cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 2827 results. Next

A030167 Continued fraction expansion of the Champernowne constant 0.1234567891011121314...

Original entry on oeis.org

0, 8, 9, 1, 149083, 1, 1, 1, 4, 1, 1, 1, 3, 4, 1, 1, 1, 15
Offset: 0

Views

Author

Keywords

Comments

The next term, a(18) = 457540111...783010987 has 166 digits.
It is followed by a(19 .. 39) = (6, 1, 1, 21, 1, 9, 1, 1, 2, 3, 1, 7, 2, 1, 83, 1, 156, 4, 58, 8, 54). - M. F. Hasler, Oct 25 2019
a(40) = 445735380...113172423 has 2504 digits. - Harvey P. Dale, May 23 2015, index corrected by M. F. Hasler, Oct 25 2019

Examples

			This is the continued fraction of the number 0.123456789101112131415... whose decimals are obtained by concatenating the base-10 representations of all positive integers.
		

Crossrefs

Programs

  • Mathematica
    f[0] = 0; f[n_Integer] := 10^(Floor[Log[10, n]] + 1)*f[n - 1] + n; ContinuedFraction[ N[ f[211]/ 10^(Floor[ Log[10, f[211] ]] + 1), Floor[ Log[10, f[211] ]] + 1], 19 ]
    chcon=Module[{con=FromDigits[Flatten[IntegerDigits/@Range[250]]]}, N[con/10^IntegerLength[con],IntegerLength[con]]]; ContinuedFraction[ chcon,19] (* Harvey P. Dale, Sep 18 2011 *)
    ContinuedFraction[N[ChampernowneNumber[10],10000]] (* Harvey P. Dale, May 23 2015 *)
  • PARI
    { default(realprecision, 6000); x=0; y=1; d=10.0; e=1.0; n=0; while (y!=x, y=x; n++; if (n==d, d=d*10); e=e*d; x=x+n/e; ); x=contfrac(x); for (n=1, 160, write("b030167.txt", n-1, " ", x[n])); write("b030167.txt", "160 1"); write("b030167.txt", "161 1"); } \\ Harry J. Smith, Apr 18 2009

Extensions

Edited by Daniel Forgues, Apr 01 2010, M. F. Hasler, Oct 25 2019

A002852 Continued fraction for Euler's constant (or Euler-Mascheroni constant) gamma.

Original entry on oeis.org

0, 1, 1, 2, 1, 2, 1, 4, 3, 13, 5, 1, 1, 8, 1, 2, 4, 1, 1, 40, 1, 11, 3, 7, 1, 7, 1, 1, 5, 1, 49, 4, 1, 65, 1, 4, 7, 11, 1, 399, 2, 1, 3, 2, 1, 2, 1, 5, 3, 2, 1, 10, 1, 1, 1, 1, 2, 1, 1, 3, 1, 4, 1, 1, 2, 5, 1, 3, 6, 2, 1, 2, 1, 1, 1, 2, 1, 3, 16, 8, 1, 1, 2, 16, 6, 1, 2, 2, 1, 7, 2, 1, 1, 1, 3, 1, 2, 1, 2
Offset: 0

Views

Author

Keywords

Comments

The first 970258158 terms were computed by Eric W. Weisstein on Sep 21 2011 using a developmental version of Mathematica.
The first 4851382841 terms were computed by Eric W. Weisstein on Jul 22 2013 using a developmental version of Mathematica.
The first 16695279010 terms were computed by Syed Fahad on Apr 29 2021, see link.

Examples

			0.577215664901532860606512090082402431042...
0 + 1/(1 + 1/(1 + 1/(2 + 1/(1 + 1/(2 + 1/(1 + 1/(4 + 1/(3 + 1/(13 + ...
		

References

  • M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 3.
  • R. S. Lehman, A Study of Regular Continued Fractions. Report 1066, Ballistic Research Laboratories, Aberdeen Proving Ground, Maryland, Feb 1959.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A001620, the decimal expansion, which has many more references.
See also A073004 (exp(gamma)) and A094640 ("alternating Euler constant").
Cf. A033091 (incrementally largest terms), A033092 (positions of incrementally largest terms).
Cf. A033149 (positions of first occurrence of n in the continued fraction).

Programs

  • Magma
    ContinuedFraction(EulerGamma(100)); // Vincenzo Librandi, Oct 19 2017
  • Mathematica
    ContinuedFraction[EulerGamma, 100]
  • PARI
    default(realprecision, 11000); x=contfrac(Euler); for (n=0, 10000, write("b002852.txt", n, " ", x[n+1])) \\ Harry J. Smith, Apr 14 2009
    

Extensions

More terms from Robert G. Wilson v, Dec 08 2000

A066717 The continued fraction for the "binary" Champernowne constant.

Original entry on oeis.org

0, 1, 6, 3, 1, 6, 5, 3, 3, 1, 6, 4, 1, 3, 298, 1, 6, 1, 1, 3, 285, 7, 2, 4, 1, 2, 1, 2, 1, 1, 4534532, 1, 4, 5, 1, 2, 1, 7, 1, 16, 1, 4, 1, 5, 5, 1, 5, 1, 4, 1, 2, 1, 5, 3, 2, 38, 2, 12, 1, 15, 2, 6, 3, 30, 4682854730443938, 1, 1, 68, 1, 6, 5, 4, 4, 1, 2, 1, 1, 1, 1, 2, 22, 1, 2, 7, 1, 2
Offset: 0

Views

Author

Robert G. Wilson v, Jan 14 2002

Keywords

Crossrefs

Cf. A030190 & A066716 (binary & decimal digits of the binary Champernowne constant), A033307 (decimal Champernowne constant).
Cf. A054635, A077771, A077772: base 3, decimals and continued fraction of ternary Champernowne constant.

Programs

  • Mathematica
    a = {}; Do[a = Append[a, IntegerDigits[n, 2]], {n, 1, 10^3} ]; ContinuedFraction[ N[ FromDigits[ {Flatten[a], 0}, 2], 500]]
    almostNatural[n_, b_] :=  Block[{m = 0, d = n, i = 1, l, p}, While[m <= d, l = m; m = (b - 1) i*b^(i - 1) + l; i++]; i--; p = Mod[d - l, i]; q = Floor[(d - l)/i] + b^(i - 1); If[p != 0, IntegerDigits[q, b][[p]], Mod[q - 1, b]]]; Take[ ContinuedFraction[ FromDigits[ {Array[almostNatural[#, 2] &, 20000], 0}, 2]], 100] (* Robert G. Wilson v, Jul 21 2014 *)
  • PARI
    A066717(b=2,t=1.,s=b)={contfrac(sum(n=1,default(realprecision)*2.303\log(b)+1, nM. F. Hasler, Oct 25 2019

A077772 Continued fraction expansion of the ternary Champernowne constant.

Original entry on oeis.org

0, 1, 1, 2, 37, 1, 162, 1, 1, 1, 3, 1, 7, 1, 9, 2, 3, 1, 3068518062211324, 2, 1, 2, 6, 13, 1, 2, 1, 3, 1, 10, 1, 21, 1, 1, 4, 3, 577, 1, 1079268324684171943515797470873767312825026176345571319042096689270, 1, 1, 1, 3, 4, 21, 3, 1, 9, 1
Offset: 0

Views

Author

Eric W. Weisstein, Nov 15 2002

Keywords

Crossrefs

Cf. A054635 (ternary digits), A077771 (decimals).
Cf. A030190, A066716, A066717: binary digits, decimals and continued fraction of the binary Champernowne constant; A033307: decimal Champernowne constant.

Programs

  • Mathematica
    almostNatural[n_, b_] :=  Block[{m = 0, d = n, i = 1, l, p}, While[m <= d, l = m; m = (b - 1) i*b^(i - 1) + l; i++]; i--; p = Mod[d - l, i]; q = Floor[(d - l)/i] + b^(i - 1); If[p != 0, IntegerDigits[q, b][[p]], Mod[q - 1, b]]]; Take[ ContinuedFraction[ FromDigits[ {Array[almostNatural[#, 3] &, 20000], 0}, 3]], 100] (* Robert G. Wilson v, Jul 21 2014 *)
  • PARI
    \p 10000
    t=0;r=0.;T=1; for(n=1,1e6,d=#digits(n,3);t+=d;T*=3^d;r+=n/T;if(t>20959, return)); v=contfrac(r); v[1..30] \\ Charles R Greathouse IV, Sep 23 2014
    
  • PARI
    A077772(b=3,t=1.,s=b)={contfrac(sum(n=1,default(realprecision)*2.303/log(b)+1, nM. F. Hasler, Oct 25 2019

A013696 Continued fraction for zeta(20).

Original entry on oeis.org

1, 1048259, 1, 2, 1, 18, 3, 1, 9, 7, 1, 1, 2, 1, 13, 3, 1, 1, 1, 2, 4, 2, 10, 2, 1, 1, 2, 8, 1, 1, 1, 3, 1, 3, 9, 2, 1, 2, 1, 1, 4, 2, 2, 56, 2, 2, 1, 1, 1, 6, 5, 2, 15, 1, 5, 2, 2, 1, 5, 1, 1, 39, 1, 6, 2, 6, 1, 1, 1, 3, 24, 11, 1, 1, 4
Offset: 0

Views

Author

Keywords

Crossrefs

Cf. A013678.
Cf. continued fractions for zeta(2)-zeta(19): A013679, A013631, A013680-A013695.

Programs

  • Mathematica
    ContinuedFraction[Zeta[20],100] (* Harvey P. Dale, Aug 20 2011 *)

Extensions

Offset changed by Andrew Howroyd, Jul 08 2024

A040006 Continued fraction for sqrt(10).

Original entry on oeis.org

3, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6
Offset: 0

Views

Author

Keywords

Comments

Eventual period is (6). - Zak Seidov, Mar 05 2011
The convergents are given in A005667(n+1)/A005668(n+1), n >= 0. - Wolfdieter Lang, Nov 23 2017
Decimal expansion of 11/30. - Elmo R. Oliveira, Feb 16 2024

Examples

			3.162277660168379331998893544... = 3 + 1/(6 + 1/(6 + 1/(6 + 1/(6 + ...)))).
		

References

  • James J. Tattersall, Elementary Number Theory in Nine Chapters, Cambridge University Press, 1999, page 276.

Crossrefs

Cf. A010467 (decimal expansion), A005667(n+1)/A005668(n+1) (convergents), A248239 (Egyptian fraction).
Cf. A040000.

Programs

Formula

a(n) = 3 + 3*sign(n). a(n) = 6, n > 0. - Wesley Ivan Hurt, Nov 01 2013
From Elmo R. Oliveira, Feb 16 2024: (Start)
G.f.: 3*(1+x)/(1-x).
E.g.f.: 6*exp(x) - 3.
a(n) = 3*A040000(n). (End)

A002945 Continued fraction for cube root of 2.

Original entry on oeis.org

1, 3, 1, 5, 1, 1, 4, 1, 1, 8, 1, 14, 1, 10, 2, 1, 4, 12, 2, 3, 2, 1, 3, 4, 1, 1, 2, 14, 3, 12, 1, 15, 3, 1, 4, 534, 1, 1, 5, 1, 1, 121, 1, 2, 2, 4, 10, 3, 2, 2, 41, 1, 1, 1, 3, 7, 2, 2, 9, 4, 1, 3, 7, 6, 1, 1, 2, 2, 9, 3, 1, 1, 69, 4, 4, 5, 12, 1, 1, 5, 15, 1, 4
Offset: 0

Views

Author

Keywords

Examples

			2^(1/3) = 1.25992104989487316... = 1 + 1/(3 + 1/(1 + 1/(5 + 1/(1 + ...)))).
		

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A002946, A002947, A002948, A002949, A002580 (decimal expansion).
Cf. A002351, A002352 (convergents).

Programs

  • Magma
    ContinuedFraction(2^(1/3)); // Vincenzo Librandi, Oct 08 2017
  • Maple
    N:= 100: # to get a(1) to a(N)
    a[1] := 1: p[1] := 1: q[1] := 0: p[2] := 1: q[2] := 1:
    for n from 2 to N do
      a[n] := floor((-1)^(n+1)*3*p[n]^2/(q[n]*(p[n]^3-2*q[n]^3)) - q[n-1]/q[n]);
      p[n+1] := a[n]*p[n] + p[n-1];
      q[n+1] := a[n]*q[n] + q[n-1];
    od:
    seq(a[i],i=1..N); # Robert Israel, Jul 30 2014
  • Mathematica
    ContinuedFraction[Power[2, (3)^-1],70] (* Harvey P. Dale, Sep 29 2011 *)
  • PARI
    allocatemem(932245000); default(realprecision, 21000); x=contfrac(2^(1/3)); for (n=1, 20000, write("b002945.txt", n-1, " ", x[n])); \\ Harry J. Smith, May 08 2009
    

Formula

From Robert Israel, Jul 30 2014: (Start)
Bombieri/van der Poorten give a complicated formula:
a(n) = floor((-1)^(n+1)*3*p(n)^2/(q(n)*(p(n)^3-2*q(n)^3)) - q(n-1)/q(n)),
p(n+1) = a(n)*p(n) + p(n-1),
q(n+1) = a(n)*q(n) + q(n-1),
with a(1) = 1, p(1) = 1, q(1) = 0, p(2) = 1, q(2) = 1. (End)

Extensions

BCMATH link from Keith R Matthews (keithmatt(AT)gmail.com), Jun 04 2006
Offset changed by Andrew Howroyd, Jul 04 2024

A010689 Periodic sequence: Repeat 1, 8.

Original entry on oeis.org

1, 8, 1, 8, 1, 8, 1, 8, 1, 8, 1, 8, 1, 8, 1, 8, 1, 8, 1, 8, 1, 8, 1, 8, 1, 8, 1, 8, 1, 8, 1, 8, 1, 8, 1, 8, 1, 8, 1, 8, 1, 8, 1, 8, 1, 8, 1, 8, 1, 8, 1, 8, 1, 8, 1, 8, 1, 8, 1, 8, 1, 8, 1, 8, 1, 8, 1, 8, 1, 8, 1, 8, 1, 8, 1, 8, 1, 8, 1, 8, 1, 8, 1, 8, 1, 8, 1, 8, 1, 8, 1, 8, 1, 8, 1, 8, 1, 8, 1, 8, 1, 8, 1, 8, 1
Offset: 0

Views

Author

Keywords

Comments

Also the digital root of 8^n. Also the decimal expansion of 2/11 = 0.181818181818... - Cino Hilliard, Dec 31 2004
Interleaving of A000012 and A010731. - Klaus Brockhaus, Apr 02 2010
Continued fraction expansion of (2 + sqrt(6))/4. - Klaus Brockhaus, Apr 02 2010
Digital root of the powers of any number congruent to 8 mod 9. - Alonso del Arte, Jan 26 2014

Examples

			0.18181818181818181818181818181818181818181...
		

References

  • Cecil Balmond, Number 9: The Search for the Sigma Code. Munich, New York: Prestel (1998): 203.

Crossrefs

Cf. A000012 (all 1's sequence), A010731 (all 8's sequence), A174925 (decimal expansion of (2 + sqrt(6))/4). [Klaus Brockhaus, Apr 02 2010]
Cf. Digital roots of powers of c mod 9: c = 2, A153130; c = 4, A100402; c = 5, A070366; c = 7, A070403.
Cf. sequences listed in Comments section of A283393.
Cf. A010888.

Programs

Formula

From Paul Barry, Sep 16 2004: (Start)
G.f.: (1 + 8*x)/((1 - x)*(1 + x)).
a(n) = (9 - 7*(-1)^n)/2.
a(n) = 8^(ceiling(n/2) - floor(n/2)).
a(n) = gcd((n-1)^3, (n+1)^3). (End)
E.g.f.: cosh(x) + 8*sinh(x). - Stefano Spezia, Feb 09 2025
a(n) = A010888(8*a(n-1)). - Stefano Spezia, Mar 20 2025

Extensions

Definition edited and keywords cons, cofr added by Klaus Brockhaus, Apr 02 2010

A041085 Denominators of continued fraction convergents to sqrt(50).

Original entry on oeis.org

1, 14, 197, 2772, 39005, 548842, 7722793, 108667944, 1529074009, 21515704070, 302748930989, 4260000737916, 59942759261813, 843458630403298, 11868363584907985, 167000548819115088, 2349876047052519217, 33065265207554384126, 465263588952813896981
Offset: 0

Views

Author

Keywords

Comments

For positive n, a(n) equals the permanent of the n X n tridiagonal matrix with 14's along the main diagonal, and 1's along the superdiagonal and the subdiagonal. - John M. Campbell, Jul 08 2011
a(n) equals the number of words of length n on alphabet {0,1,...,14} avoiding runs of zeros of odd lengths. - Milan Janjic, Jan 28 2015
From Michael A. Allen, Apr 30 2023: (Start)
Also called the 14-metallonacci sequence; the g.f. 1/(1-k*x-x^2) gives the k-metallonacci sequence.
a(n) is the number of tilings of an n-board (a board with dimensions n X 1) using unit squares and dominoes (with dimensions 2 X 1) if there are 14 kinds of squares available. (End)

Crossrefs

Row n=14 of A073133, A172236 and A352361 and column k=14 of A157103.

Programs

  • Magma
    [n le 2 select (14)^(n-1) else 14*Self(n-1) +Self(n-2): n in [1..30]]; // Vincenzo Librandi, Nov 17 2012
    
  • Maple
    with(combinat): seq(fibonacci(3*n+3,2)/5, n=0..17); # Zerinvary Lajos, Apr 20 2008
  • Mathematica
    LinearRecurrence[{14, 1}, {1, 14}, 30] (* Vincenzo Librandi, Nov 17 2012 *)
    Table[Fibonacci[3n + 3, 2]/5, {n, 0, 20}] (* Vladimir Reshetnikov, Sep 16 2016 *)
    Convergents[Sqrt[50],20]//Denominator (* Harvey P. Dale, Aug 16 2025 *)
  • SageMath
    A041085=BinaryRecurrenceSequence(14,1,1,14)
    [A041085(n) for n in range(31)] # G. C. Greubel, Sep 29 2024

Formula

a(n) = round((7+5*sqrt(2))*a(n-1)). - Vladeta Jovovic, Jun 15 2003
From Paul Barry, Feb 06 2004: (Start)
a(n) = A000129(3*n+3)/5.
a(n) = (1/20)*((10+7*sqrt(2))*(1+sqrt(2))^(3*n) + (10-7*sqrt(2))*(1-sqrt(2))^(3*n)).
a(n-1) = Sum_{i=0..n} Sum_{j=0..n-i} (n!/(i!*j!*(n-i-j)!))*A000129(2*n-i)/5. (End)
a(n) = Fibonacci(n+1, 14), the n-th Fibonacci polynomial evaluated at x=14. - T. D. Noe, Jan 19 2006
From Philippe Deléham, Nov 03 2008: (Start)
a(n) = 14*a(n-1) + a(n-2); a(0)=1, a(1)=14.
G.f.: 1/(1-14*x-x^2). (End)
a(n) = ((7+5*sqrt(2))^(n+1) - (7-5*sqrt(2))^(n+1))/(10*sqrt(2)). - Gerry Martens, Jul 11 2015

Extensions

Additional term from Colin Barker, Nov 12 2013

A245219 Continued fraction expansion of the constant c in A245218; c = sup{f(n,1)}, where f(1,x) = x + 1 and thereafter f(n,x) = x + 1 if n is in A001951, else f(n,x) = 1/x.

Original entry on oeis.org

3, 2, 3, 2, 3, 2, 2, 3, 2, 3, 2, 2, 3, 2, 3, 2, 3, 2, 2, 3, 2, 3, 2, 2, 3, 2, 3, 2, 3, 2, 2, 3, 2, 3, 2, 2, 3, 2, 3, 2, 2, 3, 2, 3, 2, 3, 2, 2, 3, 2, 3, 2, 2, 3, 2, 3, 2, 3, 2, 2, 3, 2, 3, 2, 2, 3, 2, 3, 2, 2, 3, 2, 3, 2, 3, 2, 2, 3, 2, 3, 2, 2, 3, 2, 3, 2
Offset: 0

Views

Author

Clark Kimberling, Jul 13 2014

Keywords

Comments

See Comments at A245215.
Likely a duplicate of A097509. - R. J. Mathar, Jul 21 2014
Theorem: Referring to Problem B6 in the 81st William Lowell Putnam Mathematical Competition (see link), in the notation of the first solution, the sequence {c_i} equals A245219. This proves the conjecture in the previous comment. - Manjul Bhargava, Kiran Kedlaya, and Lenny Ng, Sep 09 2021.

Examples

			c = 3.43648484... ; the first 12 numbers f(n,1) comprise S(12) = {1, 2, 3, 1/3, 4/3, 7/3, 3/7, 10/7, 17/7, 24/7, 7/24, 31/24}; max(S(12)) = 24/7, with continued fraction [3,2,3].
		

Crossrefs

Cf. A226080 (infinite Fibonacci tree), A245217, A245218 (decimal expansion), A245222, A245225.
The following sequences are all essentially the same, in the sense that they are simple transformations of each other, with A003151 as the parent: A003151, A001951, A001952, A003152, A006337, A080763, A082844 (conjectured), A097509, A159684, A188037, A245219 (conjectured), A276862. - N. J. A. Sloane, Mar 09 2021

Programs

  • Mathematica
    tmpRec = $RecursionLimit; $RecursionLimit = Infinity; u[x_] := u[x] = x + 1; d[x_] := d[x] = 1/x; r = Sqrt[2]; w = Table[Floor[k*r], {k, 2000}]; s[1] = 1; s[n_] := s[n] = If[MemberQ[w, n - 1], u[s[n - 1]], d[s[n - 1]]]; max = Max[N[Table[s[n], {n, 1, 3000}], 200]] (* A245217 *)
    ContinuedFraction[max, 120] (* A245219 *)

Extensions

Offset changed by Andrew Howroyd, Jul 07 2024
Previous Showing 21-30 of 2827 results. Next