cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 15 results. Next

A003557 n divided by largest squarefree divisor of n; if n = Product p(k)^e(k) then a(n) = Product p(k)^(e(k)-1), with a(1) = 1.

Original entry on oeis.org

1, 1, 1, 2, 1, 1, 1, 4, 3, 1, 1, 2, 1, 1, 1, 8, 1, 3, 1, 2, 1, 1, 1, 4, 5, 1, 9, 2, 1, 1, 1, 16, 1, 1, 1, 6, 1, 1, 1, 4, 1, 1, 1, 2, 3, 1, 1, 8, 7, 5, 1, 2, 1, 9, 1, 4, 1, 1, 1, 2, 1, 1, 3, 32, 1, 1, 1, 2, 1, 1, 1, 12, 1, 1, 5, 2, 1, 1, 1, 8, 27, 1, 1, 2, 1, 1, 1, 4, 1, 3, 1, 2, 1, 1, 1, 16, 1, 7
Offset: 1

Views

Author

Keywords

Comments

a(n) is the size of the Frattini subgroup of the cyclic group C_n - Ahmed Fares (ahmedfares(AT)my-deja.com), Jun 07 2001.
Also of the Frattini subgroup of the dihedral group with 2*n elements. - Sharon Sela (sharonsela(AT)hotmail.com), Jan 01 2002
Number of solutions to x^m==0 (mod n) provided that n < 2^(m+1), i.e. the sequence of sequences A000188, A000189, A000190, etc. converges to this sequence. - Henry Bottomley, Sep 18 2001
a(n) is the number of nilpotent elements in the ring Z/nZ. - Laszlo Toth, May 22 2009
The sequence of partial products of a(n) is A085056(n). - Peter Luschny, Jun 29 2009
The first occurrence of n in this sequence is at A064549(n). - Franklin T. Adams-Watters, Jul 25 2014
From Hal M. Switkay, Jul 03 2025: (Start)
For n > 1, a(n) is a proper divisor of n. Thus the sequence n, a(n), a(a(n)), ... eventually becomes 1. This yields a minimal factorization of n as a product of squarefree numbers (A005117), each factor dividing all larger factors, in a factorization that is conjugate to the minimal factorization of n as a product of prime powers (A000961), as follows.
Let f(n,0) = n, and let f(n,k) = a(f(n,k-1)) for k > 0. A051903(n) is the minimal value of k such that f(n,k) = 1. A051903(n) <= log(n)/log(2). Since n/a(n) = A007947(n) is always squarefree by definition, n is a product of squarefree factors in the form Product_{i=1..A051903(n)} [f(n,i-1)/f(n,i)].
The two factorizations correspond to conjugate partitions of bigomega(n) = A001222(n). (End)

Crossrefs

Cf. A007947, A062378, A062379, A064549, A300717 (Möbius transform), A326306 (inv. Möbius transf.), A328572.
Sequences that are multiples of this sequence (the other factor of a pointwise product is given in parentheses): A000010 (A173557), A000027 (A007947), A001615 (A048250), A003415 (A342001), A007434 (A345052), A057521 (A071773).
Cf. A082695 (Dgf at s=2), A065487 (Dgf at s=3).

Programs

  • Haskell
    a003557 n = product $ zipWith (^)
                          (a027748_row n) (map (subtract 1) $ a124010_row n)
    -- Reinhard Zumkeller, Dec 20 2013
    
  • Julia
    using Nemo
    function A003557(n)
        n < 4 && return 1
        q = prod([p for (p, e) ∈ Nemo.factor(fmpz(n))])
        return n == q ? 1 : div(n, q)
    end
    [A003557(n) for n in 1:90] |> println  # Peter Luschny, Feb 07 2021
  • Magma
    [(&+[(Floor(k^n/n)-Floor((k^n-1)/n)): k in [1..n]]): n in [1..100]]; // G. C. Greubel, Nov 02 2018
    
  • Maple
    A003557 := n -> n/ilcm(op(numtheory[factorset](n))):
    seq(A003557(n), n=1..98); # Peter Luschny, Mar 23 2011
    seq(n / NumberTheory:-Radical(n), n = 1..98); # Peter Luschny, Jul 20 2021
  • Mathematica
    Prepend[ Array[ #/Times@@(First[ Transpose[ FactorInteger[ # ] ] ])&, 100, 2 ], 1 ] (* Olivier Gérard, Apr 10 1997 *)
  • PARI
    a(n)=n/factorback(factor(n)[,1]) \\ Charles R Greathouse IV, Nov 17 2014
    
  • PARI
    for(n=1, 100, print1(direuler(p=2, n, (1 - p*X + X)/(1 - p*X))[n], ", ")) \\ Vaclav Kotesovec, Jun 20 2020
    
  • Python
    from sympy.ntheory.factor_ import core
    from sympy import divisors
    def a(n): return n / max(i for i in divisors(n) if core(i) == i)
    print([a(n) for n in range(1, 101)]) # Indranil Ghosh, Apr 16 2017
    
  • Python
    from math import prod
    from sympy import primefactors
    def A003557(n): return n//prod(primefactors(n)) # Chai Wah Wu, Nov 04 2022
    
  • Sage
    def A003557(n) : return n*mul(1/p for p in prime_divisors(n))
    [A003557(n) for n in (1..98)] # Peter Luschny, Jun 10 2012
    

Formula

Multiplicative with a(p^e) = p^(e-1). - Vladeta Jovovic, Jul 23 2001
a(n) = n/rad(n) = n/A007947(n) = sqrt(J_2(n)/J_2(rad(n))), where J_2(n) is A007434. - Enrique Pérez Herrero, Aug 31 2010
a(n) = (J_k(n)/J_k(rad(n)))^(1/k), where J_k is the k-th Jordan Totient Function: (J_2 is A007434 and J_3 A059376). - Enrique Pérez Herrero, Sep 03 2010
Dirichlet convolution of A000027 and A097945. - R. J. Mathar, Dec 20 2011
a(n) = A000010(n)/|A023900(n)|. - Eric Desbiaux, Nov 15 2013
a(n) = Product_{k = 1..A001221(n)} (A027748(n,k)^(A124010(n,k)-1)). - Reinhard Zumkeller, Dec 20 2013
a(n) = Sum_{k=1..n}(floor(k^n/n)-floor((k^n-1)/n)). - Anthony Browne, May 11 2016
a(n) = e^[Sum_{k=2..n} (floor(n/k)-floor((n-1)/k))*(1-A010051(k))*Mangoldt(k)] where Mangoldt is the Mangoldt function. - Anthony Browne, Jun 16 2016
a(n) = Sum_{d|n} mu(d) * phi(d) * (n/d), where mu(d) is the Moebius function and phi(d) is the Euler totient function (rephrases formula of Dec 2011). - Daniel Suteu, Jun 19 2018
G.f.: Sum_{k>=1} mu(k)*phi(k)*x^k/(1 - x^k)^2. - Ilya Gutkovskiy, Nov 02 2018
Dirichlet g.f.: Product_{primes p} (1 + 1/(p^s - p)). - Vaclav Kotesovec, Jun 24 2020
From Richard L. Ollerton, May 07 2021: (Start)
a(n) = Sum_{k=1..n} mu(n/gcd(n,k))*gcd(n,k).
a(n) = Sum_{k=1..n} mu(gcd(n,k))*(n/gcd(n,k))*phi(gcd(n,k))/phi(n/gcd(n,k)). (End)
a(n) = A001615(n)/A048250(n) = A003415/A342001(n) = A057521(n)/A071773(n). - Antti Karttunen, Jun 08 2021

Extensions

Secondary definition added to the name by Antti Karttunen, Jun 08 2021

A000188 (1) Number of solutions to x^2 == 0 (mod n). (2) Also square root of largest square dividing n. (3) Also max_{ d divides n } gcd(d, n/d).

Original entry on oeis.org

1, 1, 1, 2, 1, 1, 1, 2, 3, 1, 1, 2, 1, 1, 1, 4, 1, 3, 1, 2, 1, 1, 1, 2, 5, 1, 3, 2, 1, 1, 1, 4, 1, 1, 1, 6, 1, 1, 1, 2, 1, 1, 1, 2, 3, 1, 1, 4, 7, 5, 1, 2, 1, 3, 1, 2, 1, 1, 1, 2, 1, 1, 3, 8, 1, 1, 1, 2, 1, 1, 1, 6, 1, 1, 5, 2, 1, 1, 1, 4, 9, 1, 1, 2, 1, 1, 1, 2, 1, 3
Offset: 1

Views

Author

Keywords

Comments

Shadow transform of the squares A000290. - Vladeta Jovovic, Aug 02 2002
Labos Elemer and Henry Bottomley independently proved that (2) and (3) define the same sequence. Bottomley also showed that (1) and (2) define the same sequence.
Proof that (2) = (3): Let max{gcd(d, n/d)} = K, then d = Kx, n/d = Ky so n = KKxy where xy is the squarefree part of n, otherwise K is not maximal. Observe also that g = gcd(K, xy) is not necessarily 1. Thus K is also the "maximal square-root factor" of n. - Labos Elemer, Jul 2000
We can write sqrt(n) = b*sqrt(c) where c is squarefree. Then b = A000188(n) is the "inner square root" of n, c = A007913(n) and b*c = A019554(n) = "outer square root" of n.

Examples

			a(8) = 2 because the largest square dividing 8 is 4, the square root of which is 2.
a(9) = 3 because 9 is a perfect square and its square root is 3.
a(10) = 1 because 10 is squarefree.
		

Crossrefs

Cf. A019554 (outer square root), A053150 (inner 3rd root), A019555 (outer 3rd root), A053164 (inner 4th root), A053166 (outer 4th root), A015052 (outer 5th root), A015053 (outer 6th root).
Cf. A240976 (Dgf at s=2).

Programs

  • Haskell
    a000188 n = product $ zipWith (^)
                          (a027748_row n) $ map (`div` 2) (a124010_row n)
    -- Reinhard Zumkeller, Apr 22 2012
    
  • Maple
    with(numtheory):A000188 := proc(n) local i: RETURN(op(mul(i,i=map(x->x[1]^floor(x[2]/2),ifactors(n)[2])))); end;
  • Mathematica
    Array[Function[n, Count[Array[PowerMod[#, 2, n ] &, n, 0 ], 0 ] ], 100]
    (* Second program: *)
    nMax = 90; sList = Range[Floor[Sqrt[nMax]]]^2; Sqrt[#] &/@ Table[ Last[ Select[ sList, Divisible[n, #] &]], {n, nMax}] (* Harvey P. Dale, May 11 2011 *)
    a[n_] := With[{d = Divisors[n]}, Max[GCD[d, Reverse[d]]]] (* Mamuka Jibladze, Feb 15 2015 *)
    f[p_, e_] := p^Floor[e/2]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Sep 18 2020 *)
  • PARI
    a(n)=if(n<1,0,sum(i=1,n,i*i%n==0))
    
  • PARI
    a(n)=sqrtint(n/core(n)) \\ Zak Seidov, Apr 07 2009
    
  • PARI
    a(n)=core(n, 1)[2] \\ Michel Marcus, Feb 27 2013
    
  • Python
    from sympy.ntheory.factor_ import core
    from sympy import integer_nthroot
    def A000188(n): return integer_nthroot(n//core(n),2)[0] # Chai Wah Wu, Jun 14 2021

Formula

a(n) = n/A019554(n) = sqrt(A008833(n)).
a(n) = Sum_{d^2|n} phi(d), where phi is the Euler totient function A000010.
Multiplicative with a(p^e) = p^floor(e/2). - David W. Wilson, Aug 01 2001
Dirichlet series: Sum_{n >= 1} a(n)/n^s = zeta(2*s - 1)*zeta(s)/zeta(2*s), (Re(s) > 1).
Dirichlet convolution of A037213 and A008966. - R. J. Mathar, Feb 27 2011
Finch & Sebah show that the average order of a(n) is 3 log n/Pi^2. - Charles R Greathouse IV, Jan 03 2013
a(n) = sqrt(n/A007913(n)). - M. F. Hasler, May 08 2014
Sum_{n>=1} lambda(n)*a(n)*x^n/(1-x^n) = Sum_{n>=1} n*x^(n^2), where lambda() is the Liouville function A008836 (cf. A205801). - Mamuka Jibladze, Feb 15 2015
a(2*n) = a(n)*(A096268(n-1) + 1). - observed by Velin Yanev, Jul 14 2017, The formula says that a(2n) = 2*a(n) only when 2-adic valuation of n (A007814(n)) is odd, otherwise a(2n) = a(n). This follows easily from the definition (2). - Antti Karttunen, Nov 28 2017
Sum_{k=1..n} a(k) ~ 3*n*((log(n) + 3*gamma - 1)/Pi^2 - 12*zeta'(2)/Pi^4), where gamma is the Euler-Mascheroni constant A001620. - Vaclav Kotesovec, Dec 01 2020
Conjecture: a(n) = Sum_{k=1..n} A010052(n*k). - Velin Yanev, Jul 04 2021
G.f.: Sum_{k>=1} phi(k) * x^(k^2) / (1 - x^(k^2)). - Ilya Gutkovskiy, Aug 20 2021

Extensions

Edited by M. F. Hasler, May 08 2014

A053150 Cube root of largest cube dividing n.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 3, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 3, 1, 2, 1, 1, 1, 1, 1, 1, 1, 4, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 3, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1
Offset: 1

Views

Author

Henry Bottomley, Feb 28 2000

Keywords

Comments

This can be thought as a "lower 3rd root" of a positive integer. Upper k-th roots were studied by Broughan (2002, 2003, 2006). The sequence of "upper 3rd root" of positive integers is given by A019555. - Petros Hadjicostas, Sep 15 2019

Crossrefs

Cf. A000188 (inner square root), A019554 (outer square root), A019555 (outer third root), A053164 (inner 4th root), A053166 (outer 4th root), A015052 (outer 5th root), A015053 (outer 6th root).

Programs

  • Mathematica
    f[list_] := list[[1]]^Quotient[list[[2]], 3]; Table[Apply[Times, Map[f,FactorInteger[n]]], {n, 1, 81}] (* Geoffrey Critzer, Jan 21 2015 *)
    Table[SelectFirst[Reverse@ Divisors@ n, IntegerQ[#^(1/3)] &]^(1/3), {n, 105}] (* Michael De Vlieger, Jul 28 2017 *)
    f[p_, e_] := p^Floor[e/3]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Sep 18 2020 *)
  • PARI
    A053150(n) = { my(f = factor(n), m = 1); for (k=1, #f~, m *= (f[k, 1]^(f[k, 2]\3)); ); m; } \\ Antti Karttunen, Jul 28 2017
    
  • PARI
    a(n) = my(f = factor(n)); for (k=1, #f~, f[k,2] = f[k,2]\3); factorback(f); \\ Michel Marcus, Jul 28 2017
    
  • Python
    from math import prod
    from sympy import factorint
    def A053150(n): return prod(p**(q//3) for p, q in factorint(n).items()) # Chai Wah Wu, Aug 18 2021

Formula

Multiplicative with a(p^e) = p^[e/3]. - Mitch Harris, Apr 19 2005
a(n) = A008834(n)^(1/3) = sqrt(A000189(n)/A000188(A050985(n))).
Dirichlet g.f.: zeta(3s-1)*zeta(s)/zeta(3s). - R. J. Mathar, Apr 09 2011
Sum_{k=1..n} a(k) ~ Pi^2 * n / (6*zeta(3)) + 3*zeta(2/3) * n^(2/3) / Pi^2. - Vaclav Kotesovec, Jan 31 2019
a(n) = Sum_{d^3|n} phi(d). - Ridouane Oudra, Dec 30 2020
G.f.: Sum_{k>=1} phi(k) * x^(k^3) / (1 - x^(k^3)). - Ilya Gutkovskiy, Aug 20 2021

Extensions

More terms from Antti Karttunen, Jul 28 2017

A019555 Smallest number whose cube is divisible by n.

Original entry on oeis.org

1, 2, 3, 2, 5, 6, 7, 2, 3, 10, 11, 6, 13, 14, 15, 4, 17, 6, 19, 10, 21, 22, 23, 6, 5, 26, 3, 14, 29, 30, 31, 4, 33, 34, 35, 6, 37, 38, 39, 10, 41, 42, 43, 22, 15, 46, 47, 12, 7, 10, 51, 26, 53, 6, 55, 14, 57, 58, 59, 30, 61, 62, 21, 4, 65, 66, 67, 34, 69, 70, 71, 6, 73, 74, 15, 38, 77, 78
Offset: 1

Views

Author

R. Muller

Keywords

Comments

This can be thought as an "upper 3rd root" of a positive integer. Upper k-th roots were studied by Broughan (2002, 2003, 2006). The sequence of "lower 3rd root" of positive integers is given by A053150. - Petros Hadjicostas, Sep 15 2019

Crossrefs

Cf. A000188 (inner square root), A019554 (outer square root), A053150 (inner 3rd root), A053164 (inner 4th root), A053166 (outer 4th root), A015052 (outer 5th root), A015053 (outer 6th root).

Programs

  • Maple
    f:= n -> mul(t[1]^ceil(t[2]/3), t = ifactors(n)[2]):
    map(f, [$1..100]); # Robert Israel, Sep 22 2015
  • Mathematica
    cubes=Range[85]^3; Table[Position[Divisible[cubes,i],True,1,1][[1,1]],{i,85}] (* Harvey P. Dale, Jan 12 2011 *)
    f[p_, e_] := p^Ceiling[e/3]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100]  (* Amiram Eldar, Jan 06 2024 *)
  • PARI
    a(n)=my(r=1);while(r^3%n!=0,r++);r \\ Anders Hellström, Sep 22 2015
    
  • PARI
    for(n=1, 100, print1(direuler(p=2, n, (1 + p*X + p*X^2)/(1 - p*X^3))[n], ", ")) \\ Vaclav Kotesovec, Aug 30 2021
    
  • PARI
    a(n) = {my(f = factor(n)); prod(i = 1, #f~, f[i,1]^ceil(f[i,2]/3));} \\ Amiram Eldar, Jan 06 2024
    
  • Python
    from math import prod
    from sympy import factorint
    def A019555(n): return prod(p**((q%3 != 0)+(q//3)) for p, q in factorint(n).items()) # Chai Wah Wu, Aug 18 2021
  • Sage
    [prod([t[0]^(ceil(t[1]/3)) for t in factor(n)]) for n in range(1,79)] # Danny Rorabaugh, Sep 22 2015
    

Formula

Replace any cubic factors in n by their cube roots.
a(n) = n/A000189(n).
Multiplicative with a(p^e) = p^ceiling(e/3). - R. J. Mathar, May 29 2011
From Vaclav Kotesovec, Aug 30 2021: (Start)
Dirichlet g.f.: zeta(3*s-1) * Product_{p prime} (1 + p^(1 - s) + p^(1 - 2*s)).
Dirichlet g.f.: zeta(3*s-1) * zeta(s-1) * Product_{p prime} (1 - p^(2 - 3*s) + p^(1 - 2*s) - p^(2 - 2*s)).
Sum_{k=1..n} a(k) ~ c * zeta(5) * n^2 / 2, where c = Product_{p prime} (1 - 1/p^2 + 1/p^3 - 1/p^4) = 0.684286924186862318141968725791218083472312736723163777284618226290055... (End)

Extensions

Corrected and extended by David W. Wilson

A053166 Smallest positive integer for which n divides a(n)^4.

Original entry on oeis.org

1, 2, 3, 2, 5, 6, 7, 2, 3, 10, 11, 6, 13, 14, 15, 2, 17, 6, 19, 10, 21, 22, 23, 6, 5, 26, 3, 14, 29, 30, 31, 4, 33, 34, 35, 6, 37, 38, 39, 10, 41, 42, 43, 22, 15, 46, 47, 6, 7, 10, 51, 26, 53, 6, 55, 14, 57, 58, 59, 30, 61, 62, 21, 4, 65, 66, 67, 34, 69, 70, 71, 6, 73, 74, 15, 38
Offset: 1

Views

Author

Henry Bottomley, Feb 29 2000

Keywords

Comments

According to Broughan (2002, 2003, 2006), a(n) is the "upper 4th root of n". The "lower 4th root of n" is sequence A053164. - Petros Hadjicostas, Sep 15 2019

Crossrefs

Cf. A000188 (inner square root), A019554 (outer square root), A053150 (inner 3rd root), A019555 (outer 3rd root), A053164 (inner 4th root), A015052 (outer 5th root), A015053 (outer 6th root).

Programs

  • Mathematica
    f[p_, e_] := p^Ceiling[e/4]; a[n_] := Times @@ (f @@@ FactorInteger[n]); Array[a, 100] (* Amiram Eldar, Sep 08 2020 *)
  • PARI
    a(n) = my(f=factor(n)); for (i=1, #f~, f[i,2] = ceil(f[i,2]/4)); factorback(f); \\ Michel Marcus, Jun 09 2014

Formula

a(n) = n/A000190(n) = A019554(n)/(A008835(A019554(n)^2))^(1/4).
If n is 5th-power-free (i.e., not 32, 64, 128, 243, ...) then a(n) = A007947(n).
Multiplicative with a(p^e) = p^(ceiling(e/4)). - Christian G. Bower, May 16 2005
Sum_{k=1..n} a(k) ~ c * n^2, where c = (zeta(7)/2) * Product_{p prime} (1 - 1/p^2 + 1/p^3 - 1/p^4 + 1/p^5 - 1/p^6) = 0.3528057925... . - Amiram Eldar, Oct 27 2022

A053149 Smallest cube divisible by n.

Original entry on oeis.org

1, 8, 27, 8, 125, 216, 343, 8, 27, 1000, 1331, 216, 2197, 2744, 3375, 64, 4913, 216, 6859, 1000, 9261, 10648, 12167, 216, 125, 17576, 27, 2744, 24389, 27000, 29791, 64, 35937, 39304, 42875, 216, 50653, 54872, 59319, 1000, 68921, 74088, 79507, 10648
Offset: 1

Views

Author

Henry Bottomley, Feb 28 2000

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := For[k = 1, True, k++, If[ Divisible[c = k^3, n], Return[c]]]; Table[a[n], {n, 1, 44}] (* Jean-François Alcover, Sep 03 2012 *)
    f[p_, e_] := p^(e + Mod[3 - e, 3]); a[n_] := Times @@ (f @@@ FactorInteger[n]); Array[a, 100] (* Amiram Eldar, Aug 29 2019 *)
    scdn[n_]:=Module[{c=Ceiling[Surd[n,3]]},While[!Divisible[c^3,n],c++];c^3]; Array[scdn,50] (* Harvey P. Dale, Jun 13 2020 *)
  • PARI
    a(n) = {my(f = factor(n)); prod(i = 1, #f~, f[i,1]^(f[i,2] + (3-f[i,2])%3));} \\ Amiram Eldar, Oct 27 2022

Formula

a(n) = (n/A000189(n))^3 = A008834(n)*A019554(A050985(n))^3 = n*A050985(n)^2/A000188(A050985(n))^3.
a(n) = n * A048798(n). - Franklin T. Adams-Watters, Apr 08 2009
From Amiram Eldar, Jul 29 2022: (Start)
Multiplicative with a(p^e) = p^(e + ((3-e) mod 3)).
Sum_{n>=1} 1/a(n) = Product_{p prime} ((p^3+2)/(p^3-1)) = 1.655234386560802506... . (End)
Sum_{k=1..n} a(k) ~ c * n^4, where c = (zeta(9)/(4*zeta(3))) * Product_{p prime} (1 - 1/p^2 + 1/p^3) = A013667*A330596/(4*A002117) = 0.1559906... . - Amiram Eldar, Oct 27 2022

A048798 Smallest k > 0 such that n*k is a perfect cube.

Original entry on oeis.org

1, 4, 9, 2, 25, 36, 49, 1, 3, 100, 121, 18, 169, 196, 225, 4, 289, 12, 361, 50, 441, 484, 529, 9, 5, 676, 1, 98, 841, 900, 961, 2, 1089, 1156, 1225, 6, 1369, 1444, 1521, 25, 1681, 1764, 1849, 242, 75, 2116, 2209, 36, 7, 20, 2601, 338, 2809, 4, 3025, 49, 3249
Offset: 1

Views

Author

Charles T. Le (charlestle(AT)yahoo.com)

Keywords

Comments

Note that in general the smallest number k(>0) such that n*k is a perfect m-th power (rather obviously) = (the smallest m-th power divisible by n)/n and also (slightly less obviously) =n^(m-1)/(the number of solutions of x^m==0 mod n)^m. - Henry Bottomley, Mar 03 2000

Examples

			a(12) = a(2*2*3) = 2*3*3 = 18 since 12*18 = 6^3.
a(28) = a(2*2*7) = 2*7*7 = 98 since 28*98 = 14^3.
		

Crossrefs

Cf. A254767 (analogous sequence with the restriction that k > n).

Programs

  • Mathematica
    a[n_] := For[k = 1, True, k++, If[ Divisible[c = k^3, n], Return[c/n]]]; Table[a[n], {n, 1, 60}] (* Jean-François Alcover, Sep 03 2012 *)
    f[p_, e_] := p^(Mod[-e, 3]); a[n_] := Times @@ (f @@@ FactorInteger[n]); Array[a, 100] (* Amiram Eldar, Sep 10 2020 *)
    With[{cbs=Range[3300]^3},Table[SelectFirst[cbs,Mod[#,n]==0&]/n,{n,60}]] (* Harvey P. Dale, May 10 2024 *)
  • PARI
    a(n)=my(f=factor(n));prod(i=1,#f[,1],f[i,1]^(-f[i,2]%3)) \\ Charles R Greathouse IV, Feb 27 2013
    
  • PARI
    a(n)=for(k=1,n^2,if(ispower(k*n,3),return(k)))
    vector(100,n,a(n)) \\ Derek Orr, Feb 07 2015
    
  • Python
    from math import prod
    from sympy import factorint
    def A048798(n): return prod(p**(-e%3) for p, e in factorint(n).items()) # Chai Wah Wu, Aug 05 2024

Formula

a(n) = A053149(n)/n = n^2/A000189(n)^3.
Multiplicative with a(p^e) = p^((-e) mod 3). - Mitch Harris, May 17 2005
Sum_{k=1..n} a(k) ~ c * n^3, where c = (zeta(9)/(3*zeta(3))) * Product_{p prime} (1 - 1/p^2 + 1/p^3) = 0.2079875504... . - Amiram Eldar, Oct 28 2022

Extensions

More terms from Patrick De Geest, Feb 15 2000

A062378 n divided by largest cubefree factor of n.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 4, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 3, 1, 1, 1, 1, 8, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 4, 1, 1, 1, 1, 1, 3, 1, 2, 1, 1, 1, 1, 1, 1, 1, 16, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 4, 9, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 8, 1, 1, 1, 1, 1, 1, 1, 2
Offset: 1

Views

Author

Henry Bottomley, Jun 18 2001

Keywords

Comments

Numerator of n/rad(n)^2, where rad is the squarefree kernel of n (A007947), denominator: A055231. - Reinhard Zumkeller, Dec 10 2002

Crossrefs

Cf. A000189, A000578, A007948, A008834, A019555, A048798, A050985, A053149, A053150, A056551, A056552. See A003557 for squares and A062379 for 4th powers.
Differs from A073753 for the first time at n=90, where a(90) = 1, while A073753(90) = 3.

Programs

Formula

a(n) = n / A007948(n).
a(n) = A003557(A003557(n)). - Antti Karttunen, Nov 28 2017
Multiplicative with a(p^e) = p^max(e-2, 0). - Amiram Eldar, Sep 07 2020
Dirichlet g.f.: zeta(s-1) * Product_{p prime} (1 - 1/p^(s-1) + 1/p^s - 1/p^(2*s-1) + 1/p^(2*s)). - Amiram Eldar, Dec 07 2023

A056552 Powerfree kernel of cubefree part of n.

Original entry on oeis.org

1, 2, 3, 2, 5, 6, 7, 1, 3, 10, 11, 6, 13, 14, 15, 2, 17, 6, 19, 10, 21, 22, 23, 3, 5, 26, 1, 14, 29, 30, 31, 2, 33, 34, 35, 6, 37, 38, 39, 5, 41, 42, 43, 22, 15, 46, 47, 6, 7, 10, 51, 26, 53, 2, 55, 7, 57, 58, 59, 30, 61, 62, 21, 1, 65, 66, 67, 34, 69, 70, 71, 3, 73, 74, 15, 38, 77
Offset: 1

Views

Author

Henry Bottomley, Jun 25 2000

Keywords

Examples

			a(32) = 2 because cubefree part of 32 is 4 and powerfree kernel of 4 is 2.
		

Crossrefs

Programs

  • Mathematica
    f[p_, e_] :=  p^If[Divisible[e, 3], 0, 1]; a[n_] := Times @@ (f @@@ FactorInteger[ n]); Array[a, 100] (* Amiram Eldar, Aug 29 2019 *)
  • PARI
    a(n) = my(f=factor(n)); for (k=1, #f~, if (frac(f[k,2]/3), f[k,2] = 1, f[k,2] = 0)); factorback(f); \\ Michel Marcus, Feb 28 2019

Formula

a(n) = A007947(A050985(n)) = A019555(A050985(n)) = n/(A053150(n)*A000189(n)) = A019555(n)/A053150(n) = A056551(n)^(1/3).
If n = Product_{j} Pj^Ej then a(n) = Product_{j} Pj^Fj, where Fj = 0 if Ej is 0 or a multiple of 3 and Fj = 1 otherwise.
Multiplicative with a(p^e) = p^(if 3|e, then 0, else 1). - Mitch Harris, Apr 19 2005
Sum_{k=1..n} a(k) ~ c * n^2, where c = (zeta(6)/2) * Product_{p prime} (1 - 1/p^2 + 1/p^3 - 1/p^4) = 0.3480772773... . - Amiram Eldar, Oct 28 2022
Dirichlet g.f.: zeta(3*s) * Product_{p prime} (1 + 1/p^(s-1) + 1/p^(2*s-1)). - Amiram Eldar, Sep 16 2023

A056551 Smallest cube divisible by n divided by largest cube which divides n.

Original entry on oeis.org

1, 8, 27, 8, 125, 216, 343, 1, 27, 1000, 1331, 216, 2197, 2744, 3375, 8, 4913, 216, 6859, 1000, 9261, 10648, 12167, 27, 125, 17576, 1, 2744, 24389, 27000, 29791, 8, 35937, 39304, 42875, 216, 50653, 54872, 59319, 125, 68921, 74088, 79507, 10648
Offset: 1

Views

Author

Henry Bottomley, Jun 25 2000

Keywords

Examples

			a(16) = 8 since smallest cube divisible by 16 is 64 and smallest cube which divides 16 is 8 and 64/8 = 8.
		

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := p^If[Divisible[e, 3], 0, 1]; a[n_] := (Times @@ (f @@@ FactorInteger[ n]))^3; Array[a, 100] (* Amiram Eldar, Aug 29 2019*)
  • PARI
    a(n) = {my(f = factor(n)); prod(i = 1, #f~, if(f[i,2]%3, f[i,1], 1))^3; } \\ Amiram Eldar, Oct 28 2022

Formula

a(n) = A053149(n)/A008834(n) = A048798(n)*A050985(n) = A056552(n)^3.
From Amiram Eldar, Oct 28 2022: (Start)
Multiplicative with a(p^e) = 1 if e is divisible by 3, and a(p^e) = p^3 otherwise.
Sum_{k=1..n} a(k) ~ c * n^4, where c = (zeta(12)/(4*zeta(3))) * Product_{p prime} (1 - 1/p^2 + 1/p^3) = A013670 * A330596 / (4*A002117) = 0.1557163105... . (End)
Dirichlet g.f.: zeta(3*s) * Product_{p prime} (1 + 1/p^(s-3) + 1/p^(2*s-3)). - Amiram Eldar, Sep 16 2023
Showing 1-10 of 15 results. Next