A000096 a(n) = n*(n+3)/2.
0, 2, 5, 9, 14, 20, 27, 35, 44, 54, 65, 77, 90, 104, 119, 135, 152, 170, 189, 209, 230, 252, 275, 299, 324, 350, 377, 405, 434, 464, 495, 527, 560, 594, 629, 665, 702, 740, 779, 819, 860, 902, 945, 989, 1034, 1080, 1127, 1175, 1224, 1274, 1325, 1377, 1430, 1484, 1539, 1595, 1652, 1710, 1769
Offset: 0
Examples
G.f. = 2*x + 5*x^2 + 9*x^3 + 14*x^4 + 20*x^5 + 27*x^6 + 35*x^7 + 44*x^8 + 54*x^9 + ...
References
- M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), Table 22.7, p. 797.
- Norman Biggs, Algebraic Graph Theory, 2nd ed. Cambridge University Press, 1993.
- G. James and A. Kerber, The Representation Theory of the Symmetric Group, Encyclopedia of Maths. and its Appls., Vol. 16, Addison-Wesley, 1981, Reading, MA, U.S.A.
- D. G. Kendall et al., Shape and Shape Theory, Wiley, 1999; see p. 4.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- Franklin T. Adams-Watters, Table of n, a(n) for n = 0..10000
- M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972 [alternative scanned copy].
- D. Applegate, R. Bixby, V. Chvatal and W. Cook, On the solution of traveling salesman problem, In : Int. Congress of mathematics (Berlin 1998), Documenta Math., Extra Volume ICM 1998, Vol. III, pp. 645-656.
- J.-L. Baril, Classical sequences revisited with permutations avoiding dotted pattern, Electronic Journal of Combinatorics, 18 (2011), #P178.
- Robert Davis and Greg Simay, Further Combinatorics and Applications of Two-Toned Tilings, arXiv:2001.11089 [math.CO], 2020.
- L. Euler, Sur une contradiction apparente dans la doctrine des lignes courbes, Mémoires de l'Académie des Sciences de Berlin, 4, 219-233, 1750 Reprinted in Opera Omnia, Series I, Vol. 26. pp. 33-45.
- Mareike Fischer, Extremal values of the Sackin balance index for rooted binary trees, arXiv:1801.10418 [q-bio.PE], 2018.
- Mareike Fischer, Extremal Values of the Sackin Tree Balance Index, Ann. Comb. (2021) Vol. 25, 515-541, Theorem 1.
- A. Hanson and J. Sha, A Contour Integral Representation for the Dual Five-Point Function and a Symmetry of the Genus Four Surface in R6, arXiv preprint arXiv:0510064 [math-ph], 2005.
- F. T. Howard and Curtis Cooper, Some identities for r-Fibonacci numbers, Fibonacci Quart. 49 (2011), no. 3, 231-243.
- S. P. Humphries, Home page
- S. P. Humphries, Braid groups, infinite Lie algebras of Cartan type and rings of invariants, Topology and its Applications, 95 (3) (1999) pp. 173-205.
- INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 1018 [dead link]
- Milan Janjic, Two Enumerative Functions
- Christian Kassel and Christophe Reutenauer, Pairs of intertwined integer sequences, arXiv:2507.15780 [math.NT], 2025. See p. 13.
- A. McLeod and W. O. J. Moser, Counting cyclic binary strings, Math. Mag., 80 (No. 1, 2007), 29-37.
- Yashar Memarian, On the Maximum Number of Vertices of Minimal Embedded Graphs, arXiv:0910.2469 [math.CO], 2009-15. [_Jonathan Vos Post_, Oct 14 2009]
- Ângela Mestre and José Agapito, A Family of Riordan Group Automorphisms, J. Int. Seq., Vol. 22 (2019), Article 19.8.5.
- E. Pérez Herrero, Binomial Matrix (I), Psychedelic Geometry Blogspot 09/22/09. [_Enrique Pérez Herrero_, Sep 22 2009]
- T. Manneville and V. Pilaud, Compatibility fans for graphical nested complexes, arXiv preprint arXiv:1501.07152 [math.CO], 2015.
- P. Moree, Convoluted convolved Fibonacci numbers, arXiv:math/0311205 [math.CO], 2003.
- P. Moree, Convoluted Convolved Fibonacci Numbers, Journal of Integer Sequences, Vol. 7 (2004), Article 04.2.2.
- Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.
- Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992
- Maria J. Rodriguez, Black holes in all, The KIAS Newsletter, Vol.3, pp.29-34, Korea Institute for Advanced Study, Dec. 2010. [Wayback archive]
- C. Rossiter, Depictions, Explorations and Formulas of the Euler/Pascal Cube. [Wayback archive]
- E. Sandifer, How Euler Did It: Cramer's Paradox, 2004.
- N. J. A. Sloane, How to cut an annulus into 9 pieces with three cuts.
- Ben Sparks and Brady Haran, The Math of Being a Greedy Pig, Numberphile video, 2021.
- Eric Weisstein's World of Mathematics, Cramer-Euler Paradox
- Eric Weisstein's World of Mathematics, Irredundant Set
- Eric Weisstein's World of Mathematics, Path Complement Graph
- G. G. Wojnar, D. Sz. Wojnar, and L. Q. Brin, Universal Peculiar Linear Mean Relationships in All Polynomials, arXiv:1706.08381 [math.GM], 2017.
- Index entries for two-way infinite sequences
- Index entries for linear recurrences with constant coefficients, signature (3,-3,1).
- Index entries for sequences related to Chebyshev polynomials.
Crossrefs
Complement of A007401. Column 2 of A145324. Column of triangle A014473, first skew subdiagonal of A033282, a diagonal of A079508.
Occurs as a diagonal in A074079/A074080, i.e., A074079(n+3, n) = A000096(n-1) for all n >= 2. Also A074092(n) = 2^n * A000096(n-1) after n >= 2.
Cf. numbers of the form n*(n*k-k+4)/2 listed in A226488.
Similar sequences are listed in A316466.
Programs
-
GAP
a := List([0..1000], n -> n*(n+3)/2); # Muniru A Asiru, Jan 25 2018
-
Haskell
a000096 n = n * (n + 3) `div` 2 a000096_list = [x | x <- [0..], a023531 x == 1] -- Reinhard Zumkeller, Feb 14 2015, Dec 04 2012
-
Magma
[n*(n+3)/2: n in [0..60]]; // Juri-Stepan Gerasimov, Apr 05 2016
-
Magma
[n: n in [0..2300] | IsSquare(8*n+9)]; // Juri-Stepan Gerasimov, Apr 05 2016
-
Maple
A000096 := n->n*(n+3)/2; seq(A000096(n), n=0..50); A000096 :=z*(-2+z)/(z-1)**3; # Simon Plouffe in his 1992 dissertation
-
Mathematica
Table[n*(n+3)/2, {n, 0, 100}] (* Vladimir Joseph Stephan Orlovsky, Oct 25 2008 *) LinearRecurrence[{3,-3,1}, {0,2,5}, 60] (* Harvey P. Dale, Apr 30 2013 *)
-
PARI
{a(n) = n * (n+3)/2}; \\ Michael Somos, May 26 2004
-
PARI
first(n) = Vec(x*(2-x)/(1-x)^3 + O(x^n), -n) \\ Iain Fox, Dec 12 2017
Formula
G.f.: A(x) = x*(2-x)/(1-x)^3. a(n) = binomial(n+1, n-1) + binomial(n, n-1).
Connection with triangular numbers: a(n) = A000217(n+1) - 1.
a(n) = a(n-1) + n + 1. - Bryan Jacobs (bryanjj(AT)gmail.com), Apr 01 2005
a(n) = 2*t(n) - t(n-1) where t() are the triangular numbers, e.g., a(5) = 2*t(5) - t(4) = 2*15 - 10 = 20. - Jon Perry, Jul 23 2003
a(-3-n) = a(n). - Michael Somos, May 26 2004
a(n) = C(3+n, 2) - C(3+n, 1). - Zerinvary Lajos, Dec 09 2005
a(n) = A126890(n,1) for n > 0. - Reinhard Zumkeller, Dec 30 2006
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3). - Paul Curtz, Jan 02 2008
Starting (2, 5, 9, 14, ...) = binomial transform of (2, 3, 1, 0, 0, 0, ...). - Gary W. Adamson, Jul 03 2008
A002262(a(n)) = n. - Reinhard Zumkeller, May 20 2009
Let A be the Toeplitz matrix of order n defined by: A[i,i-1]=-1, A[i,j]=Catalan(j-i), (i<=j), and A[i,j]=0, otherwise. Then, for n>=1, a(n-1)=coeff(charpoly(A,x),x^(n-2)). - Milan Janjic, Jul 08 2010
a(n) = Sum_{k=1..n} (k+1)!/k!. - Gary Detlefs, Aug 03 2010
a(n) = n(n+1)/2 + n = A000217(n) + n. - Zak Seidov, Jan 22 2012
E.g.f.: F(x) = 1/2*x*exp(x)*(x+4) satisfies the differential equation F''(x) - 2*F'(x) + F(x) = exp(x). - Peter Bala, Mar 14 2012
a(n) = binomial(n+3, 2) - (n+3). - Robert G. Wilson v, Mar 15 2012
a(n) = A181971(n+1, 2) for n > 0. - Reinhard Zumkeller, Jul 09 2012
a(n) = A214292(n+2, 1). - Reinhard Zumkeller, Jul 12 2012
G.f.: -U(0) where U(k) = 1 - 1/((1-x)^2 - x*(1-x)^4/(x*(1-x)^2 - 1/U(k+1))); (continued fraction, 3-step). - Sergei N. Gladkovskii, Sep 27 2012
A023532(a(n)) = 0. - Reinhard Zumkeller, Dec 04 2012
a(n) = A014132(n,n) for n > 0. - Reinhard Zumkeller, Dec 12 2012
a(n-1) = (1/n!)*Sum_{j=0..n} binomial(n,j)*(-1)^(n-j)*j^n*(j-1). - Vladimir Kruchinin, Jun 06 2013
a(n) = 2n - floor(n/2) + floor(n^2/2). - Wesley Ivan Hurt, Jun 15 2013
a(n) = Sum_{i=2..n+1} i. - Wesley Ivan Hurt, Jun 28 2013
Sum_{n>0} 1/a(n) = 11/9. - Enrique Pérez Herrero, Nov 26 2013
a(n) = Sum_{i=1..n} (n - i + 2). - Wesley Ivan Hurt, Mar 31 2014
A023531(a(n)) = 1. - Reinhard Zumkeller, Feb 14 2015
For n > 0: a(n) = A101881(2*n-1). - Reinhard Zumkeller, Feb 20 2015
a(n) + a(n-1) = A008865(n+1) for all n in Z. - Michael Somos, Nov 11 2015
a(n+1) = A127672(4+n, n), n >= 0, where A127672 gives the coefficients of the Chebyshev C polynomials. See the Abramowitz-Stegun reference. - Wolfdieter Lang, Dec 10 2015
a(n) = (n+1)^2 - A000124(n). - Anton Zakharov, Jun 29 2016
Dirichlet g.f.: (zeta(s-2) + 3*zeta(s-1))/2. - Ilya Gutkovskiy, Jun 30 2016
a(n) = Stirling2(n+2, n+1) - 1. - Peter Luschny, Jan 05 2021
Sum_{n>=1} (-1)^(n+1)/a(n) = 4*log(2)/3 - 5/9. - Amiram Eldar, Jan 10 2021
From Amiram Eldar, Jan 20 2021: (Start)
Product_{n>=1} (1 + 1/a(n)) = 3.
Product_{n>=1} (1 - 1/a(n)) = 3*cos(sqrt(17)*Pi/2)/(4*Pi). (End)
Product_{n>=0} a(4*n+1)*a(4*n+4)/(a(4*n+2)*a(4*n+3)) = Pi/6. - Michael Jodl, Apr 05 2025
Comments