cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 63 results. Next

A066898 Total number of even parts in all partitions of n.

Original entry on oeis.org

0, 1, 1, 4, 5, 11, 15, 28, 38, 62, 85, 131, 177, 258, 346, 489, 648, 890, 1168, 1572, 2042, 2699, 3475, 4532, 5783, 7446, 9430, 12017, 15106, 19073, 23815, 29827, 37011, 46012, 56765, 70116, 86033, 105627, 128962, 157476, 191359, 232499, 281286, 340180, 409871
Offset: 1

Views

Author

Naohiro Nomoto, Jan 24 2002

Keywords

Comments

Also sum of all even-indexed parts minus the sum of all odd-indexed parts, except the largest parts, of all partitions of n (cf. A206563). - Omar E. Pol, Feb 14 2012
From Omar E. Pol, Apr 06 2023: (Start)
Convolution of A000041 and A183063.
Convolution of A002865 and A362059.
a(n) is also the total number of even divisors of all positive integers in a sequence with n blocks where the m-th block consists of A000041(n-m) copies of m, with 1 <= m <= n. The mentioned even divisors are also all even parts of all partitions of n. (End)

Examples

			a(5) = 5 because in all the partitions of 5, namely [5], [4,1], [3,2], [3,1,1], [2,2,1], [2,1,1,1], [1,1,1,1,1], we have a total of 0+1+1+0+2+1+0=5 even parts.
		

Crossrefs

Programs

  • Haskell
    a066898 = p 0 1 where
       p e _             0 = e
       p e k m | m < k     = 0
               | otherwise = p (e + 1 - mod k 2) k (m - k) + p e (k + 1) m
    -- Reinhard Zumkeller, Mar 09 2012
    
  • Haskell
    a066898 = length . filter even . concat . ps 1 where
       ps _ 0 = [[]]
       ps i j = [t:ts | t <- [i..j], ts <- ps t (j - t)]
    -- Reinhard Zumkeller, Jul 13 2013
  • Maple
    g:=sum(x^(2*j)/(1-x^(2*j)),j=1..60)/product((1-x^j),j=1..60): gser:=series(g,x=0,55): seq(coeff(gser,x,n),n=1..50); # Emeric Deutsch, Feb 17 2006
    A066898 := proc(n)
        add(numtheory[tau](k)*combinat[numbpart](n-2*k),k=1..n/2) ;
    end proc: # R. J. Mathar, Jun 18 2016
  • Mathematica
    f[n_, i_] := Count[Flatten[IntegerPartitions[n]], i]
    o[n_] := Sum[f[n, i], {i, 1, n, 2}]
    e[n_] := Sum[f[n, i], {i, 2, n, 2}]
    Table[o[n], {n, 1, 45}]  (* A066897 *)
    Table[e[n], {n, 1, 45}]  (* A066898 *)
    %% - %                   (* A209423 *)
    (* Clark Kimberling, Mar 08 2012 *)
    a[n_] := Sum[DivisorSigma[0, k] PartitionsP[n - 2k], {k, 1, n/2}]; Table[a[n], {n, 1, 50}] (* Jean-François Alcover, Aug 31 2016, after Vladeta Jovovic *)

Formula

a(n) = Sum_{k=1..floor(n/2)} tau(k)*numbpart(n-2*k). - Vladeta Jovovic, Jan 26 2002
a(n) = Sum_{k=0..floor(n/2)} k*A116482(n,k). - Emeric Deutsch, Feb 17 2006
G.f.: (Sum_{j>=1} x^(2*j)/(1-x^(2*j)))/(Product_{j>=1} (1-x^j)). - Emeric Deutsch, Feb 17 2006
a(n) = A066897(n) - A209423(n) = A006128(n) - A066897(n). - Reinhard Zumkeller, Mar 09 2012
a(n) = (A006128(n) - A209423(n))/2. - Vaclav Kotesovec, May 25 2018
a(n) ~ exp(Pi*sqrt(2*n/3)) * (2*gamma + log(3*n/(2*Pi^2))) / (8*Pi*sqrt(2*n)), where gamma is the Euler-Mascheroni constant A001620. - Vaclav Kotesovec, May 25 2018

Extensions

More terms from Vladeta Jovovic, Jan 26 2002

A171977 a(n) = 2^(k+1) where 2^k is the highest power of 2 dividing n.

Original entry on oeis.org

2, 4, 2, 8, 2, 4, 2, 16, 2, 4, 2, 8, 2, 4, 2, 32, 2, 4, 2, 8, 2, 4, 2, 16, 2, 4, 2, 8, 2, 4, 2, 64, 2, 4, 2, 8, 2, 4, 2, 16, 2, 4, 2, 8, 2, 4, 2, 32, 2, 4, 2, 8, 2, 4, 2, 16, 2, 4, 2, 8, 2, 4, 2
Offset: 1

Views

Author

Paul Curtz, Nov 19 2010

Keywords

Comments

When read as a triangle in which the n-th row has 2^n terms, every row is the last half of the next one. All the terms are powers of 2. First column = 2*A000079.
The original definition was: a(n) = (A000265(2n+1) - 1) / A000265(2n).
a(n) seems to be the denominator of Euler(2*n+1,1) but I have no proof of this.
a(n) is also gcd[C(2n,1), C(2n,3), ..., C(2n,2n-1)]. - Franz Vrabec, Oct 22 2012
a(n) is also the ratio r(2n) = s2(2n)/s1(2n) where s1(2n) is the sum of the odd unitary divisors of 2n and s2(2n) is the sum of the even unitary divisors of 2n. - Michel Lagneau, Dec 19 2013
a(n) or a(n)/2 = A006519(n) is known as the Steinhaus sequence in probability theory, proposed as a sequence of asymptotically fair premiums for the St. Petersburg game. - Peter Kern, Aug 28 2015
After the all-1's sequence this is the next sequence in lexicographical order such that the gap between a(n) and the next occurrence of a(n) is given by a(n). - Scott R. Shannon, Oct 16 2019
First 2^(k-1) - 1 terms are also the areas of the successive rectangles and squares of width 2 that are adjacent to any of the four sides of the toothpick structure of A139250 after 2^k stages, with k >= 2. For example: if k = 5 the areas after 32 stages are [2, 4, 2, 8, 2, 4, 2, 16, 2, 4, 2, 8, 2, 4, 2] respectively, the same as the first 15 terms of this sequence. - Omar E. Pol, Dec 29 2020

Crossrefs

Programs

  • Maple
    a := proc(n) local k: k:=1: while frac(n/2^k) = 0 do k := k+1 end do: k := k-1: a(n) := 2^(k+1) end: seq(a(n), n=1..63); # Johannes W. Meijer, Nov 04 2012
    seq(2^(1 + padic[ordp](n, 2)), n = 1..63); # Peter Luschny, Nov 27 2020
  • Mathematica
    Table[-BitXor[-i,i], {i, 200}] (* Peter Luschny, Jun 01 2011 *)
    a[n_] := 2^(IntegerExponent[n, 2] + 1); Array[a, 100] (* Jean-François Alcover, May 09 2017 *)
  • PARI
    A171977(n) = 2^(1+valuation(n,2)); \\ Antti Karttunen, Nov 06 2018
    
  • Python
    def A171977(n): return (n&-n)<<1 # Chai Wah Wu, Jul 13 2022

Formula

a(n) = (A000265(2*n+1)-1)/A000265(2*n).
a(n) = -(-n XOR n). XOR the bitwise operation on the two's complement representation for negative integers. - Peter Luschny, Jun 01 2011
a(n) = A038712(n)+1. - Franz Vrabec, Mar 03 2012
a(n) = 2^A001511(n). - Franz Vrabec, Oct 22 2012
a(n) = A046161(n)/A046161(n-1). - Johannes W. Meijer, Nov 04 2012
a(n) = 2^(1 + (A183063(n)/A001227(n))). - Omar E. Pol, Nov 06 2018
a(n) = 2*A006519(n). - Antti Karttunen, Nov 06 2018

Extensions

I edited this sequence, based on an email message from the author. - N. J. A. Sloane, Nov 20 2010
Definition simplified by N. J. A. Sloane, Mar 18 2012

A069734 Number of pairs (p,q), 0<=p<=q, such that p+q divides n.

Original entry on oeis.org

1, 3, 3, 6, 4, 9, 5, 11, 8, 12, 7, 19, 8, 15, 14, 20, 10, 24, 11, 26, 18, 21, 13, 37, 17, 24, 22, 33, 16, 42, 17, 37, 26, 30, 26, 53, 20, 33, 30, 52, 22, 54, 23, 47, 42, 39, 25, 71, 30, 51, 38, 54, 28, 66, 38, 67, 42, 48, 31, 94, 32, 51, 55, 70, 44, 78, 35, 68, 50, 78, 37, 108
Offset: 1

Views

Author

Valery A. Liskovets, Apr 07 2002

Keywords

Comments

Also number of orientable coverings of the Klein bottle with 2n lists (orientable m-list coverings exist only for even m).
Equals row sums of triangle A178650. - Gary W. Adamson, May 31 2010
Also number of inequivalent sublattices of index n of the rectangular lattice, that has the p2mm (pmm) symmetry group [Rutherford]. For other 2D Patterson groups, the analogous sequences are A000203 (p2), A145391 (c2mm), A145392 (p4), A145393 (p4mm), A145394 (p6), A003051 (p6mm). - Andrey Zabolotskiy, Mar 12 2018

Examples

			There are 9 pairs (p,q), 0<=p<=q, such that p+q divides 6: (0,1), (0,2), (0,3), (0,6), (1,1), (1, 2), (1, 5), (2, 4), (3, 3); thus a(6) = 9.
x + 3*x^2 + 3*x^3 + 6*x^4 + 4*x^5 + 9*x^6 + 5*x^7 + 11*x^8 + 8*x^9 + ...
		

Crossrefs

Programs

  • Maple
    with(numtheory): a := n -> (sigma(n) + tau(n) + `if`(irem(n,2) = 1, 0, tau(n/2)))/2: seq(a(n), n=1..72); # Peter Luschny, Jul 20 2019
  • Mathematica
    a[n_] := (DivisorSigma[1, n] + DivisorSigma[0, n] + If[OddQ[n], 0, DivisorSigma[0, n/2]])/2;
    Array[a, 72] (* Jean-François Alcover, Aug 27 2019, from Maple *)
  • PARI
    {a(n) = if( n<1, 0, sum( k=1, n, sum( j=0, k, n%(j+k) == 0)))} /* Michael Somos, Mar 24 2012 */

Formula

a(n) = A046524(2n) - A069733(2n).
Inverse Moebius transform of: 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6, 7, 7, ... G.f.: Sum_{n>0} x^n*(1+x^n-x^(2*n))/(1-x^(2*n))/(1-x^n). - Vladeta Jovovic, Feb 03 2003
a(n) = (A000203(n) + A069735(n))/2. [Rutherford] - N. J. A. Sloane, Mar 13 2009
a(n) = Sum_{ m: m^2|n } A304182(n/m^2) + A304183(n/m^2) = A069735(n) + Sum_{ m: m^2|n } A304183(n/m^2). - Andrey Zabolotskiy, May 07 2018
a(n) = Sum_{ d|n } A008619(d) = Sum_{ d|n } (1 + floor(d/2)). - Andrey Zabolotskiy, Jul 20 2019
a(n) = (A007503(n) + A183063(n))/2. - Peter Luschny, Jul 20 2019

Extensions

New description from Vladeta Jovovic, Feb 03 2003

A112329 Number of divisors of n if n odd, number of divisors of n/4 if n divisible by 4, otherwise 0.

Original entry on oeis.org

1, 0, 2, 1, 2, 0, 2, 2, 3, 0, 2, 2, 2, 0, 4, 3, 2, 0, 2, 2, 4, 0, 2, 4, 3, 0, 4, 2, 2, 0, 2, 4, 4, 0, 4, 3, 2, 0, 4, 4, 2, 0, 2, 2, 6, 0, 2, 6, 3, 0, 4, 2, 2, 0, 4, 4, 4, 0, 2, 4, 2, 0, 6, 5, 4, 0, 2, 2, 4, 0, 2, 6, 2, 0, 6, 2, 4, 0, 2, 6, 5, 0, 2, 4, 4, 0, 4, 4, 2, 0, 4, 2, 4, 0, 4, 8, 2, 0, 6, 3, 2, 0, 2, 4, 8
Offset: 1

Views

Author

Michael Somos, Sep 04 2005

Keywords

Comments

First occurrence of k: 2, 1, 3, 9, 15, 64, 45, 256, 96, 144, 192, 4096, 240, ????, 768, 576, 480, ????, 720, ..., . See A246063. - Robert G. Wilson v, Oct 31 2013
a(n) is the number of pairs (u, v) in NxZ satisfying u^2-v^2=n. See Kühleitner. - Michel Marcus, Jul 30 2017
The g.f. in the form Sum_{k >= 1} x^(k^2) * (1 + x^(2*k))/(1 - x^(2*k)) = Sum_{k >= 1} x^(k^2) * (1 + x^(2*k))/(1 + x^(2*k) - 2*x^(2*k)) == Sum_{k >= 1} x^(k^2) (mod 2). It follows that a(n) is odd iff n = k^2 for some positive integer k. - Peter Bala, Jan 08 2025

Examples

			x + 2*x^3 + x^4 + 2*x^5 + 2*x^7 + 2*x^8 + 3*x^9 + 2*x^11 + 2*x^12 + ...
		

References

  • G. H. Hardy, Ramanujan: twelve lectures on subjects suggested by his life and work, AMS Chelsea Publishing, Providence, Rhode Island, 2002, p. 142.

Crossrefs

Programs

  • Maple
    f:= proc(n) if n::odd then numtheory:-tau(n) elif n mod 4 = 0 then numtheory:-tau(n/4) else 0 fi end proc;
    seq(f(i),i=1..100); # Robert Israel, Aug 24 2014
  • Mathematica
    Rest[ CoefficientList[ Series[ Sum[x^k/(1 - (-x)^k), {k, 111}], {x, 0, 110}], x]] (* Robert G. Wilson v, Sep 20 2005 *)
    Table[If[OddQ[n],DivisorSigma[0,n],If[OddQ[n/2],0,DivisorSigma[0,n/4]]],{n,100} ] (* Ray Chandler, Aug 23 2014 *)
  • PARI
    {a(n) = if( n<1, 0, (-1)^n * sumdiv( n, d, (-1)^d))}
    
  • PARI
    {a(n) = if( n<1, 0, if( n%2, numdiv(n), if( n%4, 0, numdiv(n/4))))} /* Michael Somos, Sep 02 2006 */
    
  • PARI
    d(n) = if (denominator(n)==1, numdiv(n), 0);
    a(n) = numdiv(n) - 2*d(n/2) + 2*d(n/4); \\ Michel Marcus, Jul 30 2017

Formula

Multiplicative with a(2^e) = e-1 if e>0, a(p^e) = 1+e if p>2.
G.f.: Sum_{k>0} x^k / (1 - (-x)^k) = Sum_{k>0} -(-x)^k / (1 + (-x)^k).
Möbius transform is period 4 sequence [ 1, -1, 1, 1, ...].
G.f.: Sum_{k>=1} x^(k^2) * (1+x^(2*k))/(1-x^(2*k)). - Joerg Arndt, Nov 08 2010
a(4*n + 2) = 0. a(n) = -(-1)^n * A048272(n). a(2*n - 1) = A099774(n). a(4*n) = A000005(n). a(4*n + 1) = A000005(4*n + 1). a(4*n - 1) = 2 * A078703(n).
a(n) = A094572(n) / 2. - Ray Chandler, Aug 23 2014
Bisection: a(2*k-1) = A000005(2*k-1), a(2*k) = A183063(2*k) - A001227(2*k), k >= 1. See the Hardy reference, p. 142 where a(n) = sigma^*0(n). - _Wolfdieter Lang, Jan 07 2017
a(n) = d(n) - 2*d(n/2) + 2*d(n/4) where d(n) = 0 if n is not an integer. See Kühleitner.
a(n) = Sum_{d|n} [(d mod 2) = (n/d mod 2)], where [ ] is the Iverson bracket. - Wesley Ivan Hurt, Mar 21 2022
From Amiram Eldar, Nov 29 2022: (Start)
Dirichlet g.f.: zeta(s)^2*(1 + 2^(1-2*s) - 2^(1-s)).
Sum_{k=1..n} a(k) ~ n*log(n)/2 + (2*gamma-1)*n/2, where gamma is Euler's constant (A001620). (End)
a(n) = (-1)^n * Sum_{d|2*n} cos(d*Pi/2). - Ridouane Oudra, Sep 27 2024

A083910 Number of divisors of n that are congruent to 0 modulo 10.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, 0, 0, 0, 0, 0
Offset: 1

Views

Author

Reinhard Zumkeller, May 08 2003

Keywords

Crossrefs

Programs

Formula

a(n) = A000005(n) - A083911(n) - A083912(n) - A083913(n) - A083914(n) - A083915(n) - A083916(n) - A083917(n) - A083918(n) - A083919(n).
a(10k) = tau(k) = A000005(k); a(n) = 0 if 10 does not divide n. - Franklin T. Adams-Watters, Apr 15 2007
G.f.: Sum_{k>=1} x^(10*k)/(1 - x^(10*k)). - Ilya Gutkovskiy, Sep 11 2019
Sum_{k=1..n} a(k) = n*log(n)/10 + c*n + O(n^(1/3)*log(n)), where c = (2*gamma - 1 - log(10))/10 = -0.214815..., and gamma is Euler's constant (A001620) (Smith and Subbarao, 1981). - Amiram Eldar, Dec 30 2023

A136655 Product of odd divisors of n.

Original entry on oeis.org

1, 1, 3, 1, 5, 3, 7, 1, 27, 5, 11, 3, 13, 7, 225, 1, 17, 27, 19, 5, 441, 11, 23, 3, 125, 13, 729, 7, 29, 225, 31, 1, 1089, 17, 1225, 27, 37, 19, 1521, 5, 41, 441, 43, 11, 91125, 23, 47, 3, 343, 125, 2601, 13, 53, 729, 3025, 7, 3249, 29, 59, 225, 61, 31, 250047, 1, 4225, 1089
Offset: 1

Views

Author

Jonathan Vos Post, Jun 25 2008

Keywords

Comments

Product of rows of triangle A182469. - Reinhard Zumkeller, May 01 2012

Crossrefs

Programs

  • Haskell
    a136655 = product . a182469_row  -- Reinhard Zumkeller, May 01 2012
    
  • Maple
    with(numtheory); f:=proc(n) local t1,i,k; t1:=divisors(n); k:=1; for i in t1 do if i mod 2 = 1 then k:=k*i; fi; od; k; end; # N. J. A. Sloane, Jul 14 2008
  • Mathematica
    Array[Times @@ Select[Divisors@ #, OddQ] &, 66] (* Michael De Vlieger, Aug 03 2017 *)
    a[n_] := (oddpart = n/2^IntegerExponent[n, 2])^(DivisorSigma[0, oddpart]/2); Array[a, 100] (* Amiram Eldar, Jun 26 2022 *)
  • PARI
    a(n) = my(d=divisors(n)); prod(k=1, #d, if (d[k]%2, d[k], 1)); \\ Michel Marcus, Aug 04 2017
    
  • Python
    from math import isqrt
    from sympy import divisor_count
    def A136655(n):
        d = divisor_count(m:=n>>(~n&n-1).bit_length())
        return isqrt(m)**d if d&1 else m**(d>>1) # Chai Wah Wu, Jun 27 2025

Formula

a(p) = p if p noncomposite; a(2^n) = 1; a(pq) = p^2 * q^2 when p, q are odd primes.
a(n) = sqrt(n^od(n)/2^ed(n)), where od(n) = number of odd divisors of n = tau(2*n)-tau(n) and ed(n) = number of even divisors of n = 2*tau(n)-tau(2*n). - Vladeta Jovovic, Jun 25 2008
Also a(n) = A007955(A000265(n)). - David Wilson, Jun 26 2008
a(n) = Product_{h == 1 mod 4 and h | n}*Product_{i == 3 mod 4 and i | n}.
a(n) = Product_{j == 1 mod 6 and j | n}*Product_{k == 5 mod 6 and k | n}.
a(n) = A140210(n)*A140211(n). - R. J. Mathar, Jun 27 2008
a(n) = A007955(n) / A125911(n).

Extensions

More terms from N. J. A. Sloane, Jul 14 2008
Edited by N. J. A. Sloane, Aug 29 2008 at the suggestion of R. J. Mathar

A299480 List of pairs (a,b) where in the n-th pair, a = number of odd divisors of n and b = number of even divisors of n.

Original entry on oeis.org

1, 0, 1, 1, 2, 0, 1, 2, 2, 0, 2, 2, 2, 0, 1, 3, 3, 0, 2, 2, 2, 0, 2, 4, 2, 0, 2, 2, 4, 0, 1, 4, 2, 0, 3, 3, 2, 0, 2, 4, 4, 0, 2, 2, 2, 0, 2, 6, 3, 0, 2, 2, 4, 0, 2, 4, 2, 0, 4, 4, 2, 0, 1, 5, 4, 0, 2, 2, 4, 0, 3, 6, 2, 0, 2, 2, 4, 0, 2, 6, 2, 0, 4, 4, 2, 0, 2, 4, 6, 0, 2, 2, 2, 0, 2, 8, 3, 0, 3, 3, 4, 0, 2, 4
Offset: 1

Views

Author

Omar E. Pol, Feb 10 2018

Keywords

Comments

Also sequence found by reading in the upper part of the diagram of periodic curves for the number of divisors of n (see the first diagram in the Links section). Explanation: the number of curves that emerge from the point (n, 0) to the left hand in the upper part of the diagram equals A001227(n) the number of odd divisors of n. The number of curves that emerge from the same point (n, 0) to the right hand in the upper part of the diagram equals A183063(n) the number of even divisors of n. So the n-th pair is (A001227(n), A183063(n)). Also the total number of curves that emerges from the same point (n, 0) equals A000005(n), the number of divisors of n. Note that at the point (n, 0) the inflection point of the curve that emerges with diameter k represents the divisor n/k.
The second diagram in the links section shows only the upper part from the first diagram.

Examples

			Array begins:
n      A001227  A183063
1         1        0
2         1        1
3         2        0
4         1        2
5         2        0
6         2        2
7         2        0
8         1        3
9         3        0
10        2        2
11        2        0
12        2        4
...
		

Crossrefs

Row sums give A000005.
For another version see A299485.

Programs

  • Maple
    f := proc (n) local t; t := numtheory:-tau(n/2^padic:-ordp(n, 2)); t, numtheory:-tau(n)-t end proc:
    map(f, [$1..100]); # Robert Israel, Feb 11 2018
  • Mathematica
    m = 105; CoefficientList[Sum[(x^(2n-1) + x^(4n))/(1 - x^(4n)), {n, 1, m/2//Ceiling}] + O[x]^m, x] // Rest (* Jean-François Alcover, Mar 22 2019, after Robert Israel *)

Formula

Pair(a,b) = Pair(A001227(n), A183063(n)).
G.f.: Sum_{n>=1} (x^(2*n-1) + x^(4*n))/(1-x^(4*n)). - Robert Israel, Feb 11 2018

A069735 Number of regular orientable coverings of the Klein bottle with 2n lists.

Original entry on oeis.org

1, 3, 2, 5, 2, 6, 2, 7, 3, 6, 2, 10, 2, 6, 4, 9, 2, 9, 2, 10, 4, 6, 2, 14, 3, 6, 4, 10, 2, 12, 2, 11, 4, 6, 4, 15, 2, 6, 4, 14, 2, 12, 2, 10, 6, 6, 2, 18, 3, 9, 4, 10, 2, 12, 4, 14, 4, 6, 2, 20, 2, 6, 6, 13, 4, 12, 2, 10, 4, 12, 2, 21, 2, 6, 6, 10, 4, 12, 2, 18, 5, 6, 2, 20, 4, 6, 4, 14, 2, 18
Offset: 1

Views

Author

Valery A. Liskovets, Apr 07 2002

Keywords

Comments

Dirichlet convolution of A000012 by A040001. - R. J. Mathar, Mar 30 2011
a(n) is the number of full-dimensional lattices with volume n in Z^2 which are symmetric about a coordinate axis (equivalently, about both). - Álvar Ibeas, Mar 19 2021

Examples

			x + 3*x^2 + 2*x^3 + 5*x^4 + 2*x^5 + 6*x^6 + 2*x^7 + 7*x^8 + 3*x^9 + 6*x^10 + ...
		

Crossrefs

Equals row sums of triangle A143110. - Gary W. Adamson, Jul 25 2008

Programs

  • Maple
    read("transforms") : nmax := 100 :
    L := [1,1,seq(0,i=1..nmax)] :
    MOBIUSi(%) :
    MOBIUSi(%) ; # R. J. Mathar, Sep 25 2017
    with(NumberTheory): seq(tau(n) + `if`(n::odd, 0, tau(n/2)), n=1..100); # Peter Luschny, Mar 19 2021
  • Mathematica
    d[n_] := DivisorSigma[0, n];
    a[n_] := If[EvenQ[n], d[n] + d[n/2], d[n]];
    Array[a, 100] (* Jean-François Alcover, Aug 27 2019 *)
  • PARI
    {a(n) = if( n<1, 0, numdiv(n) + if( n%2, 0, numdiv( n / 2)))} /* Michael Somos, Mar 24 2012 */

Formula

Multiplicative with a(2^e)=2e+1 and a(p^e)=e+1 for e>0 and an odd prime p.
a(n) = d(n)+d(n/2) for even n and a(n) = d(n) otherwise where d(n) is the number of divisors of n (A000005).
G.f.: Sum_{k>0} x^k*(1+2*x^k)/(1-x^(2*k)). - Vladeta Jovovic, Dec 16 2002
Dirichlet g.f.: (1+2^(-s))*zeta^2(s) [ Rutherford]. - N. J. A. Sloane, Feb 23 2009
Moebius transform is period 2 sequence [ 1, 2, ...]. - Michael Somos, Mar 24 2012
a(2*n - 1) = A099774(n).
a(n) = Sum_{ m: m^2|n } A304182(n/m^2). - Andrey Zabolotskiy, May 07 2018
Sum_{k=1..n} a(k) ~ 3*n*log(n)/2 + (3*gamma - 3/2 - log(2)/2)*n, where gamma is the Euler-Mascheroni constant A001620. - Vaclav Kotesovec, Oct 04 2019
a(n) = 3*tau(n) - tau(2*n). - Ridouane Oudra, Mar 15 2021
a(n) = A320111(n) + (A059841(n)*A000005(n)), i.e. a(n) = A320111(n) if n is odd, and a(n) = A320111(n) + A000005(n) if n is even. - Antti Karttunen, Mar 17 2021
a(n) = A000005(n) + A183063(n) = 2*A000005(n) - A001227(n). - Amiram Eldar, Dec 22 2023

Extensions

Corrected by T. D. Noe, Nov 13 2006

A299485 List of pairs (a,b) where in the n-th pair, a = number of even divisors of n and b = number of odd divisors of n.

Original entry on oeis.org

0, 1, 1, 1, 0, 2, 2, 1, 0, 2, 2, 2, 0, 2, 3, 1, 0, 3, 2, 2, 0, 2, 4, 2, 0, 2, 2, 2, 0, 4, 4, 1, 0, 2, 3, 3, 0, 2, 4, 2, 0, 4, 2, 2, 0, 2, 6, 2, 0, 3, 2, 2, 0, 4, 4, 2, 0, 2, 4, 4, 0, 2, 5, 1, 0, 4, 2, 2, 0, 4, 6, 3, 0, 2, 2, 2, 0, 4, 6, 2, 0, 2, 4, 4, 0, 2, 4, 2, 0, 6, 2, 2, 0, 2, 8, 2, 0, 3, 3, 3, 0, 4, 4, 2
Offset: 1

Views

Author

Omar E. Pol, Mar 03 2018

Keywords

Comments

Also sequence found by reading in the lower part of the diagram of periodic curves for the number of divisors of n (see the first diagram in the Links section). Explanation: the number of curves that emerge from the point (n, 0) to the left hand in the lower part of the diagram equals A183063(n) the number of even divisors of n. The number of curves that emerge from the same point (n, 0) to the right hand in the lower part of the diagram equals A001227(n) the number of odd divisors of n. So the n-th pair is (A183063(n), A001227(n)). Also the total number of curves that emerges from the same point (n, 0) equals A000005(n), the number of divisors of n. Note that at the point (n, 0) the inflection point of the curve that emerges with diameter k represents the divisor n/k.
The second diagram in the links section shows only the lower part from the first diagram, upside down.

Examples

			Array begins:
n      A183063  A001227
1         0        1
2         1        1
3         0        2
4         2        1
5         0        2
6         2        2
7         0        2
8         3        1
9         0        3
10        2        2
11        0        2
12        4        2
...
		

Crossrefs

Another version of A299480.
Row sums give A000005.

Programs

  • Mathematica
    Array[{#2, #1 - #2} & @@ {DivisorSigma[0, #], DivisorSum[#, 1 &, EvenQ]} &, 52] // Flatten (* Michael De Vlieger, Mar 04 2018 *)

Formula

Pair(a,b) = Pair(A183063(n), A001227(n)).

A129372 Triangle read by rows: T(n,k) = 1 if k divides n and n/k is odd, T(n,k) = 0 otherwise.

Original entry on oeis.org

1, 0, 1, 1, 0, 1, 0, 0, 0, 1, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1
Offset: 1

Views

Author

Gary W. Adamson, Apr 11 2007

Keywords

Examples

			First few rows of the triangle:
  1;
  0, 1;
  1, 0, 1;
  0, 0, 0, 1;
  1, 0, 0, 0, 1;
  0, 1, 0, 0, 0, 1;
  1, 0, 0, 0, 0, 0, 1;
  0, 0, 0, 0, 0, 0, 0, 1;
  1, 0, 1, 0, 0, 0, 0, 0, 1;
  ...
		

Crossrefs

Cf. A001227 (row sums).

Programs

  • Magma
    A129372:= func< n,k | (n mod k) eq 0 and (Floor(n/k) mod 2) eq 1 select 1 else 0 >;
    [A129372(n,k): k in [1..n], n in [1..15]]; // G. C. Greubel, Feb 01 2024
    
  • Mathematica
    A129372[n_, k_]:= If[Mod[n,k]==0 && OddQ[n/k], 1, 0];
    Table[A129372[n, k], {n,15}, {k,n}]//Flatten (* G. C. Greubel, Feb 01 2024 *)
  • PARI
    T(n,k)=if(n%k, 0, n/k%2==1) \\ Andrew Howroyd, Aug 10 2018
    
  • SageMath
    def A129372(n,k): return 1 if (n%k)==0 and ((n/k)%2)==1 else 0
    flatten([[A129372(n,k) for k in range(1,n+1)] for n in range(1,16)]) # G. C. Greubel, Feb 01 2024

Formula

Equals A051731 * A115359.
Sum_{k=1..n} T(n, k) = A001227(n) (row sums).
From G. C. Greubel, Feb 01 2024: (Start)
Sum_{k=1..n} (-1)^(k-1)*T(n, k) = (-1)^(n-1)*A001227(n).
Sum_{k=1..floor((n+1)/2)} T(n-k+1, k) = A183063(n+1). (End)

Extensions

Name changed and terms a(56) and beyond from Andrew Howroyd, Aug 10 2018
Previous Showing 11-20 of 63 results. Next