numbers'. - Peter Luschny, Nov 25 2022

Examples

			Triangle starts:
  1;
  0, 1;
  0, 1,   3;
  0, 1,  10,   15;
  0, 1,  25,  105,   105;
  0, 1,  56,  490,  1260,    945;
  0, 1, 119, 1918,  9450,  17325,  10395;
  0, 1, 246, 6825, 56980, 190575, 270270, 135135;
		

Crossrefs

Variants: A134991 (main entry for this triangle), A181996.
Row sums are A000311.
Alternating row sums are signed factorials A133942.
Cf. A269940 (Stirling1 counterpart), A268437.

Programs

  • Maple
    # first version
    A269939 := (n,k) -> add((-1)^(m+k)*binomial(n+k,n+m)*Stirling2(n+m, m), m=0..k):
    seq(seq(A269939(n,k), k=0..n), n=0..8);
    # Alternatively:
    T := proc(n,k) option remember;
        `if`(k=0 and n=0, 1,
        `if`(k<=0 or k>n, 0,
        k*T(n-1,k)+(n+k-1)*T(n-1,k-1))) end:
    for n from 0 to 6 do seq(T(n,k),k=0..n) od;
    # simple, third version
    T := (n,k)->  (n+k)!*coeftayl((exp(z)-z-1)^k/k!, z=0, n+k); # Marko Riedel, Apr 14 2016
  • Mathematica
    Table[Sum[(-1)^(m + k) Binomial[n + k, n + m] StirlingS2[n + m, m], {m, 0, k}], {n, 0, 8}, {k, 0, n}] // Flatten (* Michael De Vlieger, Apr 15 2016 *)
  • PARI
    T(n) = {[Vecrev(Pol(p)) | p<-Vec(serlaplace(1/((1+y)*(1 + lambertw(-y/(1+y)*exp((x-y)/(1+y) + O(x*x^n)))))))]}
    { my(A=T(8)); for(n=1, #A, print(A[n])) } \\ Andrew Howroyd, Jan 14 2022
  • Sage
    T = lambda n,k: sum((-1)^(m+k)*binomial(n+k,n+m)*stirling_number2(n+m,m) for m in (0..k))
    for n in (0..6): print([T(n,k) for k in (0..n)])
    
  • Sage
    # uses[PtransMatrix from A269941]
    PtransMatrix(8, lambda n: 1/(n+1), lambda n, k: (-1)^k*falling_factorial(n+k,n))
    

Formula

T(n,k) = (-1)^k*FF(n+k,n)*P[n,k](1/(n+1)) where P is the P-transform and FF the falling factorial function. For the definition of the P-transform see the link.
T(n,k) = A268437(n,k)*FF(n+k,n)/(2*n)!.
T(n,k) = (n+k)! [z^{n+k}] (exp(z)-z-1)^k/k!. - Marko Riedel, Apr 14 2016
From Fabián Pereyra, Jan 12 2022: (Start)
T(n,k) = k*T(n-1,k) + (n+k-1)*T(n-1,k-1) for n > 0, T(0,0) = 1, T(n,0) = 0 for n > 0. (See the second Maple program.)
E.g.f.: A(x,t) = 1/((1+t)*(1 + W(-t/(1+t)*exp((x-t)/(1+t))))), where W(x) is the Lambert W-function.
T(n,k) = Sum_{j=0..k} E2(n,j)*binomial(n-j,k-j), where E2(n,k) are the second-order Eulerian numbers A340556.
T(n,k) = Sum_{j=k..n} (-1)^(n-j)*A112486(n,j)*binomial(j,k). (End)

A008789 a(n) = n^(n+3).

Original entry on oeis.org

0, 1, 32, 729, 16384, 390625, 10077696, 282475249, 8589934592, 282429536481, 10000000000000, 379749833583241, 15407021574586368, 665416609183179841, 30491346729331195904, 1477891880035400390625, 75557863725914323419136
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • GAP
    List([0..20], n-> n^(n+3)); # G. C. Greubel, Sep 11 2019
  • Magma
    [n^(n+3): n in [0..20]]; // Vincenzo Librandi, Jun 11 2013
    
  • Maple
    printlevel := -1; a := [0]; T := x->-LambertW(-x); f := series((T(x)*(1+8*T(x)+6*(T(x))^2)/(1-T(x))^7),x,24); for m from 1 to 23 do a := [op(a),op(2*m-1,f)*m! ] od; print(a); # Len Smiley, Nov 19 2001
  • Mathematica
    Table[n^(n+3),{n,0,20}](* Vladimir Joseph Stephan Orlovsky, Dec 26 2010 *)
  • PARI
    vector(20, n, (n-1)^(n+2)) \\ G. C. Greubel, Sep 11 2019
    
  • Sage
    [n^(n+3) for n in (0..20)] # G. C. Greubel, Sep 11 2019
    

Formula

E.g.f.(x): T*(1 +8*T +6*T^2)*(1-T)^(-7); where T=T(x) is Euler's tree function (see A000169). - Len Smiley, Nov 19 2001
See A008517 and A134991 for similar e.g.f.s and diagonals of A048993. - Tom Copeland, Oct 03 2011
E.g.f.: d^3/dx^3 {x^3/(T(x)^3*(1-T(x)))}, where T(x) = Sum_{n>=1} n^(n-1)*x^n/n! is the tree function of A000169. - Peter Bala, Aug 05 2012
a(n) = n*A008788(n). - R. J. Mathar, Oct 31 2015

A008790 a(n) = n^(n+4).

Original entry on oeis.org

0, 1, 64, 2187, 65536, 1953125, 60466176, 1977326743, 68719476736, 2541865828329, 100000000000000, 4177248169415651, 184884258895036416, 8650415919381337933, 426878854210636742656, 22168378200531005859375
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

Formula

E.g.f.: T*(1 +22*T +58*T^2 +24*T^3)*(1-T)^(-9); where T is Euler's tree function (see A000169). - Len Smiley, Nov 17 2001
See A008517 and A134991 for similar e.g.f.s and diagonals of A048993. - Tom Copeland, Oct 03 2011
E.g.f.: d^4/dx^4 {x^4/(T(x)^4*(1-T(x)))}, where T(x) = Sum_{n>=1} n^(n-1)*x^n/n! is the tree function of A000169. - Peter Bala, Aug 05 2012

A112487 a(n) = Sum_{k=0..n} E2(n, k)*2^k, where E2(n, k) are the second-order Eulerian numbers A340556.

Original entry on oeis.org

1, 2, 10, 82, 938, 13778, 247210, 5240338, 128149802, 3551246162, 109979486890, 3764281873042, 141104799067178, 5749087305575378, 252969604725106090, 11955367835505775378, 603967991604199335722, 32479636694930586142802, 1852497140997527094395050
Offset: 0

Views

Author

Wolfdieter Lang, Sep 12 2005

Keywords

Comments

Previous name: Row sums of triangle A112486.

Crossrefs

Programs

  • Maple
    A112487 := proc(n)
        add(A112486(n,k),k=0..n) ;
    end proc: # R. J. Mathar, Dec 19 2013
    seq(op(k, convert(asympt(GAMMA(n, 2*n)*exp(2*n)/(2*n)^n, n, 20), polynom))*(-1)^(k+1)*n^k, k = 1..19); # Maple 2017, Vaclav Kotesovec, Aug 14 2017
    E2 := (n, k) -> `if`(k=0, k^n, combinat:-eulerian2(n, k-1));
    a := n -> add(E2(n, k)*2^k, k=0..n):
    seq(a(n), n=0..17); # Peter Luschny, Feb 13 2021
  • Mathematica
    a[n_] := (n-1)!*(Sum[ Binomial[n+k-1, n-1]* Sum[(-1)^(n+j-1)*Binomial[k, j]* Sum[(Binomial[j, l]*(j-l)!*2^(j-l)*(-1)^l*StirlingS2[n-l+j-1, j-l])/(n-l+j-1)!, {l, 0, j}], {j, 0, k}], {k, 0, n-1}]); Table[a[n], {n, 1, 18}] (* Jean-François Alcover, Feb 26 2013, after Vladimir Kruchinin *)
    T[n_, k_] := T[n, k] = If[k == 0, Boole[n == 0], If[n < 0, 0, k T[n - 1, k] + (2 n - k) T[n - 1, k - 1]]]; a[n_] := Sum[T[n, k] 2^k, {k, 0, n}];
    Table[a[n], {n, 0, 17}] (* Peter Luschny, Feb 13 2021 *)
  • Maxima
    a(n):=n!*(sum(binomial(n+k, n)*sum((-1)^(n+j)*binomial(k, j)*sum((binomial(j, l)*(j-l)!*2^(j-l)*(-1)^l*stirling2(n-l+j, j-l))/(n-l+j)!, l, 0, j), j, 0, k), k, 0, n)); /* Vladimir Kruchinin, Feb 14 2012 */
  • PARI
    {a(n)=local(A=1+x);for(i=1,n,A=exp(intformal(A+A^2)+x*O(x^n)));n!*polcoeff(A,n)} \\ Paul D. Hanna, Jun 30 2009
    

Formula

a(n) = Sum_{m=0..n} A112486(n, m), n >= 0.
a(n) = 2*A032188(n+1), n > 0. - Vladeta Jovovic, Jul 11 2007
From Paul D. Hanna, Jun 30 2009: (Start)
E.g.f. A(x) satisfies: A'(x) = A(x)^2 + A(x)^3.
E.g.f. A(x) satisfies: A(x) = exp( Integral[A(x) + A(x)^2]dx ) with A(0)=1. (End)
E.g.f. A(x) satisfies: A(x) = 2*exp(A(x)) - (2+x), where A(x) = Sum_{n>=0} a(n)*x^(n+1)/(n+1)! (the e.g.f. when offset=1). - Paul D. Hanna, Sep 23 2011
From Tom Copeland, Oct 05 2011: (Start)
With c(0)= 0 and c(n+1)= (-1)^n a(n) for n>=0, c(n)=(-1)^(n+1) PW(n,-2) with PW the Ward polynomials A134991. E.g.f. for the c(n) is A(x) = -(x+2)-LW{-2 exp[-(x+2)]}, where LW(x) is a suitable branch of the Lambert W Fct. (see A135338).
The compositional inverse is B(x) = x + 2(exp(x) - x - 1). These results are a special case of A134685 with u(x)=B(x), i.e., u_1=1 and (u_n)=2 for n>0.
Let h(x) = 1/(dB(x)/dx) = 1/[1+2(exp(x)-1)], then c(n) is given by (h(x)*d/dx)^n x, evaluated at x=0, i.e., A(x) = exp(x*h(u)*d/du) u, evaluated at u=0. Also, dA(x)/dx = h(A(x)).
The e.g.f. A(x) = -v * Sum_(j>=1) D(j-1,u) (-z)^j/ j! where u=-(x+2), v=1+u, z=(1+v)/(v^2) and D(j-1,u) are the polynomials of A042977. (End)
a(n) = n!*Sum_{k=0..n} binomial(n+k, n)*Sum_{j=0..k} (-1)^(n+j)*binomial(k, j)*Sum_{l=0..j} binomial(j, l)*(j-l)!*2^(j-l)*(-1)^l*Stirling2(n-l+j, j-l)/(n-l+j)!. - Vladimir Kruchinin, Feb 14 2012
G.f.: 1/Q(0), where Q(k)= 1 + k*x - 2*x*(k+1)/Q(k+1); (continued fraction). - Sergei N. Gladkovskii, May 01 2013
a(n) ~ n^n / (exp(n) * (1-log(2))^(n+1/2)). - Vaclav Kotesovec, Aug 14 2017
a(0) = 1; a(n) = n * a(n-1) + Sum_{k=0..n-1} binomial(n,k) * a(k) * a(n-k-1). - Ilya Gutkovskiy, Jul 02 2020

Extensions

New name from Peter Luschny, Feb 13 2021

A135494 Triangle read by rows: row n gives coefficients C(n,j) for a Sheffer sequence (binomial-type) with lowering operator (D-1)/2 + T{ (1/2) * exp[(D-1)/2] } where T(x) is Cayley's Tree function.

Original entry on oeis.org

1, -1, 1, -1, -3, 1, -1, -1, -6, 1, -1, 5, 5, -10, 1, -1, 19, 30, 25, -15, 1, -1, 49, 49, 70, 70, -21, 1, -1, 111, -70, -91, 70, 154, -28, 1, -1, 237, -883, -1218, -861, -126, 294, -36, 1, -1, 491, -4410, -4495, -3885, -2877, -840, 510, -45, 1
Offset: 1

Views

Author

Tom Copeland, Feb 08 2008

Keywords

Comments

The lowering (or delta) operator for these polynomials is L = (D-1)/2 + T{ (1/2) * exp[(D-1)/2] } and the raising operator is R = 2t * { 1 - T[ (1/2) * exp[(D-1)/2] ] }, where T(x) is the tree function of A000169. In addition, L = E(D,1) = A(D) where E(x,t) is the e.g.f. of A134991 and A(x) is the e.g.f. of A000311, so L = sum(j=1,...) A000311(j) * D^j / j! also. The polynomials and operators can be generalized through A134991.
Also the Bell transform of A153881. For the definition of the Bell transform see A264428. - Peter Luschny, Jan 27 2016
Exponential Riordan array [2 - exp(x), 1 + 2*x - exp(x)] belonging to the derivative subgroup of the exponential Riordan group. See the example section for a factorization of this array as an infinite product of arrays. - Peter Bala, Feb 13 2025

Examples

			The triangle begins:
  [1]  1;
  [2] -1,  1;
  [3] -1, -3,  1;
  [4] -1, -1, -6,   1;
  [5] -1,  5,  5, -10,   1;
  [6] -1, 19, 30,  25, -15,   1;
  [7] -1, 49, 49,  70,  70, -21, 1.
P(3,t) = [B(.,-t) + 2t]^3 = B(3,-t) + 3B(2,-t)2t + 3B(1,-t)(2t)^2 + (2t)^3 = (-t + 3t^2 - t^3) + 3(-t + t^2)(2t) + 3(-t)(2t)^2 + (2t)^3 = -t - 3t + t^3.
From _Peter Bala_, Feb 13 2025: (Start)
The array factorizes as an infinite product of lower triangular arrays:
  /  1               \    / 1             \ / 1             \ / 1             \
  | -1   1           |   | -1  1          | | 0 -1          | | 0  1          |
  | -1  -3   1       | = | -1 -2   1      | | 0 -1  1       | | 0  0  1       | ...
  | -1  -1  -6   1   |   | -1 -3  -3  1   | | 0 -1 -2  1    | | 0  0 -1  1    |
  | -1   5   5 -10  1|   | -1 -4  -6 -4  1| | 0 -1 -3 -3  1 | | 0  0 -1 -2  1 |
  |...               |   |...             | |...            | |...            |
where the first array in the product on the right-hand side is A154926. (End)
		

References

  • S. Roman, The Umbral Calculus, Academic Press, New York, 1984.
  • G. Rota, Finite Operator Calculus, Academic Press, New York, 1975.

Crossrefs

Cf. A298673 for the inverse matrix.

Programs

  • Maple
    # The function BellMatrix is defined in A264428.
    # Adds (1,0,0,0, ..) as column 0.
    BellMatrix(n -> `if`(n=0,1,-1), 9); # Peter Luschny, Jan 27 2016
  • Mathematica
    max = 8; s = Series[Exp[t*(-Exp[x]+2*x+1)], {x, 0, max}, {t, 0, max}] // Normal; t[n_, k_] := SeriesCoefficient[s, {x, 0, n}, {t, 0, k}]*n!; Table[t[n, k], {n, 0, max}, {k, 1, n}] // Flatten (* Jean-François Alcover, Apr 23 2014 *)
    BellMatrix[f_Function, len_] := With[{t = Array[f, len, 0]}, Table[BellY[n, k, t], {n, 0, len - 1}, {k, 0, len - 1}]];
    rows = 12;
    M = BellMatrix[If[# == 0, 1, -1] &, rows];
    Table[M[[n, k]], {n, 2, rows}, {k, 2, n}] // Flatten (* Jean-François Alcover, Jun 24 2018, after Peter Luschny *)

Formula

Row polynomials are P(n,t) = Sum_{j=1..n} C(n,j) * t^j = [ Bell(.,-t) + 2t ]^n, umbrally, where Bell(j,t) are the Touchard/Bell/exponential polynomials described in A008277, with P(0,t) = 1.
E.g.f.: exp{ t * [ -exp(x) + 2x + 1] } and [ P(.,t) + P(.,s) ]^n = P(n,s+t).
The lowering operator gives L[P(n,t)] = n * P(n-1,t) = (D-1)/2 * P(n,t) + Sum_{j>=1} j^(j-1) * 2^(-j) / j! * exp(-j/2) * P(n,t + j/2).
The raising operator gives R[P(n,t)] = P(n+1,t) = 2t * { P(n,t) - Sum_{j>=1} j^(j-1) * 2^(-j) / j! * exp(-j/2) * P(n,t + j/2) } .
Therefore P(n+1,t) = 2t * { [ (1+D)/2 * P(n,t) ] - n * P(n-1,t) }.
P(n,1) = (-1)^n * A074051(n) and P(n,-1) = A126617(n).
See Rota, Roman, Mathworld or Wikipedia on Sheffer sequences and umbral calculus for more formulas, including expansion theorems.
From Tom Copeland, Jan 20 2018: (Start)
Define Q(n,z;w) = [Bell(.,w)+z]^n. Then Q(n,z;w) are a sequence of Appell polynomials with e.g.f. exp[(exp(t)-1+z)*w], lowering operator D = d/dz, and raising operator R = z + w*exp(D), and exp[(exp(D)-1)w] z^n = exp[Bell(.,w)D] z^n = Q(n,z;w) = e^(-w) (w d/dw + z)^n e^w = e^(-w) exp(a.w) = exp[(a. - 1)w] with (a.)^k = a_k = (k + z)^n and (a. - 1)^m = sum{k = 0,..,m} (-1)^k a^(m-k). Then P(n,t) = Q(n,2t;-t).
For example, exp[(a. - 1)w] = (a. - 1)^0 + (a. - 1)^1 w + (a. - 1)^2 w^2/2! + ... = a_0 + (a_1 - a_0) w + (a_2 - 2a_1 + a_0) w^2/2! + ... = z^n + [(1+z)^n - z^n] w + [(2+z)^n - 2(1+z)^n + z^n] w^2/2! + ... . (End)
T(n+1, k) = Sum_{i = 0..n} s(n,k)*binomial(n, i)*T(i, k-1), where s(n,i) = 1 if i = n else -1. - Peter Bala, Feb 13 2025

Extensions

More terms from Vincenzo Librandi, Jan 21 2018

A356145 Coefficients of the inverse refined Eulerian partition polynomials [E]^{-1}, partitional inverse to A145271. Irregular triangle read by row with lengths A000041.

Original entry on oeis.org

1, 1, -1, 1, 3, -4, 1, -15, 25, -4, -7, 1, 105, -210, 70, 60, -15, -11, 1, -945, 2205, -1120, -630, 70, 350, 126, -15, -26, -16, 1, 10395, -27720, 18900, 7875, -2800, -6930, -1638, 560, 455, 784, 238, -56, -42, -22, 1, -135135, 405405, -346500, -114345, 84700
Offset: 0

Views

Author

Tom Copeland, Jul 27 2022

Keywords

Comments

These are the coefficients of the inverse refined Eulerian partitions polynomials, the substitutional inverse to the refined Eulerian partition polynomials [E] of A145271. [E] and [E]^{-1} are a conjugate dual with respect to the permutahedra polynomials [P] of A133314 (see formula section).

Examples

			The first few rows of coefficients with monomials in reverse order to the partitions of Abramowitz and Stegun (link in A000041, pp. 831-2) are
0)       1;
1)       1;
2)      -1,      1;
3)       3,     -4,       1;
4)     -15,     25,      -4,      -7,     1;
5)     105,   -210,      70,      60,   -15,    -11,     1;
6)    -945,   2205,   -1120,    -630,    70,    350,   126,   -15,    -26,    -16,      1;
7)   10395, -27720,   18900,    7875, -2800,  -6930, -1638,   560,    455,    784,    238,   -56,  -42,  -22,    1;
8) -135135, 405405, -346500, -114345, 84700, 138600, 24255, -2800, -27300, -11025, -18900, -3780, 1575, 1344, 2142, 1596, 414, -56, -98, -64, -29, 1;
    ...
The first few partition polynomials are
E_0^{(-1)} = 1,
E_1^{(-1)} = a1,
E_2^{(-1)} = -a1^2 + a2,
E_3^{(-1)} = 3 a1^3 - 4 a1 a2 + a3,
E_4^{(-1)} = -15 a1^4 + 25 a1^2 a2 - 4 a2^2 - 7 a1 a3 + a4,
E_5^{(-1)} = 105 a1^5 - 210 a1^3 a2 + 70 a1 a2^2 + 60 a1^2 a3 - 15 a2 a3 - 11 a1 a4 + a5,
E_6^{(-1)} = -945 a1^6 + 2205 a1^4 a2 - 1120 a1^2 a2^2 - 630 a1^3 a3 + 70 a2^3 + 350 a1 a2 a3 + 126 a1^2 a4 - 15 a3^2 - 26 a2 a4 - 16 a1 a5 + a6,
E_7^{(-1)} = 10395 a1^7 - 27720 a1^5 a2 + 18900 a1^3 a2^2 + 7875 a1^4 a3 - 2800 a1 a2^3 - 6930 a1^2 a2 a3 - 1638 a1^3 a4 + 560 a2^2 a3 + 455 a1 a3^2 + 784 a1 a2 a4 + 238 a1^2 a5 - 56 a3 a4 - 42 a2 a5 - 22 a1 a6 + a7,
E_8^{(-1)} = -135135 a1^8 + 405405 a1^6 a2 - 346500 a1^4 a2^2 - 114345 a1^5 a3 + 84700 a1^2 a2^3 + 138600 a1^3 a2 a3 + 24255 a1^4 a4 - 2800 a2^4 - 27300 a1 a2^2 a3 - 11025 a1^2 a3^2 - 18900 a1^2 a2 a4 - 3780 a1^3 a5 + 1575 a2 a3^2 + 1344 a2^2 a4 + 2142 a1 a3 a4 + 1596 a1 a2 a5 + 414 a1^2 a6 - 56 a4^2 - 98 a3 a5 - 64 a2 a6 - 29 a1ma7 + a8,
... .
Example substitution identities:
With the permutahedra polynomials
P_1 = -a_1,
P_2 = 2*a_1^2 - a_2,
P_3 = -6*a_1^3 + 6*a_2*a_1 - a_3,
the refined Eulerian polynomials
E_1 = a_1,
E_2 = a_1^2 + a_2,
E_3 = a_1^3 + 4*a_1*a_2 + a_3,
the reciprocal tangent polynomials
RT_1 = -a_1,
RT_2 = -a_2 + a_1^2,
RT_3 = -a_3 + 2*a_1*a_2 - a_1^3,
the Lagrange inversion polynomials
L_1 = -a_1,
L_2 = 3*a_1^2 - a_2,
L_3 = -15*a_1^3 + 10*a_1a_2 - a_3,
then
E^{-1}_3 = P_3(L_1,L_2,L_3) = -6*(-a_1)^3 + 6*(3*a_1^2 - a_2)*(-a_1) - (-15*a_1^3 + 10*a_1*a_2 - a_3) = 3*a_1^3 - 4*a_2*a_1 + a_3,
E^{-1}_3 = RT_3(P_1,P_2,P_3) = -(-6*a_1^3 + 6*a_2*a_1 - a_3) + 2*(-a_1)*(2*a_1^2 - a_2) - (-a_1)^3 = 3*a_1^3 - 4*a_2*a_1 + a_3,
E{-1}_3(E_1,E_2,E_3) = 3*a_1^3 - 4*a_1*(a_1^2 + a_2) + (a_1^3 + 4*a_1*a_2 + a_3) = a_3.
		

Crossrefs

Programs

  • Mathematica
    rows[nn_] := {{1}}~Join~With[{s = 1/D[InverseSeries[x + Sum[c[k - 1] x^k/k!, {k, 2, nn}] + O[x]^(nn + 1)], x]}, Table[Coefficient[n! s, x^n Product[c[t], {t, p}]], {n, nn-1}, {p, Reverse[Sort[Sort /@ IntegerPartitions[n]]]}]];
    rows[8] // Flatten (* Andrey Zabolotskiy, Feb 17 2024 *)
  • SageMath
    B. = PolynomialRing(ZZ)
    A. = PowerSeriesRing(B)
    f =  x + a1*x^2/factorial(2) + a2*x^3/factorial(3) + a3*x^4/factorial(4) + a4*x^5/factorial(5) + a5*x^6/factorial(6) + a6*x^7/factorial(7) + a7*x^8/factorial(8) + a8*x^9/factorial(9) + a9*x^10/factorial(10)
    g = f.reverse()
    w = derivative(g,x)
    I = 1 / w
    # Added by Peter Luschny, Feb 17 2024:
    for n, c in enumerate(I.list()[:9]):
        print(f"E[{n}]", (factorial(n)*c).coefficients())

Formula

Given the formal Taylor series or e.g.f. f(x) = x + a_1 x^2/2! + a_2 x^3/3! + ...,
E_n^{-1}(a_1,a_2,...,a_n) = D_{x=0}^n 1 / (D_x f^{(-1)}(x)), where D_x is the derivative w.r.t. x and f^{(-1)}(x) is the (possibly formal) compositional inverse of f(x) about the origin.
E_n^{-1}(a_1,a_2,...,a_n) = D_{x=0}^n 1 f'(f^{(-1)}(x)) by the inverse function theorem, where the prime indicates differentiation w.r.t. the argument of the function f. Note the correspondence to the analytic definitions of the reciprocal tangents [RT] of A356144, consistent with the following algebraic identities.
[E]^{-1} = [P][L] = [P][E][P] = [RT][P], representing, e.g., the substitution of the permutahedra polynomials [P] of A133314 for the indeterminates of the reciprocal tangent polynomials [RT] of A356144. [E] are the refined Eulerian polynomials of A145271, and [L], the classic Lagrange inversion polynomials of A134685.
Since [P]^2 = [L]^2 = [RT]^2 = [I], the substitutional identity, i.e., [P], [L], and [RT] are involutive transformations, many identities follow from the basic ones above, e.g., [L] = [P][E]^{-1} gives an inversion formula for a formal e.g.f. f(x) = x + a_1 x^2/2! + a_2 x^3/3! + ..., and we can identify [E] and [E]^{-1} as a conjugate dual.
With a_n = -x, [E]^{-1} reduces to a signed version of A112493 with an additional initial row, with the row sums of the unsigned coefficients being (1, A006351). A112493 is also given by the diagonals of A124324. See my link above on the reduced polynomials and associated arrays for more detail.
The sequence of row sums of the signed coefficients, i.e., E^{-1}(1,1,...,1), is the sequence (1, 1, 0, 0, 0, 0, ...).
Conjecture: row polynomials are R(n,1) for n > 0 where R(n,k) = R(n-1,k+1) - Sum_{j=1..n-1} binomial(n-1,j-1)*R(j,k)*R(n-j,1) for n > 1, k > 0 with R(1,k) = a_k for k > 0. - Mikhail Kurkov, Mar 22 2025
Previous Showing 11-20 of 22 results. Next