A001147 Double factorial of odd numbers: a(n) = (2*n-1)!! = 1*3*5*...*(2*n-1).
1, 1, 3, 15, 105, 945, 10395, 135135, 2027025, 34459425, 654729075, 13749310575, 316234143225, 7905853580625, 213458046676875, 6190283353629375, 191898783962510625, 6332659870762850625, 221643095476699771875, 8200794532637891559375, 319830986772877770815625
Offset: 0
Examples
a(3) = 1*3*5 = 15. From _Joerg Arndt_, Sep 10 2013: (Start) There are a(3)=15 involutions of 6 elements without fixed points: #: permutation transpositions 01: [ 1 0 3 2 5 4 ] (0, 1) (2, 3) (4, 5) 02: [ 1 0 4 5 2 3 ] (0, 1) (2, 4) (3, 5) 03: [ 1 0 5 4 3 2 ] (0, 1) (2, 5) (3, 4) 04: [ 2 3 0 1 5 4 ] (0, 2) (1, 3) (4, 5) 05: [ 2 4 0 5 1 3 ] (0, 2) (1, 4) (3, 5) 06: [ 2 5 0 4 3 1 ] (0, 2) (1, 5) (3, 4) 07: [ 3 2 1 0 5 4 ] (0, 3) (1, 2) (4, 5) 08: [ 3 4 5 0 1 2 ] (0, 3) (1, 4) (2, 5) 09: [ 3 5 4 0 2 1 ] (0, 3) (1, 5) (2, 4) 10: [ 4 2 1 5 0 3 ] (0, 4) (1, 2) (3, 5) 11: [ 4 3 5 1 0 2 ] (0, 4) (1, 3) (2, 5) 12: [ 4 5 3 2 0 1 ] (0, 4) (1, 5) (2, 3) 13: [ 5 2 1 4 3 0 ] (0, 5) (1, 2) (3, 4) 14: [ 5 3 4 1 2 0 ] (0, 5) (1, 3) (2, 4) 15: [ 5 4 3 2 1 0 ] (0, 5) (1, 4) (2, 3) (End) G.f. = 1 + x + 3*x^2 + 15*x^3 + 105*x^4 + 945*x^5 + 10395*x^6 + 135135*x^7 + ...
References
- M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, Tenth Printing, 1972, (26.2.28).
- Miklos Bona, editor, Handbook of Enumerative Combinatorics, CRC Press, 2015, page 317.
- L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 228, #19.
- Hoel, Port and Stone, Introduction to Probability Theory, Section 7.3.
- F. K. Hwang, D. S. Richards and P. Winter, The Steiner Tree Problem, North-Holland, 1992, see p. 14.
- C. Itzykson and J.-B. Zuber, Quantum Field Theory, McGraw-Hill, 1980, pages 466-467.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- R. P. Stanley, Enumerative Combinatorics, Cambridge, Vol. 2, 1999; see Example 5.2.6 and also p. 178.
- R. Vein and P. Dale, Determinants and Their Applications in Mathematical Physics, Springer-Verlag, New York, 1999, p. 73.
- G. Watson, The Theory of Bessel Functions, Cambridge Univ. Press, 1922.
Links
- Stefano Spezia, Table of n, a(n) for n = 0..400 (first 102 terms from T. D. Noe)
- M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972 [alternative scanned copy].
- José A. Adell and Beáta Bényi, Probabilistic Stirling numbers and applications, Aequat. Math. (2024). See p. 18.
- Rudolf Berghammer, Jules Desharnais, and Michael Winter, Counting Specific Classes of Relations Regarding Fixed Points and Reflexive Points, arXiv:2505.00140 [cs.DM], 2025. See p. 16.
- Jonathan Burns, Assembly Graph Words - Single Transverse Component (Counts).
- Christian Aebi and Grant Cairns, Generalizations of Wilson's Theorem for Double-, Hyper-, Sub-and Superfactorials, The American Mathematical Monthly 122.5 (2015): 433-443.
- D. Arques and J.-F. Beraud, Rooted maps on orientable surfaces, Riccati's equation and continued fractions, Discrete Math., 215 (2000), 1-12.
- Fatemeh Bagherzadeh, M. Bremner, and S. Madariaga, Jordan Trialgebras and Post-Jordan Algebras, arXiv preprint arXiv:1611.01214 [math.RA], 2016.
- Cyril Banderier, Philippe Marchal, and Michael Wallner, Rectangular Young tableaux with local decreases and the density method for uniform random generation (short version), arXiv:1805.09017 [cs.DM], 2018.
- Paul Barry, On a Generalization of the Narayana Triangle, J. Int. Seq. 14 (2011) # 11.4.5.
- Paul Barry, On the f-Matrices of Pascal-like Triangles Defined by Riordan Arrays, arXiv:1805.02274 [math.CO], 2018.
- Paul Barry and A. Hennessy, The Euler-Seidel Matrix, Hankel Matrices and Moment Sequences, J. Int. Seq. 13 (2010) # 10.8.2.
- Natasha Blitvić and Einar Steingrímsson, Permutations, moments, measures, arXiv:2001.00280 [math.CO], 2020.
- O. Bodini, M. Dien, X. Fontaine, A. Genitrini, and H. K. Hwang, Increasing Diamonds, in LATIN 2016: 12th Latin American Symposium, Ensenada, Mexico, April 11-15, 2016, Proceedings Pages pp. 207-219 2016 DOI 10.1007/978-3-662-49529-2_16; Lecture Notes in Computer Science Series Volume 9644.
- H. Bottomley, Illustration for A000108, A001147, A002694, A067310 and A067311
- Jonathan Burns, Egor Dolzhenko, Nataša Jonoska, Tilahun Muche and Masahico Saito, Four-Regular Graphs with Rigid Vertices Associated to DNA Recombination, Discrete Applied Mathematics, 161 (2013), 1378-1394.
- David Callan, A combinatorial survey of identities for the double factorial, arXiv:0906.1317 [math.CO], 2009.
- Peter J. Cameron, Some treelike objects Quart. J. Math. Oxford Ser. 38 (1987), 155-183. MR0891613 (89a:05009). See p. 155.
- P. J. Cameron, Sequences realized by oligomorphic permutation groups, J. Integ. Seqs. Vol. 3 (2000), #00.1.5.
- Carsten Schneider, The Absent-Minded Passengers Problem: A Motivating Challenge Solved by Computer Algebra, arXiv:2003.01921 [math.CO], 2020.
- P. Codara, O. M. D'Antona, P. Hell, A simple combinatorial interpretation of certain generalized Bell and Stirling numbers, arXiv preprint arXiv:1308.1700 [cs.DM], 2013.
- Thierry Dana-Picard, Sequences of Definite Integrals, Factorials and Double Factorials, Journal of Integer Sequences, Vol. 8 (2005), Article 05.4.6.
- Filippo Disanto and Thomas Wiehe, Some combinatorial problems on binary rooted trees occurring in population genetics, arXiv preprint arXiv:1112.1295 [math.CO], 2011.
- John Engbers, David Galvin, and Clifford Smyth, Restricted Stirling and Lah numbers and their inverses, arXiv:1610.05803 [math.CO], 2016. See p. 5.
- J. Felsenstein, The number of evolutionary trees, Systematic Zoology, 27 (1978), 27-33. (Annotated scanned copy)
- FindStat - Combinatorial Statistic Finder, Perfect matchings
- A. Genitrini, B. Gittenberger, M. Kauers and M. Wallner, Asymptotic Enumeration of Compacted Binary Trees, arXiv:1703.10031 [math.CO], 2017.
- Ghislain R. Franssens, On a Number Pyramid Related to the Binomial, Deleham, Eulerian, MacMahon and Stirling number triangles, Journal of Integer Sequences, Vol. 9 (2006), Article 06.4.1.
- S. Goodenough and C. Lavault, On subsets of Riordan subgroups and Heisenberg--Weyl algebra, arXiv:1404.1894 [cs.DM], 2014.
- S. Goodenough and C. Lavault, Overview on Heisenberg—Weyl Algebra and Subsets of Riordan Subgroups, The Electronic Journal of Combinatorics, 22(4) (2015), #P4.16.
- W. S. Gray and M. Thitsa, System Interconnections and Combinatorial Integer Sequences, in: System Theory (SSST), 2013 45th Southeastern Symposium on, Date of Conference: 11-11 Mar 2013.
- Shyam Sunder Gupta, Fascinating Factorials, Exploring the Beauty of Fascinating Numbers, Springer (2025) Ch. 16, 411-442.
- Paul W. Haggard, On Legendre numbers, International Journal of Mathematics and Mathematical Sciences, vol. 8, Article ID 787189, 5 pages, 1985. See Table 1 p. 408.
- Guo-Niu Han, Enumeration of Standard Puzzles, 2011. [Cached copy]
- Guo-Niu Han, Enumeration of Standard Puzzles, arXiv:2006.14070 [math.CO], 2020.
- Aoife Hennessy, A Study of Riordan Arrays with Applications to Continued Fractions, Orthogonal Polynomials and Lattice Paths, Ph. D. Thesis, Waterford Institute of Technology, Oct. 2011.
- INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 23.
- INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 106.
- J. Jakes-Schauer, D. Anekstein, and P. Wocjan, Carving-width and contraction trees for tensor networks, arXiv:1908.11034 [cs.DM], 2019.
- L. B. W. Jolley, Summation of Series, Dover, 1961 p. 48.
- M. Kauers and S.-L. Ko, Problem 11545, Amer. Math. Monthly, 118 (2011), p. 84.
- A. Khruzin, Enumeration of chord diagrams, arXiv:math/0008209 [math.CO], 2000.
- M. Klazar, Twelve countings with rooted plane trees, European Journal of Combinatorics 18 (1997), 195-210; Addendum, 18 (1997), 739-740.
- S. Lando and A. Zvonkin, Graphs on surfaces and their applications, Encyclopaedia of Mathematical Sciences, 141, Springer, 2004.
- Wolfdieter Lang, On generalizations of Stirling number triangles, J. Integer Seqs., Vol. 3 (2000), #00.2.4.
- F. Larrion, M. A. Pizana, and R. Villarroel-Flores, The clique operator on matching and chessboard graphs Discrete Math. 309 (2009), no. 1, 85-93.
- Peter D. Loly and Ian D. Cameron, Frierson's 1907 Parameterization of Compound Magic Squares Extended to Orders 3^L, L = 1, 2, 3, ..., with Information Entropy, arXiv:2008.11020 [math.HO], 2020.
- E. Lucas, Theorie des nombres (annotated scans of a few selected pages).
- Robert J. Marsh and Paul Martin, Tiling bijections between paths and Brauer diagrams, Journal of Algebraic Combinatorics, Vol 33, No 3 (2011), pp. 427-453.
- MathOverflow, Geometric / physical / probabilistic interpretations of Riemann zeta(n>1)?, answer by Tom Copeland posted in Aug 2021.
- B. E. Meserve, Double Factorials, American Mathematical Monthly, 55 (1948), 425-426.
- T. Motzkin, The hypersurface cross ratio, Bull. Amer. Math. Soc., 51 (1945), 976-984.
- T. S. Motzkin, Relations between hypersurface cross ratios and a combinatorial formula for partitions of a polygon, for permanent preponderance and for non-associative products, Bull. Amer. Math. Soc., 54 (1948), 352-360.
- F. Murtagh, Counting dendrograms: a survey, Discrete Applied Mathematics, 7 (1984), 191-199.
- G. Nordh, Perfect Skolem sequences, arXiv:math/0506155 [math.CO], 2005.
- J.-C. Novelli and J.-Y. Thibon, Hopf Algebras of m-permutations,(m+1)-ary trees, and m-parking functions, arXiv preprint arXiv:1403.5962 [math.CO], 2014.
- R. Ondrejka, Tables of double factorials, Math. Comp., 24 (1970), 231.
- L. Pachter and B. Sturmfels, The mathematics of phylogenomics, arXiv:math/0409132 [math.ST], 2004-2005.
- K. Phillips, R functions to symbolically compute the central moments of the multivariate normal distribution, Journal of Statistical Software, Feb 2010.
- R. A. Proctor, Let's Expand Rota's Twelvefold Way for Counting Partitions!, arXiv:math/0606404 [math.CO], 2006-2007.
- Helmut Prodinger, Descendants in heap ordered trees or a triumph of computer algebra, The Electronic Journal of Combinatorics, Volume 3, Issue 1 (1996), R29.
- S. Ramanujan, Question 541, J. Ind. Math. Soc.
- D. F. Robinson, Comparison of labeled trees with valency three, J. Combin. Theory Ser. B, 11 (1971), 105-119.
- M. D. Schmidt, Generalized j-Factorial Functions, Polynomials, and Applications, J. Int. Seq. 13 (2010), 10.6.7, (6.27).
- E. Schröder, Vier combinatorische Probleme, Z. f. Math. Phys., 15 (1870), 361-376.
- E. Schröder, Vier combinatorische Probleme, Z. f. Math. Phys., 15 (1870), 361-376. [Annotated scanned copy]
- Y. S. Song, On the combinatorics of rooted binary phylogenetic trees, Annals of Combinatorics, 7, 2003, 365-379. See Lemma 2.1. - _N. J. A. Sloane_, Aug 22 2014
- D. Speyer and B. Sturmfels, The tropical Grassmannian, arXiv:0304218 [math.AG], 2003.
- Neriman Tokcan, Jonathan Gryak, Kayvan Najarian, and Harm Derksen, Algebraic Methods for Tensor Data, arXiv:2005.12988 [math.RT], 2020.
- Michael Torpey, Semigroup congruences: computational techniques and theoretical applications, Ph.D. Thesis, University of St. Andrews (Scotland, 2019).
- Andrew Vince and Miklos Bona, The Number of Ways to Assemble a Graph, arXiv preprint arXiv:1204.3842 [math.CO], 2012.
- Michael Wallner, A bijection of plane increasing trees with relaxed binary trees of right height at most one, arXiv:1706.07163 [math.CO], 2017.
- Elena L. Wang and Guoce Xin, On Ward Numbers and Increasing Schröder Trees, arXiv:2507.15654 [math.CO], 2025. See pp. 12-13.
- Eric Weisstein's World of Mathematics, Adjacency Matrix
- Eric Weisstein's World of Mathematics, Double Factorial
- Eric Weisstein's World of Mathematics, Erf
- Eric Weisstein's World of Mathematics, Ladder Rung Graph
- Eric Weisstein's World of Mathematics, Normal Distribution Function
- Wikipedia, Pfaffian
- Wikipedia, Hermite polynomials
- Index to divisibility sequences
- Index entries for related partition-counting sequences
- Index entries for sequences related to factorial numbers
- Index entries for sequences related to parenthesizing
- Index entries for "core" sequences
Crossrefs
Cf. A000085, A006882, A000165 ((2n)!!), A001818, A009445, A039683, A102992, A001190 (no labels), A000680, A132101.
Cf. A086677; A055142 (for this sequence, |a(n+1)| + 1 is the number of distinct products which can be formed using commutative, nonassociative multiplication and a nonempty subset of n given variables).
Cf. A079267, A000698, A029635, A161198, A076795, A123023, A161124, A051125, A181983, A099174, A087547, A028338 (first column).
Subsequence of A248652.
Cf. A082161 (relaxed compacted binary trees of unbounded right height).
Cf. A053871 (binomial transform).
Programs
-
GAP
A001147 := function(n) local i, s, t; t := 1; i := 0; Print(t, ", "); for i in [1 .. n] do t := t*(2*i-1); Print(t, ", "); od; end; A001147(100); # Stefano Spezia, Nov 13 2018
-
Haskell
a001147 n = product [1, 3 .. 2 * n - 1] a001147_list = 1 : zipWith (*) [1, 3 ..] a001147_list -- Reinhard Zumkeller, Feb 15 2015, Dec 03 2011
-
Magma
A001147:=func< n | n eq 0 select 1 else &*[ k: k in [1..2*n-1 by 2] ] >; [ A001147(n): n in [0..20] ]; // Klaus Brockhaus, Jun 22 2011
-
Magma
I:=[1,3]; [1] cat [n le 2 select I[n] else (3*n-2)*Self(n-1)-(n-1)*(2*n-3)*Self(n-2): n in [1..25] ]; // Vincenzo Librandi, Feb 19 2015
-
Maple
f := n->(2*n)!/(n!*2^n); A001147 := proc(n) doublefactorial(2*n-1); end: # R. J. Mathar, Jul 04 2009 A001147 := n -> 2^n*pochhammer(1/2, n); # Peter Luschny, Aug 09 2009 G(x):=(1-2*x)^(-1/2): f[0]:=G(x): for n from 1 to 29 do f[n]:=diff(f[n-1],x) od: x:=0: seq(f[n],n=0..19); # Zerinvary Lajos, Apr 03 2009; aligned with offset by Johannes W. Meijer, Aug 11 2009 series(hypergeom([1,1/2],[],2*x),x=0,20); # Mark van Hoeij, Apr 07 2013
-
Mathematica
Table[(2 n - 1)!!, {n, 0, 19}] (* Robert G. Wilson v, Oct 12 2005 *) a[ n_] := 2^n Gamma[n + 1/2] / Gamma[1/2]; (* Michael Somos, Sep 18 2014 *) Join[{1}, Range[1, 41, 2]!!] (* Harvey P. Dale, Jan 28 2017 *) a[ n_] := If[ n < 0, (-1)^n / a[-n], SeriesCoefficient[ Product[1 - (1 - x)^(2 k - 1), {k, n}], {x, 0, n}]]; (* Michael Somos, Jun 27 2017 *) (2 Range[0, 20] - 1)!! (* Eric W. Weisstein, Jul 22 2017 *)
-
Maxima
a(n):=if n=0 then 1 else sum(sum(binomial(n-1,i)*binomial(n-i-1,j)*a(i)*a(j)*a(n-i-j-1),j,0,n-i-1),i,0,n-1); /* Vladimir Kruchinin, May 06 2020 */
-
PARI
{a(n) = if( n<0, (-1)^n / a(-n), (2*n)! / n! / 2^n)}; /* Michael Somos, Sep 18 2014 */
-
PARI
x='x+O('x^33); Vec(serlaplace((1-2*x)^(-1/2))) \\ Joerg Arndt, Apr 24 2011
-
Python
from sympy import factorial2 def a(n): return factorial2(2 * n - 1) print([a(n) for n in range(101)]) # Indranil Ghosh, Jul 22 2017
-
Sage
[rising_factorial(n+1,n)/2^n for n in (0..15)] # Peter Luschny, Jun 26 2012
Formula
E.g.f.: 1 / sqrt(1 - 2*x).
a(n) ~ sqrt(2) * 2^n * (n/e)^n.
Rational part of numerator of Gamma(n+1/2): a(n) * sqrt(Pi) / 2^n = Gamma(n+1/2). - Yuriy Brun, Ewa Dominowska (brun(AT)mit.edu), May 12 2001
With interpolated zeros, the sequence has e.g.f. exp(x^2/2). - Paul Barry, Jun 27 2003
The Ramanujan polynomial psi(n+1, n) has value a(n). - Ralf Stephan, Apr 16 2004
a(n) = Sum_{k=0..n} (-2)^(n-k)*A048994(n, k). - Philippe Deléham, Oct 29 2005
Log(1 + x + 3*x^2 + 15*x^3 + 105*x^4 + 945*x^5 + 10395*x^6 + ...) = x + 5/2*x^2 + 37/3*x^3 + 353/4*x^4 + 4081/5*x^5 + 55205/6*x^6 + ..., where [1, 5, 37, 353, 4081, 55205, ...] = A004208. - Philippe Deléham, Jun 20 2006
1/3 + 2/15 + 3/105 + ... = 1/2. [Jolley eq. 216]
Sum_{j=1..n} j/a(j+1) = (1 - 1/a(n+1))/2. [Jolley eq. 216]
1/1 + 1/3 + 2/15 + 6/105 + 24/945 + ... = Pi/2. - Gary W. Adamson, Dec 21 2006
a(n) = (1/sqrt(2*Pi))*Integral_{x>=0} x^n*exp(-x/2)/sqrt(x). - Paul Barry, Jan 28 2008
a(n) = A006882(2n-1). - R. J. Mathar, Jul 04 2009
G.f.: 1/(1-x-2x^2/(1-5x-12x^2/(1-9x-30x^2/(1-13x-56x^2/(1- ... (continued fraction). - Paul Barry, Sep 18 2009
a(n) = (-1)^n*subs({log(e)=1,x=0},coeff(simplify(series(e^(x*t-t^2/2),t,2*n+1)),t^(2*n))*(2*n)!). - Leonid Bedratyuk, Oct 31 2009
a(n) = 2^n*gamma(n+1/2)/gamma(1/2). - Jaume Oliver Lafont, Nov 09 2009
G.f.: 1/(1-x/(1-2x/(1-3x/(1-4x/(1-5x/(1- ...(continued fraction). - Aoife Hennessy (aoife.hennessy(AT)gmail.com), Dec 02 2009
The g.f. of a(n+1) is 1/(1-3x/(1-2x/(1-5x/(1-4x/(1-7x/(1-6x/(1-.... (continued fraction). - Paul Barry, Dec 04 2009
a(n) = Sum_{i=1..n} binomial(n,i)*a(i-1)*a(n-i). - Vladimir Shevelev, Sep 30 2010
E.g.f.: A(x) = 1 - sqrt(1-2*x) satisfies the differential equation A'(x) - A'(x)*A(x) - 1 = 0. - Vladimir Kruchinin, Jan 17 2011
a(n) = A123023(2*n). - Michael Somos, Jul 24 2011
a(n) = (1/2)*Sum_{i=1..n} binomial(n+1,i)*a(i-1)*a(n-i). See link above. - Dennis P. Walsh, Dec 02 2011
a(n) = Sum_{k=0..n} (-1)^k*binomial(2*n,n+k)*Stirling_1(n+k,k) [Kauers and Ko].
a(n) = A035342(n, 1), n >= 1 (first column of triangle).
From Gary W. Adamson, Jul 19 2011: (Start)
a(n) = upper left term of M^n and sum of top row terms of M^(n-1), where M = a variant of the (1,2) Pascal triangle (Cf. A029635) as the following production matrix:
1, 2, 0, 0, 0, ...
1, 3, 2, 0, 0, ...
1, 4, 5, 2, 0, ...
1, 5, 9, 7, 2, ...
...
For example, a(3) = 15 is the left term in top row of M^3: (15, 46, 36, 8) and a(4) = 105 = (15 + 46 + 36 + 8).
(End)
G.f.: A(x) = 1 + x/(W(0) - x); W(k) = 1 + x + x*2*k - x*(2*k + 3)/W(k+1); (continued fraction). - Sergei N. Gladkovskii, Nov 17 2011
a(n) = Sum_{i=1..n} binomial(n,i-1)*a(i-1)*a(n-i). - Dennis P. Walsh, Dec 02 2011
a(n) = (-1)^n*Sum_{k=0..n} 2^(n-k)*s(n+1,k+1), where s(n,k) are the Stirling numbers of the first kind, A048994. - Mircea Merca, May 03 2012
a(n) = (2*n)4! = Gauss_factorial(2*n,4) = Product{j=1..2*n, gcd(j,4)=1} j. - Peter Luschny, Oct 01 2012
G.f.: (1 - 1/Q(0))/x where Q(k) = 1 - x*(2*k - 1)/(1 - x*(2*k + 2)/Q(k+1) ); (continued fraction). - Sergei N. Gladkovskii, Mar 19 2013
G.f.: 1 + x/Q(0), where Q(k) = 1 + (2*k - 1)*x - 2*x*(k + 1)/Q(k+1); (continued fraction). - Sergei N. Gladkovskii, May 01 2013
G.f.: 2/G(0), where G(k) = 1 + 1/(1 - 2*x*(2*k + 1)/(2*x*(2*k + 1) - 1 + 2*x*(2*k + 2)/G(k+1))); (continued fraction). - Sergei N. Gladkovskii, May 31 2013
G.f.: G(0)/2, where G(k) = 1 + 1/(1 - x/(x + 1/(2*k + 1)/G(k+1))); (continued fraction). - Sergei N. Gladkovskii, Jun 01 2013
G.f.: G(0), where G(k) = 1 + 2*x*(4*k + 1)/(4*k + 2 - 2*x*(2*k + 1)*(4*k + 3)/(x*(4*k + 3) + 2*(k + 1)/G(k+1))); (continued fraction). - Sergei N. Gladkovskii, Jun 22 2013
a(n) = (2*n - 3)*a(n-2) + (2*n - 2)*a(n-1), n > 1. - Ivan N. Ianakiev, Jul 08 2013
G.f.: G(0), where G(k) = 1 - x*(k+1)/(x*(k+1) - 1/G(k+1) ); (continued fraction). - Sergei N. Gladkovskii, Aug 04 2013
a(n) = 2*a(n-1) + (2n-3)^2*a(n-2), a(0) = a(1) = 1. - Philippe Deléham, Oct 27 2013
G.f. of reciprocals: Sum_{n>=0} x^n/a(n) = 1F1(1; 1/2; x/2), confluent hypergeometric Function. - R. J. Mathar, Jul 25 2014
0 = a(n)*(+2*a(n+1) - a(n+2)) + a(n+1)*(+a(n+1)) for all n in Z. - Michael Somos, Sep 18 2014
a(n) = (-1)^n / a(-n) = 2*a(n-1) + a(n-1)^2 / a(n-2) for all n in Z. - Michael Somos, Sep 18 2014
From Peter Bala, Feb 18 2015: (Start)
Recurrence equation: a(n) = (3*n - 2)*a(n-1) - (n - 1)*(2*n - 3)*a(n-2) with a(1) = 1 and a(2) = 3.
The sequence b(n) = A087547(n), beginning [1, 4, 52, 608, 12624, ... ], satisfies the same second-order recurrence equation. This leads to the generalized continued fraction expansion lim_{n -> infinity} b(n)/a(n) = Pi/2 = 1 + 1/(3 - 6/(7 - 15/(10 - ... - n*(2*n - 1)/((3*n + 1) - ... )))). (End)
E.g.f of the sequence whose n-th element (n = 1,2,...) equals a(n-1) is 1-sqrt(1-2*x). - Stanislav Sykora, Jan 06 2017
Sum_{n >= 1} a(n)/(2*n-1)! = exp(1/2). - Daniel Suteu, Feb 06 2017
a(n) = A028338(n, 0), n >= 0. - Wolfdieter Lang, May 27 2017
a(n) = (Product_{k=0..n-2} binomial(2*(n-k),2))/n!. - Stefano Spezia, Nov 13 2018
a(n) = Sum_{i=0..n-1} Sum_{j=0..n-i-1} C(n-1,i)*C(n-i-1,j)*a(i)*a(j)*a(n-i-j-1), a(0)=1, - Vladimir Kruchinin, May 06 2020
From Amiram Eldar, Jun 29 2020: (Start)
Sum_{n>=1} 1/a(n) = sqrt(e*Pi/2)*erf(1/sqrt(2)), where erf is the error function.
Sum_{n>=1} (-1)^(n+1)/a(n) = sqrt(Pi/(2*e))*erfi(1/sqrt(2)), where erfi is the imaginary error function. (End)
G.f. of reciprocals: R(x) = Sum_{n>=0} x^n/a(n) satisfies (1 + x)*R(x) = 1 + 2*x*R'(x). - Werner Schulte, Nov 04 2024
Extensions
Removed erroneous comments: neither the number of n X n binary matrices A such that A^2 = 0 nor the number of simple directed graphs on n vertices with no directed path of length two are counted by this sequence (for n = 3, both are 13). - Dan Drake, Jun 02 2009
Comments