cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 65 results. Next

A078812 Triangle read by rows: T(n, k) = binomial(n+k-1, 2*k-1).

Original entry on oeis.org

1, 2, 1, 3, 4, 1, 4, 10, 6, 1, 5, 20, 21, 8, 1, 6, 35, 56, 36, 10, 1, 7, 56, 126, 120, 55, 12, 1, 8, 84, 252, 330, 220, 78, 14, 1, 9, 120, 462, 792, 715, 364, 105, 16, 1, 10, 165, 792, 1716, 2002, 1365, 560, 136, 18, 1, 11, 220, 1287, 3432, 5005, 4368, 2380, 816, 171, 20, 1
Offset: 0

Views

Author

Michael Somos, Dec 05 2002

Keywords

Comments

Warning: formulas and programs sometimes refer to offset 0 and sometimes to offset 1.
Apart from signs, identical to A053122.
Coefficient array for Morgan-Voyce polynomial B(n,x); see A085478 for references. - Philippe Deléham, Feb 16 2004
T(n,k) is the number of compositions of n having k parts when there are q kinds of part q (q=1,2,...). Example: T(4,2) = 10 because we have (1,3),(1,3'),(1,3"), (3,1),(3',1),(3",1),(2,2),(2,2'),(2',2) and (2',2'). - Emeric Deutsch, Apr 09 2005
T(n, k) is also the number of idempotent order-preserving full transformations (of an n-chain) of height k (height(alpha) = |Im(alpha)|). - Abdullahi Umar, Oct 02 2008
This sequence is jointly generated with A085478 as a triangular array of coefficients of polynomials v(n,x): initially, u(1,x) = v(1,x) = 1; for n > 1, u(n,x) = u(n-1,x) + x*v(n-1)x and v(n,x) = u(n-1,x) + (x+1)*v(n-1,x). See the Mathematica section. - Clark Kimberling, Feb 25 2012
Concerning Kimberling's recursion relations, see A102426. - Tom Copeland, Jan 19 2016
Subtriangle of the triangle T(n,k), 0 <= k <= n, read by rows, given by (0, 2, -1/2, 1/2, 0, 0, 0, 0, 0, 0, 0, ...) DELTA (1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, ...) where DELTA is the operator defined in A084938. - Philippe Deléham, Mar 27 2012
From Wolfdieter Lang, Aug 30 2012: (Start)
With offset [0,0] the triangle with entries R(n,k) = T(n+1,k+1):= binomial(n+k+1, 2*k+1), n >= k >= 0, and zero otherwise, becomes the Riordan lower triangular convolution matrix R = (G(x)/x, G(x)) with G(x):=x/(1-x)^2 (o.g.f. of A000027). This means that the o.g.f. of column number k of R is (G(x)^(k+1))/x. This matrix R is the inverse of the signed Riordan lower triangular matrix A039598, called in a comment there S.
The Riordan matrix with entries R(n,k), just defined, provides the transition matrix between the sequence entry F(4*m*(n+1))/L(2*l), with m >= 0, for n=0,1,... and the sequence entries 5^k*F(2*m)^(2*k+1) for k = 0,1,...,n, with F=A000045 (Fibonacci) and L=A000032 (Lucas). Proof: from the inverse of the signed triangle Riordan matrix S used in a comment on A039598.
For the transition matrix R (T with offset [0,0]) defined above, row n=2: F(12*m) /L(2*m) = 3*5^0*F(2*m)^1 + 4*5^1*F(2*m)^3 + 1*5^2*F(2*m)^5, m >= 0. (End)
From R. Bagula's comment in A053122 (cf. Damianou link p. 10), this array gives the coefficients (mod sign) of the characteristic polynomials for the Cartan matrix of the root system A_n. - Tom Copeland, Oct 11 2014
For 1 <= k <= n, T(n,k) equals the number of (n-1)-length ternary words containing k-1 letters equal 2 and avoiding 01. - Milan Janjic, Dec 20 2016
The infinite sum (Sum_{i >= 0} (T(s+i,1+i) / 2^(s+2*i)) * zeta(s+1+2*i)) = 1 allows any zeta(s+1) to be expressed as a sum of rational multiples of zeta(s+1+2*i) having higher arguments. For example, zeta(3) can be expressed as a sum involving zeta(5), zeta(7), etc. The summation for each s >= 1 uses the s-th diagonal of the triangle. - Robert B Fowler, Feb 23 2022
The convolution triangle of the nonnegative integers. - Peter Luschny, Oct 07 2022

Examples

			Triangle begins, 1 <= k <= n:
                          1
                        2   1
                      3   4   1
                    4  10   6   1
                  5  20  21   8   1
                6  35  56  36  10   1
              7  56 126 120  55  12   1
            8  84 252 330 220  78  14   1
From _Peter Bala_, Feb 11 2025: (Start)
The array factorizes as an infinite product of lower triangular arrays:
  / 1               \    / 1              \ / 1              \ / 1             \
  | 2    1           |   | 2   1          | | 0  1           | | 0  1          |
  | 3    4   1       | = | 3   2   1      | | 0  2   1       | | 0  0  1       | ...
  | 4   10   6   1   |   | 4   3   2  1   | | 0  3   2  1    | | 0  0  2  1    |
  | 5   20  21   8  1|   | 5   4   3  2  1| | 0  4   3  2  1 | | 0  0  3  2  1 |
  |...               |   |...             | |...             | |...            |
Cf. A092276. (End)
		

Crossrefs

This triangle is formed from odd-numbered rows of triangle A011973 read in reverse order.
Row sums give A001906. With signs: A053122.
The column sequences are A000027, A000292, A000389, A000580, A000582, A001288 for k=1..6, resp. For k=7..24 they are A010966..(+2)..A011000 and for k=25..50 they are A017713..(+2)..A017763.

Programs

  • GAP
    Flat(List([0..12], n-> List([0..n], k-> Binomial(n+k+1, 2*k+1) ))); # G. C. Greubel, Aug 01 2019
  • Haskell
    a078812 n k = a078812_tabl !! n !! k
    a078812_row n = a078812_tabl !! n
    a078812_tabl = [1] : [2, 1] : f [1] [2, 1] where
       f us vs = ws : f vs ws where
         ws = zipWith (-) (zipWith (+) ([0] ++ vs) (map (* 2) vs ++ [0]))
                          (us ++ [0, 0])
    -- Reinhard Zumkeller, Dec 16 2013
    
  • Magma
    /* As triangle */ [[Binomial(n+k-1, 2*k-1): k in [1..n]]: n in [1.. 15]]; // Vincenzo Librandi, Jun 01 2018
    
  • Maple
    for n from 1 to 11 do seq(binomial(n+k-1,2*k-1),k=1..n) od; # yields sequence in triangular form; Emeric Deutsch, Apr 09 2005
    # Uses function PMatrix from A357368. Adds a row and column above and to the left.
    PMatrix(10, n -> n); # Peter Luschny, Oct 07 2022
  • Mathematica
    (* First program *)
    u[1, x_]:= 1; v[1, x_]:= 1; z = 13;
    u[n_, x_]:= u[n-1, x] + x*v[n-1, x];
    v[n_, x_]:= u[n-1, x] + (x+1)*v[n-1, x];
    Table[Expand[u[n, x]], {n, 1, z/2}]
    Table[Expand[v[n, x]], {n, 1, z/2}]
    cu = Table[CoefficientList[u[n, x], x], {n, 1, z}];
    TableForm[cu]
    Flatten[%] (* A085478 *)
    Table[Expand[v[n, x]], {n, 1, z}]
    cv = Table[CoefficientList[v[n, x], x], {n, 1, z}];
    TableForm[cv]
    Flatten[%] (* A078812 *) (* Clark Kimberling, Feb 25 2012 *)
    (* Second program *)
    Table[Binomial[n+k+1, 2*k+1], {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, Aug 01 2019 *)
  • Maxima
    T(n,m):=sum(binomial(2*k,n-m)*binomial(m+k,k)*(-1)^(n-m+k)*binomial(n+1,m+k+1),k,0,n-m); /* Vladimir Kruchinin, Apr 13 2016 */
    
  • PARI
    {T(n, k) = if( n<0, 0, binomial(n+k-1, 2*k-1))};
    
  • PARI
    {T(n, k) = polcoeff( polcoeff( x*y / (1 - (2 + y) * x + x^2) + x * O(x^n), n), k)};
    
  • Sage
    @cached_function
    def T(k,n):
        if k==n: return 1
        if k==0: return 0
        return sum(i*T(k-1,n-i) for i in (1..n-k+1))
    A078812 = lambda n,k: T(k,n)
    [[A078812(n,k) for k in (1..n)] for n in (1..8)] # Peter Luschny, Mar 12 2016
    
  • Sage
    [[binomial(n+k+1, 2*k+1) for k in (0..n)] for n in (0..12)] # G. C. Greubel, Aug 01 2019
    

Formula

G.f.: x*y / (1 - (2 + y)*x + x^2). To get row n, expand this in powers of x then expand the coefficient of x^n in increasing powers of y.
From Philippe Deléham, Feb 16 2004: (Start)
If indexing begins at 0 we have
T(n,k) = (n+k+1)!/((n-k)!*(2k+1))!.
T(n,k) = Sum_{j>=0} T(n-1-j, k-1)*(j+1) with T(n, 0) = n+1, T(n, k) = 0 if n < k.
T(n,k) = T(n-1, k-1) + T(n-1, k) + Sum_{j>=0} (-1)^j*T(n-1, k+j)*A000108(j) with T(n,k) = 0 if k < 0, T(0, 0)=1 and T(0, k) = 0 for k > 0.
G.f. for the column k: Sum_{n>=0} T(n, k)*x^n = (x^k)/(1-x)^(2k+2).
Row sums: Sum_{k>=0} T(n, k) = A001906(n+1). (End)
Antidiagonal sums are A000079(n) = Sum_{k=0..floor(n/2)} binomial(n+k+1, n-k). - Paul Barry, Jun 21 2004
Riordan array (1/(1-x)^2, x/(1-x)^2). - Paul Barry, Oct 22 2006
T(0,0) = 1, T(n,k) = 0 if k < 0 or if k > n, T(n,k) = T(n-1,k-1) + 2*T(n-1,k) - T(n-2,k). - Philippe Deléham, Jan 26 2010
For another version see A128908. - Philippe Deléham, Mar 27 2012
T(n,m) = Sum_{k=0..n-m} (binomial(2*k,n-m)*binomial(m+k,k)*(-1)^(n-m+k)* binomial(n+1,m+k+1)). - Vladimir Kruchinin, Apr 13 2016
T(n, k) = T(n-1, k) + (T(n-1, k-1) + T(n-2, k-1) + T(n-3, k-1) + ...) for k >= 2 with T(n, 1) = n. - Peter Bala, Feb 11 2025
From Peter Bala, May 04 2025: (Start)
With the column offset starting at 0, the n-th row polynomial B(n, x) = 1/sqrt(x + 4) * Chebyshev_U(2*n+1, (1/2)*sqrt(x + 4)) = (-1)^n * Chebyshev_U(n, -(1/2)*(x + 2)).
B(n, x) / Product_{k = 1..2*n} (1 + 1/B(k, x)) = b(n, x), the n-th row polynomial of A085478. (End)

Extensions

Edited by N. J. A. Sloane, Apr 28 2008

A027465 Cube of lower triangular normalized binomial matrix.

Original entry on oeis.org

1, 3, 1, 9, 6, 1, 27, 27, 9, 1, 81, 108, 54, 12, 1, 243, 405, 270, 90, 15, 1, 729, 1458, 1215, 540, 135, 18, 1, 2187, 5103, 5103, 2835, 945, 189, 21, 1, 6561, 17496, 20412, 13608, 5670, 1512, 252, 24, 1, 19683, 59049, 78732, 61236, 30618, 10206, 2268
Offset: 0

Views

Author

Keywords

Comments

Rows of A013610 reversed. - Michael Somos, Feb 14 2002
Row sums are powers of 4 (A000302), antidiagonal sums are A006190 (a(n) = 3*a(n-1) + a(n-2)). - Gerald McGarvey, May 17 2005
Triangle of coefficients in expansion of (3+x)^n.
Also: Pure Galton board of scheme (3,1). Also: Multiplicity (number) of pairs of n-dimensional binary vectors with dot product (overlap) k. There are 2^n = A000079(n) binary vectors of length n and 2^(2n) = 4^n = A000302(n) different pairs to form dot products k = Sum_{i=1..n} v[i]*u[i] between these, 0 <= k <= n. (Since dot products are symmetric, there are only 2^n*(2^n-1)/2 different non-ordered pairs, actually.) - R. J. Mathar, Mar 17 2006
Mirror image of A013610. - Zerinvary Lajos, Nov 25 2007
T(i,j) is the number of i-permutations of 4 objects a,b,c,d, with repetition allowed, containing j a's. - Zerinvary Lajos, Dec 21 2007
The antidiagonals of the sequence formatted as a square array (see Examples section) and summed with alternating signs gives a bisection of Fibonacci sequence, A001906. Example: 81-(27-1)=55. Similar rule applied to rows gives A000079. - Mark Dols, Sep 01 2009
Triangle T(n,k), read by rows, given by (3,0,0,0,0,0,0,0,...)DELTA (1,0,0,0,0,0,0,0,...) where DELTA is the operator defined in A084938. - Philippe Deléham, Oct 09 2011
T(n,k) = binomial(n,k)*3^(n-k), the number of subsets of [2n] with exactly k symmetric pairs, where elements i and j of [2n] form a symmetric pair if i+j=2n+1. Equivalently, if n couples attend a (ticketed) event that offers door prizes, then the number of possible prize distributions that have exactly k couples as dual winners is T(n,k). - Dennis P. Walsh, Feb 02 2012
T(n,k) is the number of ordered pairs (A,B) of subsets of {1,2,...,n} such that the intersection of A and B contains exactly k elements. For example, T(2,1) = 6 because we have ({1},{1}); ({1},{1,2}); ({2},{2}); ({2},{1,2}); ({1,2},{1}); ({1,2},{2}). Sum_{k=0..n} T(n,k)*k = A002697(n) (see comment there by Ross La Haye). - Geoffrey Critzer, Sep 04 2013
Also the convolution triangle of A000244. - Peter Luschny, Oct 09 2022

Examples

			Example: n = 3 offers 2^3 = 8 different binary vectors (0,0,0), (0,0,1), ..., (1,1,0), (1,1,1). a(3,2) = 9 of the 2^4 = 64 pairs have overlap k = 2: (0,1,1)*(0,1,1) = (1,0,1)*(1,0,1) = (1,1,0)*(1,1,0) = (1,1,1)*(1,1,0) = (1,1,1)*(1,0,1) = (1,1,1)*(0,1,1) = (0,1,1)*(1,1,1) = (1,0,1)*(1,1,1) = (1,1,0)*(1,1,1) = 2.
For example, T(2,1)=6 since there are 6 subsets of {1,2,3,4} that have exactly 1 symmetric pair, namely, {1,4}, {2,3}, {1,2,3}, {1,2,4}, {1,3,4}, and {2,3,4}.
The present sequence formatted as a triangular array:
     1
     3     1
     9     6     1
    27    27     9     1
    81   108    54    12    1
   243   405   270    90   15    1
   729  1458  1215   540  135   18   1
  2187  5103  5103  2835  945  189  21  1
  6561 17496 20412 13608 5670 1512 252 24 1
  ...
A013610 formatted as a triangular array:
  1
  1  3
  1  6   9
  1  9  27   27
  1 12  54  108   81
  1 15  90  270  405   243
  1 18 135  540 1215  1458   729
  1 21 189  945 2835  5103  5103  2187
  1 24 252 1512 5670 13608 20412 17496 6561
   ...
A099097 formatted as a square array:
      1     0     0    0   0 0 0 0 0 0 0 ...
      3     1     0    0   0 0 0 0 0 0 ...
      9     6     1    0   0 0 0 0 0 ...
     27    27     9    1   0 0 0 0 ...
     81   108    54   12   1 0 0 ...
    243   405   270   90  15 1 ...
    729  1458  1215  540 135 ...
   2187  5103  5103 2835 ...
   6561 17496 20412 ...
  19683 59049 ...
  59049 ...
		

Crossrefs

Programs

  • Haskell
    a027465 n k = a027465_tabl !! n !! k
    a027465_row n = a027465_tabl !! n
    a027465_tabl = iterate (\row ->
       zipWith (+) (map (* 3) (row ++ [0])) (map (* 1) ([0] ++ row))) [1]
    -- Reinhard Zumkeller, May 26 2013
  • Maple
    for i from 0 to 12 do seq(binomial(i, j)*3^(i-j), j = 0 .. i) od; # Zerinvary Lajos, Nov 25 2007
    # Uses function PMatrix from A357368. Adds column 1, 0, 0, ... to the left.
    PMatrix(10, n -> 3^(n-1)); # Peter Luschny, Oct 09 2022
  • Mathematica
    t[n_, k_] := Binomial[n, k]*3^(n-k); Table[t[n, n-k], {n, 0, 9}, {k, n, 0, -1}] // Flatten (* Jean-François Alcover, Sep 19 2012 *)
  • PARI
    {T(n, k) = polcoeff( (3 + x)^n, k)}; /* Michael Somos, Feb 14 2002 */
    

Formula

Numerators of lower triangle of (b^2)[ i, j ] where b[ i, j ] = binomial(i-1, j-1)/2^(i-1) if j <= i, 0 if j > i.
Triangle whose (i, j)-th entry is binomial(i, j)*3^(i-j).
a(n, m) = 4^(n-1)*Sum_{j=m..n} b(n, j)*b(j, m) = 3^(n-m)*binomial(n-1, m-1), n >= m >= 1; a(n, m) := 0, n < m. G.f. for m-th column: (x/(1-3*x))^m (m-fold convolution of A000244, powers of 3). - Wolfdieter Lang, Feb 2006
G.f.: 1 / (1 - x(3+y)).
a(n,k) = 3*a(n-1,k) + a(n-1,k-1) - R. J. Mathar, Mar 17 2006
From the formalism of A133314, the e.g.f. for the row polynomials of A027465 is exp(x*t)*exp(3x). The e.g.f. for the row polynomials of the inverse matrix is exp(x*t)*exp(-3x). p iterates of the matrix give the matrix with e.g.f. exp(x*t)*exp(p*3x). The results generalize for 3 replaced by any number. - Tom Copeland, Aug 18 2008
T(n,k) = A164942(n,k)*(-1)^k. - Philippe Deléham, Oct 09 2011
Let P and P^T be the Pascal matrix and its transpose and H = P^3 = A027465. Then from the formalism of A132440 and A218272,
exp[x*z/(1-3z)]/(1-3z) = exp(3z D_z z) e^(x*z)= exp(3D_x x D_x) e^(z*x)
= (1 z z^2 z^3 ...) H (1 x x^2/2! x^3/3! ...)^T
= (1 x x^2/2! x^3/3! ...) H^T (1 z z^2 z^3 ...)^T = Sum_{n>=0} (3z)^n L_n(-x/3), where D is the derivative operator and L_n(x) are the regular (not normalized) Laguerre polynomials. - Tom Copeland, Oct 26 2012
E.g.f. for column k: x^k/k! * exp(3x). - Geoffrey Critzer, Sep 04 2013

A053122 Triangle of coefficients of Chebyshev's S(n,x-2) = U(n,x/2-1) polynomials (exponents of x in increasing order).

Original entry on oeis.org

1, -2, 1, 3, -4, 1, -4, 10, -6, 1, 5, -20, 21, -8, 1, -6, 35, -56, 36, -10, 1, 7, -56, 126, -120, 55, -12, 1, -8, 84, -252, 330, -220, 78, -14, 1, 9, -120, 462, -792, 715, -364, 105, -16, 1, -10, 165, -792, 1716, -2002, 1365, -560, 136, -18, 1, 11, -220, 1287, -3432, 5005, -4368, 2380, -816, 171, -20
Offset: 0

Views

Author

Keywords

Comments

Apart from signs, identical to A078812.
Another version with row-leading 0's and differing signs is given by A285072.
G.f. for row polynomials S(n,x-2) (signed triangle): 1/(1+(2-x)*z+z^2). Unsigned triangle |a(n,m)| has g.f. 1/(1-(2+x)*z+z^2) for row polynomials.
Row sums (signed triangle) A049347(n) (periodic(1,-1,0)). Row sums (unsigned triangle) A001906(n+1)=F(2*(n+1)) (even-indexed Fibonacci).
In the language of Shapiro et al. (see A053121 for the reference) such a lower triangular (ordinary) convolution array, considered as a matrix, belongs to the Bell-subgroup of the Riordan-group.
The (unsigned) column sequences are A000027, A000292, A000389, A000580, A000582, A001288 for m=0..5, resp. For m=6..23 they are A010966..(+2)..A011000 and for m=24..49 they are A017713..(+2)..A017763.
Riordan array (1/(1+x)^2,x/(1+x)^2). Inverse array is A039598. Diagonal sums have g.f. 1/(1+x^2). - Paul Barry, Mar 17 2005. Corrected by Wolfdieter Lang, Nov 13 2012.
Unsigned version is in A078812. - Philippe Deléham, Nov 05 2006
Also row n gives (except for an overall sign) coefficients of characteristic polynomial of the Cartan matrix for the root system A_n. - Roger L. Bagula, May 23 2007
From Wolfdieter Lang, Nov 13 2012: (Start)
The A-sequence for this Riordan triangle is A115141, and the Z-sequence is A115141(n+1), n>=0. For A- and Z-sequences for Riordan matrices see the W. Lang link under A006232 with details and references.
S(n,x^2-2) = sum(r(j,x^2),j=0..n) with Chebyshev's S-polynomials and r(j,x^2) := R(2*j+1,x)/x, where R(n,x) are the monic integer Chebyshv T-polynomials with coefficients given in A127672. Proof from comparing the o.g.f. of the partial sum of the r(j,x^2) polynomials (see a comment on the signed Riordan triangle A111125) with the present Riordan type o.g.f. for the row polynomials with x -> x^2. (End)
S(n,x^2-2) = S(2*n+1,x)/x, n >= 0, from the odd part of the bisection of the o.g.f. - Wolfdieter Lang, Dec 17 2012
For a relation to a generator for the Narayana numbers A001263, see A119900, whose columns are unsigned shifted rows (or antidiagonals) of this array, referring to the tables in the example sections. - Tom Copeland, Oct 29 2014
The unsigned rows of this array are alternating rows of a mirrored A011973 and alternating shifted rows of A030528 for the Fibonacci polynomials. - Tom Copeland, Nov 04 2014
Boas-Buck type recurrence for column k >= 0 (see Aug 10 2017 comment in A046521 with references): a(n, m) = (2*(m + 1)/(n - m))*Sum_{k = m..n-1} (-1)^(n-k)*a(k, m), with input a(n, n) = 1, and a(n,k) = 0 for n < k. - Wolfdieter Lang, Jun 03 2020
Row n gives the characteristic polynomial of the (n X n)-matrix M where M[i,j] = 2 if i = j, -1 if |i-j| = 1 and 0 otherwise. The matrix M is positive definite and has 2-condition number (cot(Pi/(2*n+2)))^2. - Jianing Song, Jun 21 2022
Also the convolution triangle of (-1)^(n+1)*n. - Peter Luschny, Oct 07 2022

Examples

			The triangle a(n,m) begins:
n\m   0    1    2     3     4     5     6    7    8  9
0:    1
1:   -2    1
2:    3   -4    1
3:   -4   10   -6     1
4:    5  -20   21    -8     1
5:   -6   35  -56    36   -10     1
6:    7  -56  126  -120    55   -12     1
7:   -8   84 -252   330  -220    78   -14    1
8:    9 -120  462  -792   715  -364   105  -16    1
9:  -10  165 -792  1716 -2002  1365  -560  136  -18  1
... Reformatted and extended by _Wolfdieter Lang_, Nov 13 2012
E.g., fourth row (n=3) {-4,10,-6,1} corresponds to the polynomial S(3,x-2) = -4+10*x-6*x^2+x^3.
From _Wolfdieter Lang_, Nov 13 2012: (Start)
Recurrence: a(5,1) = 35 = 1*5 + (-2)*(-20) -1*(10).
Recurrence from Z-sequence [-2,-1,-2,-5,...]: a(5,0) = -6 = (-2)*5 + (-1)*(-20) + (-2)*21 + (-5)*(-8) + (-14)*1.
Recurrence from A-sequence [1,-2,-1,-2,-5,...]: a(5,1) = 35 = 1*5  + (-2)*(-20) + (-1)*21 + (-2)*(-8) + (-5)*1.
(End)
E.g., the fourth row (n=3) {-4,10,-6,1} corresponds also to the polynomial S(7,x)/x = -4 + 10*x^2 - 6*x^4 + x^6. - _Wolfdieter Lang_, Dec 17 2012
Boas-Buck type recurrence: -56 = a(5, 2) = 2*(-1*1 + 1*(-6) - 1*21) = -2*28 = -56. - _Wolfdieter Lang_, Jun 03 2020
		

References

  • M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 795.
  • Theodore J. Rivlin, Chebyshev polynomials: from approximation theory to algebra and number theory, 2. ed., Wiley, New York, 1990.
  • R. N. Cahn, Semi-Simple Lie Algebras and Their Representations, Dover, NY, 2006, ISBN 0-486-44999-8, p. 62.
  • Sigurdur Helgasson, Differential Geometry, Lie Groups and Symmetric Spaces, Graduate Studies in Mathematics, volume 34. A. M. S.: ISBN 0-8218-2848-7, 1978, p. 463.

Crossrefs

Cf. A285072 (version with row-leading 0's and differing signs). - Eric W. Weisstein, Apr 09 2017

Programs

  • Maple
    seq(seq((-1)^(n+m)*binomial(n+m+1,2*m+1),m=0..n),n=0..10); # Robert Israel, Oct 15 2014
    # Uses function PMatrix from A357368. Adds a row above and a column to the left.
    PMatrix(10, n -> -(-1)^n*n); # Peter Luschny, Oct 07 2022
  • Mathematica
    T[n_, m_, d_] := If[ n == m, 2, If[n == m - 1 || n == m + 1, -1, 0]]; M[d_] := Table[T[n, m, d], {n, 1, d}, {m, 1, d}]; a = Join[M[1], Table[CoefficientList[Det[M[d] - x*IdentityMatrix[d]], x], {d, 1, 10}]]; Flatten[a] (* Roger L. Bagula, May 23 2007 *)
    (* Alternative code for the matrices from MathWorld: *)
    sln[n_] := 2IdentityMatrix[n] - PadLeft[PadRight[IdentityMatrix[n - 1], {n, n - 1}], {n, n}] - PadLeft[PadRight[IdentityMatrix[n - 1], {n - 1, n}], {n, n}] (* Roger L. Bagula, May 23 2007 *)
  • Sage
    @CachedFunction
    def A053122(n,k):
        if n< 0: return 0
        if n==0: return 1 if k == 0 else 0
        return A053122(n-1,k-1)-A053122(n-2,k)-2*A053122(n-1,k)
    for n in (0..9): [A053122(n,k) for k in (0..n)] # Peter Luschny, Nov 20 2012

Formula

a(n, m) := 0 if n
a(n, m) = -2*a(n-1, m) + a(n-1, m-1) - a(n-2, m), a(n, -1) := 0 =: a(-1, m), a(0, 0)=1, a(n, m) := 0 if n
O.g.f. for m-th column (signed triangle): ((x/(1+x)^2)^m)/(1+x)^2.
From Jianing Song, Jun 21 2022: (Start)
T(n,k) = [x^k]f_n(x), where f_{-1}(x) = 0, f_0(x) = 1, f_n(x) = (x-2)*f_{n-1}(x) - f_{n-2}(x) for n >= 2.
f_n(x) = (((x-2+sqrt(x^2-4*x))/2)^(n+1) - ((x-2-sqrt(x^2-4*x))/2)^(n+1))/sqrt(x^2-4x).
The roots of f_n(x) are 2 + 2*cos(k*Pi/(n+1)) = 4*(cos(k*Pi/(2*n+2)))^2 for 1 <= k <= n. (End)

A060642 Triangle read by rows: row n lists number of ordered partitions into k parts of partitions of n.

Original entry on oeis.org

1, 2, 1, 3, 4, 1, 5, 10, 6, 1, 7, 22, 21, 8, 1, 11, 43, 59, 36, 10, 1, 15, 80, 144, 124, 55, 12, 1, 22, 141, 321, 362, 225, 78, 14, 1, 30, 240, 669, 944, 765, 370, 105, 16, 1, 42, 397, 1323, 2266, 2287, 1437, 567, 136, 18, 1, 56, 640, 2511, 5100, 6215, 4848, 2478, 824, 171, 20, 1
Offset: 1

Author

Alford Arnold, Apr 16 2001

Keywords

Comments

Also the convolution triangle of A000041. - Peter Luschny, Oct 07 2022

Examples

			Table begins:
   1;
   2,   1;
   3,   4,    1;
   5,  10,    6,    1;
   7,  22,   21,    8,    1;
  11,  43,   59,   36,   10,    1;
  15,  80,  144,  124,   55,   12,   1;
  22, 141,  321,  362,  225,   78,  14,   1;
  30, 240,  669,  944,  765,  370, 105,  16,  1;
  42, 397, 1323, 2266, 2287, 1437, 567, 136, 18, 1;
  ...
For n=4 there are 5 partitions of 4, namely 4, 31, 22, 211, 11111. There are 5 ways to pick 1 of them; 10 ways to partition one of them into 2 ordered parts: 3,1; 1,3; 2,2; 21,1; 1,21; 2,11; 11,2; 111,1; 1,111; 11,11; 6 ways to partition one of them into 3 ordered parts: 2,1,1; 1,2,1; 1,1,2; 11,1,1; 1,11,1; 1,1,11; and one way to partition one of them into 4 ordered parts: 1,1,1,1. So row 4 is 5,10,6,1.
		

Crossrefs

Row sums give A055887.
T(2n,n) gives A340987.

Programs

  • Maple
    A:= proc(n, k) option remember; `if`(n=0, 1, k*add(
          A(n-j, k)*numtheory[sigma](j), j=1..n)/n)
        end:
    T:= (n, k)-> add(A(n, k-i)*(-1)^i*binomial(k, i), i=0..k):
    seq(seq(T(n, k), k=1..n), n=1..12);  # Alois P. Heinz, Mar 12 2015
    # Uses function PMatrix from A357368. Adds row and column for n, k = 0.
    PMatrix(10, combinat:-numbpart); # Peter Luschny, Oct 07 2022
  • Mathematica
    A[n_, k_] := A[n, k] = If[n==0, 1, k*Sum[A[n-j, k]*DivisorSigma[1, j], {j, 1, n}]/n]; T[n_, k_] := Sum[A[n, k-i]*(-1)^i*Binomial[k, i], {i, 0, k}]; Table[ Table[ T[n, k], {k, 1, n}], {n, 1, 12}] // Flatten (* Jean-François Alcover, Jul 15 2015, after Alois P. Heinz *)

Formula

G.f. A(n;x) for n-th row satisfies A(n;x) = Sum_{k=0..n-1} A000041(n-k)*A(k;x)*x, A(0;x) = 1. - Vladeta Jovovic, Jan 02 2004
T(n,k) = Sum_{i=0..k} (-1)^i * C(k,i) * A144064(n,k-i). - Alois P. Heinz, Mar 12 2015
Sum_{k=1..n} k * T(n,k) = A326346(n). - Alois P. Heinz, Sep 11 2019
Sum_{k=0..n} (-1)^k * T(n,k) = A010815(n). - Alois P. Heinz, Feb 07 2021
G.f. of column k: (-1 + Product_{j>=1} 1 / (1 - x^j))^k. - Ilya Gutkovskiy, Feb 13 2021

Extensions

More terms from Vladeta Jovovic, Jan 02 2004

A038231 Triangle whose (i,j)-th entry is binomial(i,j)*4^(i-j).

Original entry on oeis.org

1, 4, 1, 16, 8, 1, 64, 48, 12, 1, 256, 256, 96, 16, 1, 1024, 1280, 640, 160, 20, 1, 4096, 6144, 3840, 1280, 240, 24, 1, 16384, 28672, 21504, 8960, 2240, 336, 28, 1, 65536, 131072, 114688, 57344, 17920, 3584, 448, 32, 1, 262144, 589824, 589824, 344064, 129024, 32256, 5376, 576, 36, 1
Offset: 0

Keywords

Comments

Triangle of coefficients in expansion of (4+x)^n. - N-E. Fahssi, Apr 13 2008

Examples

			Triangle begins:
      1;
      4,      1;
     16,      8,      1;
     64,     48,     12,     1;
    256,    256,     96,    16,     1;
   1024,   1280,    640,   160,    20,    1;
   4096,   6144,   3840,  1280,   240,   24,   1;
  16384,  28672,  21504,  8960,  2240,  336,  28,  1;
  65536, 131072, 114688, 57344, 17920, 3584, 448, 32, 1;
		

Crossrefs

Cf. A000302, A013611 (row-reversed), A000351 (row sums).

Programs

  • GAP
    Flat(List([0..10], n-> List([0..n], k-> 4^(n-k)*Binomial(n, k) ))); # G. C. Greubel, Jul 20 2019
  • Magma
    [4^(n-k)*Binomial(n, k): k in [0..n], n in [0..10]]; // G. C. Greubel, Jul 20 2019
    
  • Maple
    for i from 0 to 10 do seq(binomial(i, j)*4^(i-j), j = 0 .. i) od; # Zerinvary Lajos, Dec 21 2007
    # Uses function PMatrix from A357368. Adds column 1, 0, 0, ... to the left.
    PMatrix(10, n -> 4^(n-1)); # Peter Luschny, Oct 09 2022
  • Mathematica
    Table[4^(n-k)*Binomial[n, k], {n,0,10}, {k,0,n}]//Flatten (* G. C. Greubel, Jul 20 2019 *)
  • PARI
    T(n,k) = 4^(n-k)*binomial(n, k); \\ G. C. Greubel, Jul 20 2019
    
  • Sage
    [[4^(n-k)*binomial(n, k) for k in (0..n)] for n in (0..10)] # G. C. Greubel, Jul 20 2019
    

Formula

G.f. for j-th column is (x^j)/(1-4*x)^(j+1).
Convolution triangle of A000302 (powers of 4).
Sum_{k=0..n} T(n,k)*(-1)^k*A000108(k) = A001700(n). - Philippe Deléham, Nov 27 2009
See A038207 and A027465 and replace 2 and 3 in analogous formulas with 4. - Tom Copeland, Oct 26 2012

A073370 Convolution triangle of A001045(n+1) (generalized (1,2)-Fibonacci), n>=0.

Original entry on oeis.org

1, 1, 1, 3, 2, 1, 5, 7, 3, 1, 11, 16, 12, 4, 1, 21, 41, 34, 18, 5, 1, 43, 94, 99, 60, 25, 6, 1, 85, 219, 261, 195, 95, 33, 7, 1, 171, 492, 678, 576, 340, 140, 42, 8, 1, 341, 1101, 1692, 1644, 1106, 546, 196, 52, 9, 1
Offset: 0

Author

Wolfdieter Lang, Aug 02 2002

Keywords

Comments

The g.f. for the row polynomials P(n,x) = Sum_{m=0..n} T(n,m)*x^m is 1/(1-(1+x+2*z)*z). See Shapiro et al. reference and comment under A053121 for such convolution triangles.
Riordan array (1/(1-x-2*x^2), x/(1-x-2*x^2)). - Paul Barry, Mar 15 2005
Subtriangle (obtained by dropping the first column) of the triangle given by (0, 1, 2, -2, 0, 0, 0, 0, 0, 0, 0, ...) DELTA (1, 0, 0, 0, 0, 0, 0, 0, 0, 0, ...) where DELTA is the operator defined in A084938. - Philippe Deléham, Feb 19 2013
The number of ternary words of length n having k letters equal 2 and 0,1 avoid runs of odd lengths. - Milan Janjic, Jan 14 2017

Examples

			Triangle begins as:
    1;
    1,   1;
    3,   2,   1;
    5,   7,   3,   1;
   11,  16,  12,   4,   1;
   21,  41,  34,  18,   5,   1;
   43,  94,  99,  60,  25,   6,   1;
   85, 219, 261, 195,  95,  33,   7,   1;
  171, 492, 678, 576, 340, 140,  42,   8,   1;
The triangle (0, 1, 2, -2, 0, 0, ...) DELTA (1, 0, 0, 0, 0, ...) begins:
  1;
  0,  1;
  0,  1,  1;
  0,  3,  2,  1;
  0,  5,  7,  3,  1;
  0, 11, 16, 12,  4,  1;
  0, 21, 41, 34, 18,  5,  1; - _Philippe Deléham_, Feb 19 2013
		

Crossrefs

Columns: A001045 (k=0), A073371 (k=1), A073372 (k=2), A073373 (k=3), A073374 (k=4), A073375 (k=5), A073376 (k=6), A073377 (k=7), A073378 (k=8), A073379 (k=9).
Cf. A002605 (row sums), A006130 (diagonal sums), A073399, A073400.

Programs

  • Magma
    A073370:= func< n,k | (&+[Binomial(n-j,k)*Binomial(n-k-j,j)*2^j: j in [0..Floor((n-k)/2)]]) >;
    [A073370(n,k): k in [0..n], n in [0..12]]; // G. C. Greubel, Oct 01 2022
    
  • Maple
    # Uses function PMatrix from A357368. Adds a row above and a column to the left.
    PMatrix(10, n -> (2^n - (-1)^n) / 3); # Peter Luschny, Oct 07 2022
  • Mathematica
    T[n_, k_]:= T[n, k]= Sum[Binomial[n-j,k]*Binomial[n-k-j,j]*2^j, {j,0,Floor[(n- k)/2]}];
    Table[T[n, k], {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, Oct 01 2022 *)
  • SageMath
    def A073370(n,k): return binomial(n,k)*sum( 2^j * binomial(2*j,j) * binomial(n-k,2*j)/binomial(n,j) for j in range(1+(n-k)//2))
    flatten([[A073370(n,k) for k in range(n+1)] for n in range(12)]) # G. C. Greubel, Oct 01 2022

Formula

T(n, m) = Sum_{k=0..floor((n-m)/2)} binomial(n-k, m)*binomial(n-m-k, k)*2^k, if n > m, else 0.
Sum_{k=0..n} T(n, k) = A002605(n+1).
T(n, m) = (1*(n-m+1)*T(n, m-1) + 2*2*(n+m)*T(n-1, m-1))/((1^2 + 4*2)*m), n >= m >= 1, T(n, 0) = A001045(n+1), n >= 0, else 0.
T(n, m) = (p(m-1, n-m)*1*(n-m+1)*T(n-m+1) + q(m-1, n-m)*2*(n-m+2)*T(n-m))/(m!*9^m), n >= m >= 1, with T(n) = T(n, m=0) = A001045(n+1), else 0; p(k, n) = Sum_{j=0..k} (A(k, j)*n^(k-j) and q(k, n) = Sum_{j=0..k} B(k, j)*n^(k-j), with the number triangles A(k, m) = A073399(k, m) and B(k, m) = A073400(k, m).
G.f.: 1/(1-(1+2*x)*x)^(m+1) = 1/((1+x)*(1-2*x))^(m+1), m >= 0, for column m (without leading zeros).
T(n, 0) = A001045(n), T(1, 1) = 1, T(n, k) = 0 if k>n, T(n, k) = T(n-1, k-1) + 2*T(n-2, k) + T(n-1, k) otherwise. - Paul Barry, Mar 15 2005
G.f.: (1+x)*(1-2*x)/(1-x-2*x^2-x*y) for the triangle including the 1, 0, 0, 0, 0, ... column. - R. J. Mathar, Aug 11 2015
From Peter Bala, Oct 07 2019: (Start)
Recurrence for row polynomials: R(n,x) = (1 + x)*R(n-1,x) + 2*R(n-2,x) with R(0,x) = 1 and R(1,x) = 1 + x.
The row reverse polynomial x^n*R(n,1/x) is equal to the numerator polynomial of the finite continued fraction 1 + x/(1 - 2*x/(1 + ... + x/(1 - 2*x/(1)))) (with 2*n partial numerators). Cf. A110441. (End)
From G. C. Greubel, Oct 01 2022: (Start)
T(n, k) = binomial(n,k)*Sum_{j=0..floor((n-k)/2)} 2^j*binomial(2*j, j)*binomial(n-k, 2*j)/binomial(n, j).
T(n, k) = binomial(n, k)*Hypergeometric2F1([(k-n)/2, (k-n+1)/2], [-2*n], -8).
Sum_{k=0..n} (-1)^k * T(n, k) = A077957(n).
Sum_{k=0..floor(n/2)} T(n-k, k) = A006130(n).
Sum_{k=0..floor(n/2)} (-1)^k * T(n-k, k) = A000045(n+1). (End)

A059438 Triangle T(n,k) (1 <= k <= n) read by rows: T(n,k) is the number of permutations of [1..n] with k components.

Original entry on oeis.org

1, 1, 1, 3, 2, 1, 13, 7, 3, 1, 71, 32, 12, 4, 1, 461, 177, 58, 18, 5, 1, 3447, 1142, 327, 92, 25, 6, 1, 29093, 8411, 2109, 531, 135, 33, 7, 1, 273343, 69692, 15366, 3440, 800, 188, 42, 8, 1, 2829325, 642581, 125316, 24892, 5226, 1146, 252, 52, 9, 1
Offset: 1

Author

N. J. A. Sloane, Feb 01 2001

Keywords

Examples

			Triangle begins:
[1] [     1]
[2] [     1,     1]
[3] [     3,     2,     1]
[4] [    13,     7,     3,    1]
[5] [    71,    32,    12,    4,   1]
[6] [   461,   177,    58,   18,   5,   1]
[7] [  3447,  1142,   327,   92,  25,   6,  1]
[8] [ 29093,  8411,  2109,  531, 135,  33,  7, 1]
[9] [273343, 69692, 15366, 3440, 800, 188, 42, 8, 1]
		

Crossrefs

A version with reflected rows is A263484.
Diagonals give A003319, A059439, A059440, A055998.
T(2n,n) gives A308650.

Programs

  • Maple
    # Uses function PMatrix from A357368. Adds column 1, 0, 0, ... to the left.
    PMatrix(10, A003319); # Peter Luschny, Oct 09 2022
  • Mathematica
    (* p = indecomposable permutations = A003319 *) p[n_] := p[n] = n! - Sum[ k!*p[n-k], {k, 1, n-1}]; t[n_, k_] /; n < k = 0; t[n_, 1] := p[n]; t[n_, k_] /; n >= k := t[n, k] = Sum[ t[n-j, k-1]*p[j], {j, 1, n}]; Flatten[ Table[ t[n, k], {n, 1, 10}, {k, 1, n}] ] (* Jean-François Alcover, Mar 06 2012, after Philippe Deléham *)
  • SageMath
    def A059438_triangle(dim) :
        R = PolynomialRing(ZZ, 'x')
        C = [R(0)] + [R(1) for i in range(dim+1)]
        A = [(i + 2) // 2 for i in range(dim+1)]
        A[0] = R.gen(); T = []
        for k in range(1, dim+1) :
            for n in range(k, 0, -1) :
                C[n] = C[n-1] + C[n+1] * A[n-1]
            T.append(list(C[1])[1::])
        return T
    A059438_triangle(8) # Peter Luschny, Sep 10 2022
    
  • SageMath
    # Alternatively, using the function PartTrans from A357078:
    # Adds a (0,0)-based column (1, 0, 0, ...) to the left of the triangle.
    dim = 10
    A = ZZ[['t']]; g = A([0]+[factorial(n) for n in range(1, 30)]).O(dim+2)
    PartTrans(dim, lambda n: list(g / (1 +  g))[n]) # Peter Luschny, Sep 11 2022

Formula

Let f(x) = Sum_{n >= 0} n!*x^n, g(x) = 1 - 1/f(x). Then g(x) is g.f. for first diagonal A003319 and Sum_{n >= k} T(n, k)*x^n = g(x)^k.
Triangle T(n, k), n > 0 and k > 0, read by rows; given by [0, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6, ...] DELTA A000007 where DELTA is Deléham's operator defined in A084938.
T(n+k, k) = Sum_{a_1 + a_2 + ... + a_k = n} A003319(a_1)*A003319(a_2)*...*A003319(a_k). T(n, k) = 0 if n < k, T(n, 1) = A003319(n) and for n >= k T(n, k)= Sum_{j>=1} T(n-j, k-1)* A003319(j). A059438 is formed from the self convolution of its first column (A003319). - Philippe Deléham, Feb 04 2004
Sum_{k>0} T(n, k) = n!; see A000142. - Philippe Deléham, Feb 05 2004
If g(x) = x + x^2 + 3*x^3 + 13*x^4 + ... is the generating function for the number of permutations with no global descents, then 1/(1-g(x)) is the generating function for n!. Setting t=1 in f(x, t) implies Sum_{k=1..n} T(n,k) = n!. Let g(x) be the o.g.f. for A003319. Then the o.g.f. for this table is given by f(x, t) = 1/(1 - t*g(x)) - 1 (i.e., the coefficient of x^n*t^k in f(x,t) is T(n,k)). - Mike Zabrocki, Jul 29 2004

Extensions

More terms from Vladeta Jovovic, Mar 04 2001

A319574 A(n, k) = [x^k] JacobiTheta3(x)^n, square array read by descending antidiagonals, A(n, k) for n >= 0 and k >= 0.

Original entry on oeis.org

1, 0, 1, 0, 2, 1, 0, 0, 4, 1, 0, 0, 4, 6, 1, 0, 2, 0, 12, 8, 1, 0, 0, 4, 8, 24, 10, 1, 0, 0, 8, 6, 32, 40, 12, 1, 0, 0, 0, 24, 24, 80, 60, 14, 1, 0, 0, 0, 24, 48, 90, 160, 84, 16, 1, 0, 2, 4, 0, 96, 112, 252, 280, 112, 18, 1, 0, 0, 4, 12, 64, 240, 312, 574, 448, 144, 20, 1
Offset: 0

Author

Peter Luschny, Oct 01 2018

Keywords

Comments

Number of ways of writing k as a sum of n squares.

Examples

			[ 0] 1,  0,    0,    0,     0,     0,     0      0,     0,     0, ... A000007
[ 1] 1,  2,    0,    0,     2,     0,     0,     0,     0,     2, ... A000122
[ 2] 1,  4,    4,    0,     4,     8,     0,     0,     4,     4, ... A004018
[ 3] 1,  6,   12,    8,     6,    24,    24,     0,    12,    30, ... A005875
[ 4] 1,  8,   24,   32,    24,    48,    96,    64,    24,   104, ... A000118
[ 5] 1, 10,   40,   80,    90,   112,   240,   320,   200,   250, ... A000132
[ 6] 1, 12,   60,  160,   252,   312,   544,   960,  1020,   876, ... A000141
[ 7] 1, 14,   84,  280,   574,   840,  1288,  2368,  3444,  3542, ... A008451
[ 8] 1, 16,  112,  448,  1136,  2016,  3136,  5504,  9328, 12112, ... A000143
[ 9] 1, 18,  144,  672,  2034,  4320,  7392, 12672, 22608, 34802, ... A008452
[10] 1, 20,  180,  960,  3380,  8424, 16320, 28800, 52020, 88660, ... A000144
   A005843,   v, A130809,  v,  A319576,  v ,   ...      diagonal: A066535
           A046092,    A319575,       A319577,     ...
		

References

  • E. Grosswald, Representations of Integers as Sums of Squares. Springer-Verlag, NY, 1985, p. 121.
  • G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers. 3rd ed., Oxford Univ. Press, 1954.
  • J. Carlos Moreno and Samuel S. Wagstaff Jr., Sums Of Squares Of Integers, Chapman & Hall/CRC, (2006).

Crossrefs

Variant starting with row 1 is A122141, transpose of A286815.

Programs

  • Maple
    A319574row := proc(n, len) series(JacobiTheta3(0, x)^n, x, len+1);
    [seq(coeff(%, x, j), j=0..len-1)] end:
    seq(print([n], A319574row(n, 10)), n=0..10);
    # Alternative, uses function PMatrix from A357368.
    PMatrix(10, n -> A000122(n-1)); # Peter Luschny, Oct 19 2022
  • Mathematica
    A[n_, k_] := If[n == k == 0, 1, SquaresR[n, k]];
    Table[A[n-k, k], {n, 0, 11}, {k, n, 0, -1}] // Flatten (* Jean-François Alcover, Nov 03 2018 *)
  • Sage
    for n in (0..10):
        Q = DiagonalQuadraticForm(ZZ, [1]*n)
        print(Q.theta_series(10).list())

A054456 Convolution triangle of A000129(n) (Pell numbers).

Original entry on oeis.org

1, 2, 1, 5, 4, 1, 12, 14, 6, 1, 29, 44, 27, 8, 1, 70, 131, 104, 44, 10, 1, 169, 376, 366, 200, 65, 12, 1, 408, 1052, 1212, 810, 340, 90, 14, 1, 985, 2888, 3842, 3032, 1555, 532, 119, 16, 1, 2378, 7813, 11784, 10716, 6482, 2709, 784, 152, 18, 1, 5741, 20892, 35223
Offset: 0

Author

Wolfdieter Lang, Apr 27 2000 and May 08 2000

Keywords

Comments

In the language of the Shapiro et al. reference (given in A053121) such a lower triangular (ordinary) convolution array, considered as a matrix, belongs to the Bell-subgroup of the Riordan-group.
The G.f. for the row polynomials p(n,x) (increasing powers of x) is Pell(z)/(1-x*z*Pell(z)) with Pell(x)=1/(1-2*x-x^2) = g.f. for A000129(n+1) (Pell numbers without 0).
Column sequences are A000129(n+1), A006645(n+1), A054457(n) for m=0..2.
Riordan array (1/(1-2x-x^2),x/(1-2x-x^2)). - Paul Barry, Mar 15 2005
As a Riordan array, this factors as (1/(1-x^2),x/(1-x^2))*(1/(1-2x),x/(1-2x)), [abs(A049310) times square of A007318, or A038207]. - Paul Barry, Jul 28 2005
Coefficients of polynomials defined by P(x, 0) = 1; P(x, 1) = 2 - x; P(x, n) = (2 - x)*P(x, n - 1) + P(x, n - 2). - Roger L. Bagula, Mar 24 2008
Subtriangle (obtained by dropping the first column) of the triangle given by (0, 2, 1/2, -1/2, 0, 0, 0, 0, 0, 0, 0, ...) DELTA (1, 0, 0, 0, 0, 0, 0, 0, 0, ...) where DELTA is the operator defined in A084938. - Philippe Deléham, Feb 19 2013
T(n,k) is the number of words of length n over {0,1,2,3} having k letters 3 and avoiding runs of odd length of the letter 0. - Milan Janjic, Jan 14 2017

Examples

			Fourth row polynomial (n=3): p(3,x)= 12+14*x+6*x^2+x^3
Triangle begins:
{1},
{2, 1},
{5, 4, 1},
{12, 14, 6, 1},
{29, 44, 27, 8, 1},
{70, 131,104, 44, 10, 1},
{169, 376, 366, 200, 65, 12, 1},
{408, 1052, 1212, 810, 340, 90, 14, 1},
{985, 2888, 3842, 3032, 1555, 532, 119, 16, 1},
{2378, 7813, 11784, 10716, 6482, 2709, 784, 152, 18, 1},
{5741, 20892, 35223, 36248, 25235, 12432, 4396, 1104, 189, 20, 1},
The triangle (0, 2, 1/2, -1/2, 0, 0, 0, ...) DELTA (1, 0, 0, 0, 0, 0, ...) begins:
1
0, 1
0, 2, 1
0, 5, 4, 1
0, 12, 14, 6, 1
0, 29, 44, 27, 8, 1 - _Philippe Deléham_, Feb 19 2013
		

Crossrefs

Cf. A000129. Row sums: A006190(n+1).
Cf. A129844.

Programs

  • Maple
    G := 1/(1-(x+2)*z-z^2): Gser := simplify(series(G, z = 0, 18)): for n from 0 to 15 do P[n] := sort(coeff(Gser, z, n)) end do: for n from 0 to 15 do seq(coeff(P[n], x, j), j = 0 .. n) end do; # yields sequence in triangular form - Emeric Deutsch, Aug 30 2015
    T := (n,k) -> `if`(n=0,1,2^(n-k)*binomial(n,k)*hypergeom([(k-n)/2,(k-n+1)/2],[-n], -1)): seq(seq(simplify(T(n,k)),k=0..n),n=0..10); # Peter Luschny, Apr 25 2016
    # Uses function PMatrix from A357368. Adds column 1,0,0,0,... to the left.
    PMatrix(10, A000129); # Peter Luschny, Oct 19 2022
  • Mathematica
    P[x_, 0] := 1; P[x_, 1] := 2 - x; P[x_, n_] := P[x, n] = (2 - x) P[x, n - 1] + P[x, n - 2]; Table[Abs@ CoefficientList[P[x, n], x], {n, 0, 10}] // Flatten (* Roger L. Bagula, Mar 24 2008, edited by Michael De Vlieger, Apr 25 2018 *)

Formula

a(n, m) := ((n-m+1)*a(n, m-1) + (n+m)*a(n-1, m-1))/(4*m), n >= m >= 1, a(n, 0)= P(n+1)= A000129(n+1) (Pell numbers without P(0)), a(n, m) := 0 if n
G.f. for column m: Pell(x)*(x*Pell(x))^m, m >= 0, with Pell(x) G.f. for A000129(n+1).
Number triangle T(n, k) with T(n, 0)=A000129(n), T(1, 1)=1, T(n, k)=0 if k>n, T(n, k)=T(n-1, k-1)+T(n-2, k)+2T(n-1, k) otherwise; T(n, k)=if(k<=n, sum{j=0..floor((n-k)/2), C(n-j, k)C(n-k-j, j)2^(n-2j-k)}; - Paul Barry, Mar 15 2005
Bivariate g.f. G(x,z) = 1/[1 - (2 + x)z - z^2]. G.f. for column k = z^k/(1 - 2z - z^2)^{k+1} (k>=0). - Emeric Deutsch, Aug 30 2015
T(n,k) = 2^(n-k)*C(n,k)*hypergeom([(k-n)/2,(k-n+1)/2],[-n],-1)) for n>=1. - Peter Luschny, Apr 25 2016

A357588 The compositional inverse of n -> n^[isprime(n)], where [b] is the Iverson bracket of b.

Original entry on oeis.org

1, -2, 5, -11, 6, 146, -1295, 7712, -36937, 141514, -357676, -322973, 12078666, -102218510, 623243991, -3041134727, 11440387382, -23657862864, -95377084665, 1570488584608, -12255377466362, 72288056416374, -340793435817068, 1186234942871544, -1525020468715715
Offset: 1

Author

Peter Luschny, Oct 04 2022

Keywords

Crossrefs

Programs

  • Maple
    # REVERT from N. J. A. Sloane's 'Transforms' (see the footer of the page).
    REVERT([seq(if isprime(k) then k else 1 fi, k = 1..25)]);
    # Alternative:
    CompInv := proc(len, seqfun) local n, k, m, g, M, A;
    A := [seq(seqfun(i), i=1..len)];
    M := Matrix(len+1, shape=triangular[lower]); M[1,1] := 1;
    for m from 2 to len + 1 do M[m, m] := M[m - 1, m - 1]/A[1];
    for k from m-1 by -1 to 2 do M[m, k] := M[m-1, k-1] -
    add(A[i+1]*M[m, k+i], i=1..m-k)/A[1] od od; seq(M[k, 2], k=2..len + 1) end:
    CompInv(25, n -> if isprime(n) then n else 1 fi);
Previous Showing 11-20 of 65 results. Next