A305197 Number of set partitions of [n] with symmetric block size list of length A004525(n).
1, 1, 1, 1, 3, 7, 19, 56, 171, 470, 2066, 10299, 31346, 91925, 559987, 3939653, 11954993, 36298007, 282835456, 2571177913, 7785919355, 24158837489, 229359684137, 2557117944391, 7731656573016, 24350208829581, 272633076900991, 3601150175699409, 10876116332074739
Offset: 0
Keywords
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..400
Programs
-
Maple
b:= proc(n, s) option remember; expand(`if`(n>s, binomial(n-1, n-s-1)*x, 1)+add(binomial(n-1, j-1)* b(n-j, s+j)*binomial(s+j-1, j-1), j=1..(n-s)/2)*x^2) end: a:= n-> coeff(b(n, 0), x, (n+sin(n*Pi/2))/2): seq(a(n), n=0..30);
-
Mathematica
b[n_, s_] := b[n, s] = Expand[If[n > s, Binomial[n - 1, n - s - 1]*x, 1] + Sum[Binomial[n - 1, j - 1]*b[n - j, s + j]*Binomial[s + j - 1, j - 1], {j, 1, (n - s)/2}]*x^2]; a[n_] := Coefficient[b[n, 0], x, (n + Sin[n*Pi/2])/2]; Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Jun 13 2018, from Maple *)
Formula
a(n) = A275281(n,(n+sin(n*Pi/2))/2).
Comments