cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 76 results. Next

A064270 Primes of the form prime(k) - k; or primes arising in A014689.

Original entry on oeis.org

2, 3, 7, 11, 19, 29, 37, 43, 79, 83, 139, 149, 179, 197, 251, 269, 307, 349, 373, 397, 491, 683, 709, 733, 829, 859, 883, 971, 997, 1093, 1153, 1289, 1429, 1433, 1453, 1511, 1531, 1549, 1637, 1699, 1721, 1931, 1993, 1999, 2029, 2053, 2063, 2161, 2203
Offset: 1

Views

Author

Jason Earls, Sep 23 2001

Keywords

Crossrefs

Cf. A064269.

Programs

  • Mathematica
    t={}; Do[If[PrimeQ[q=Prime[n]-n], AppendTo[t,q]], {n,378}]; t (* Jayanta Basu, May 14 2013 *)
  • PARI
    j=[]; for(n=1,500, if(isprime(prime(n)-n), j=concat(j, prime(n)-n))); j
    
  • PARI
    { n=0; for (m=1, 10^9, if (isprime(prime(m) - m), write("b064270.txt", n++, " ", prime(m) - m); if (n==1000, break)) ) } \\ Harry J. Smith, Sep 11 2009

A162619 Triangle read by rows in which row n lists n consecutive natural numbers A000027, starting with A014689(n) = A000040(n)-n.

Original entry on oeis.org

1, 1, 2, 2, 3, 4, 3, 4, 5, 6, 6, 7, 8, 9, 10, 7, 8, 9, 10, 11, 12, 10, 11, 12, 13, 14, 15, 16, 11, 12, 13, 14, 15, 16, 17, 18, 14, 15, 16, 17, 18, 19, 20, 21, 22, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 25, 26, 27, 28, 29, 30, 31, 32, 33
Offset: 1

Views

Author

Omar E. Pol, Jul 10 2009

Keywords

Comments

Note that the last term of the n-th row is A000040(n)-1 = A006093(n).
See also A162618 and A162620.

Examples

			Triangle begins:
.1;
.1, 2;
.2, 3, 4;
.3, 4, 5, 6;
.6, 7, 8, 9,10;
.7, 8, 9,10,11,12;
10,11,12,13,14,15,16;
11,12,13,14,15,16,17,18;
14,15,16,17,18,19,20,21,22;
19,20,21,22,23,24,25,26,27,28;
20,21,22,23,24,25,26,27,28,29,30;
		

Crossrefs

A162621 Triangle read by rows in which row n lists n consecutive natural numbers A000027, starting with A014689(n+1) = A000040(n+1)-n-1.

Original entry on oeis.org

1, 2, 3, 3, 4, 5, 6, 7, 8, 9, 7, 8, 9, 10, 11, 10, 11, 12, 13, 14, 15, 11, 12, 13, 14, 15, 16, 17, 14, 15, 16, 17, 18, 19, 20, 21, 19, 20, 21, 22, 23, 24, 25, 26, 27, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 25, 26, 27, 28, 29, 30, 31, 32, 33, 33, 34, 35, 28, 29, 30, 31, 32, 33, 34
Offset: 1

Views

Author

Omar E. Pol, Jul 10 2009

Keywords

Comments

Note that the last term of the n-th row is A000040(n+1)-2 = A040976(n+1).
See also A162618, A162619 and A162620.

Examples

			Triangle begins:
.1;
.2, 3;
.3, 4, 5;
.6, 7, 8, 9;
.7, 8, 9,10,11;
10,11,12,13,14,15;
11,12,13,14,15,16,17;
14,15,16,17,18,19,20,21;
19,20,21,22,23,24,25,26,27;
20,21,22,23,24,25,26,27,28,29;
		

Crossrefs

A000607 Number of partitions of n into prime parts.

Original entry on oeis.org

1, 0, 1, 1, 1, 2, 2, 3, 3, 4, 5, 6, 7, 9, 10, 12, 14, 17, 19, 23, 26, 30, 35, 40, 46, 52, 60, 67, 77, 87, 98, 111, 124, 140, 157, 175, 197, 219, 244, 272, 302, 336, 372, 413, 456, 504, 557, 614, 677, 744, 819, 899, 987, 1083, 1186, 1298, 1420, 1552, 1695, 1850, 2018, 2198, 2394, 2605, 2833, 3079, 3344
Offset: 0

Views

Author

Keywords

Comments

a(n) gives the number of values of k such that A001414(k) = n. - Howard A. Landman, Sep 25 2001
Let W(n) = {prime p: There is at least one number m whose spf is p, and sopfr(m) = n}. Let V(n,p) = {m: sopfr(m) = n, p belongs to W(n)}. Then a(n) = sigma(|V(n,p)|). E.g.: W(10) = {2,3,5}, V(10,2) = {30,32,36}, V(10,3) = {21}, V(10,5) = {25}, so a(10) = 3+1+1 = 5. - David James Sycamore, Apr 14 2018
From Gus Wiseman, Jan 18 2020: (Start)
Also the number of integer partitions such that the sum of primes indexed by the parts is n. For example, the sum of primes indexed by the parts of the partition (3,2,1,1) is prime(3)+prime(2)+prime(1)+prime(1) = 12, so (3,2,1,1) is counted under a(12). The a(2) = 1 through a(14) = 10 partitions are:
1 2 11 3 22 4 32 41 33 5 43 6 44
21 111 31 221 222 42 322 331 51 52
211 1111 311 321 411 421 332 431
2111 2211 2221 2222 422 3222
11111 3111 3211 3221 3311
21111 22111 4111 4211
111111 22211 22221
31111 32111
211111 221111
1111111
(End)

Examples

			n = 10 has a(10) = 5 partitions into prime parts: 10 = 2 + 2 + 2 + 2 + 2 = 2 + 2 + 3 + 3 = 2 + 3 + 5 = 3 + 7 = 5 + 5.
n = 15 has a(15) = 12 partitions into prime parts: 15 = 2 + 2 + 2 + 2 + 2 + 2 + 3 = 2 + 2 + 2 + 3 + 3 + 3 = 2 + 2 + 2 + 2 + 2 + 5 = 2 + 2 + 2 + 2 + 7 = 2 + 2 + 3 + 3 + 5 = 2 + 3 + 5 + 5 = 2 + 3 + 3 + 7 = 2 + 2 + 11 = 2 + 13 = 3 + 3 + 3 + 3 + 3 = 3 + 5 + 7 = 5 + 5 + 5.
		

References

  • R. Ayoub, An Introduction to the Analytic Theory of Numbers, Amer. Math. Soc., 1963; see p. 203.
  • Mohammad K. Azarian, A Generalization of the Climbing Stairs Problem, Mathematics and Computer Education, Vol. 31, No. 1, pp. 24-28, Winter 1997. MathEduc Database (Zentralblatt MATH, 1997c.01891).
  • B. C. Berndt and B. M. Wilson, Chapter 5 of Ramanujan's second notebook, pp. 49-78 of Analytic Number Theory (Philadelphia, 1980), Lect. Notes Math. 899, 1981, see Entry 29.
  • D. M. Burton, Elementary Number Theory, 5th ed., McGraw-Hill, 2002.
  • L. M. Chawla and S. A. Shad, On a trio-set of partition functions and their tables, J. Natural Sciences and Mathematics, 9 (1969), 87-96.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

G.f. = 1 / g.f. for A046675. See A046113 for the ordered (compositions) version.
Row sums of array A116865 and of triangle A261013.
Column sums of A331416.
Partitions whose Heinz number is divisible by their sum of primes are A330953.
Partitions of whose sum of primes is divisible by their sum are A331379.

Programs

  • Haskell
    a000607 = p a000040_list where
       p _      0 = 1
       p ks'@(k:ks) m = if m < k then 0 else p ks' (m - k) + p ks m
    -- Reinhard Zumkeller, Aug 05 2012
    
  • Magma
    [1] cat [#RestrictedPartitions(n,{p:p in PrimesUpTo(n)}): n in [1..100]]; // Marius A. Burtea, Jan 02 2019
  • Maple
    with(gfun):
    t1:=mul(1/(1-q^ithprime(n)),n=1..51):
    t2:=series(t1,q,50):
    t3:=seriestolist(t2); # fixed by Vaclav Kotesovec, Sep 14 2014
  • Mathematica
    CoefficientList[ Series[1/Product[1 - x^Prime[i], {i, 1, 50}], {x, 0, 50}], x]
    f[n_] := Length@ IntegerPartitions[n, All, Prime@ Range@ PrimePi@ n]; Array[f, 57] (* Robert G. Wilson v, Jul 23 2010 *)
    Table[Length[Select[IntegerPartitions[n],And@@PrimeQ/@#&]],{n,0,60}] (* Harvey P. Dale, Apr 22 2012 *)
    a[n_] := a[n] = If[PrimeQ[n], 1, 0]; c[n_] := c[n] = Plus @@ Map[# a[#] &, Divisors[n]]; b[n_] := b[n] = (c[n] + Sum[c[k] b[n - k], {k, 1, n - 1}])/n; Table[b[n], {n, 1, 20}] (* Thomas Vogler, Dec 10 2015: Uses Euler transform, caches computed values, faster than IntegerPartitions[] function. *)
    nmax = 100; pmax = PrimePi[nmax]; poly = ConstantArray[0, nmax + 1]; poly[[1]] = 1; poly[[2]] = 0; poly[[3]] = -1; Do[p = Prime[k]; Do[poly[[j + 1]] -= poly[[j + 1 - p]], {j, nmax, p, -1}];, {k, 2, pmax}]; s = Sum[poly[[k + 1]]*x^k, {k, 0, Length[poly] - 1}]; CoefficientList[Series[1/s, {x, 0, nmax}], x] (* Vaclav Kotesovec, Jan 11 2021 *)
  • PARI
    N=66;x='x+O('x^N); Vec(1/prod(k=1,N,1-x^prime(k))) \\ Joerg Arndt, Sep 04 2014
    
  • Python
    from sympy import primefactors
    l = [1, 0]
    for n in range(2, 101):
        l.append(sum(sum(primefactors(k)) * l[n - k] for k in range(1, n + 1)) // n)
    l  # Indranil Ghosh, Jul 13 2017
    
  • Sage
    [Partitions(n, parts_in=prime_range(n + 1)).cardinality() for n in range(100)]  # Giuseppe Coppoletta, Jul 11 2016
    

Formula

Asymptotically a(n) ~ exp(2 Pi sqrt(n/log n) / sqrt(3)) (Ayoub).
a(n) = (1/n)*Sum_{k=1..n} A008472(k)*a(n-k). - Vladeta Jovovic, Aug 27 2002
G.f.: 1/Product_{k>=1} (1-x^prime(k)).
See the partition arrays A116864 and A116865.
From Vaclav Kotesovec, Sep 15 2014 [Corrected by Andrey Zabolotskiy, May 26 2017]: (Start)
It is surprising that the ratio of the formula for log(a(n)) to the approximation 2 * Pi * sqrt(n/(3*log(n))) exceeds 1. For n=20000 the ratio is 1.00953, and for n=50000 (using the value from Havermann's tables) the ratio is 1.02458, so the ratio is increasing. See graph above.
A more refined asymptotic formula is found by Vaughan in Ramanujan J. 15 (2008), pp. 109-121, and corrected by Bartel et al. (2017): log(a(n)) = 2*Pi*sqrt(n/(3*log(n))) * (1 - log(log(n))/(2*log(n)) + O(1/log(n))).
See Bartel, Bhaduri, Brack, Murthy (2017) for a more complete asymptotic expansion. (End)
G.f.: 1 + Sum_{i>=1} x^prime(i) / Product_{j=1..i} (1 - x^prime(j)). - Ilya Gutkovskiy, May 07 2017
a(n) = A184198(n) + A184199(n). - Vaclav Kotesovec, Jan 11 2021

A040976 a(n) = prime(n) - 2.

Original entry on oeis.org

0, 1, 3, 5, 9, 11, 15, 17, 21, 27, 29, 35, 39, 41, 45, 51, 57, 59, 65, 69, 71, 77, 81, 87, 95, 99, 101, 105, 107, 111, 125, 129, 135, 137, 147, 149, 155, 161, 165, 171, 177, 179, 189, 191, 195, 197, 209, 221, 225, 227, 231, 237, 239, 249, 255, 261
Offset: 1

Views

Author

Keywords

Comments

Numbers k such that k! reduced mod (k+2) is 1. - Benoit Cloitre, Mar 11 2002
The first a(n) numbers starting from 2 are divisible by primes up to prime(n-1). - Lekraj Beedassy, Jun 21 2006
The terms in this sequence are the cumulative sums of distances from one prime to another. For example for the distance from the first to 26th prime, 2 to 101, the cumulative sum of distances is 99, always the last prime, here 101, minus 2. - Enoch Haga, Apr 24 2006
The primes in this sequence are the initial primes of twin prime pairs. - Sebastiao Antonio da Silva, Dec 21 2008
Note that many, but not all, of these numbers satisfy x such that x^(x+1) = 1 mod (x+2). The first exception is 339. - Thomas Ordowski, Nov 27 2013
If this sequence had an infinite number of primes, the twin prime conjecture would follow. Sequence holds all primes in A001359. - John W. Nicholson, Apr 14 2014
From Bernard Schott, Feb 19 2023: (Start)
Equivalently, except for a(1)=0, all terms are odd integers d such that the longest possible arithmetic progression (AP) of primes with common difference d has only two elements.
For each term d, there exists only one such AP of primes, and this one always starts with A342309(d) = 2, so this unique AP is (2, 2+d) = (2, prime(m)) with m > 1; so, first examples are (2,3), (2,5), (2,7), (2,11), ... next elements should be respectively: 4, 8, 12, 20, ... that are all composite numbers.
Similar sequence with even common differences d is A360735.
This subsequence of A359408 corresponds to the first case: '2 is prime'; second case corresponding to the even common differences d is A360735. (End)

Examples

			a(13) = 39, because A000040(13) = 41.
		

Crossrefs

Equals A359408 \ A360735.
First column of A086800, and of A379011, last diagonal of A090321, and of A162621.
See also irregular triangles A103728, A319148, A369497.

Programs

Formula

a(n) = A000040(n) - 2 = Sum_{i=1..n-1} A001223(i).
For n > 2: A092953(a(n)) = 1. - Reinhard Zumkeller, Nov 10 2012
If m is a term then A123556(m) = 2, but the converse is false: a counterexample is A123556(16) = 2 and 16 is not a term. - Bernard Schott, Feb 19 2023
a(n) = Sum_{k = 2..floor(2n*log(n)+2)} (1-floor(A000720(k)/n)). [Ruiz and Sondow]. - Elias Alejandro Angulo Klein, Apr 09 2024

A033286 a(n) = n * prime(n).

Original entry on oeis.org

2, 6, 15, 28, 55, 78, 119, 152, 207, 290, 341, 444, 533, 602, 705, 848, 1003, 1098, 1273, 1420, 1533, 1738, 1909, 2136, 2425, 2626, 2781, 2996, 3161, 3390, 3937, 4192, 4521, 4726, 5215, 5436, 5809, 6194, 6513, 6920, 7339, 7602, 8213, 8492, 8865, 9154, 9917
Offset: 1

Views

Author

Keywords

Comments

Does an n exist such that n*prime(n)/(n+prime(n)) is an integer? - Ctibor O. Zizka, Mar 04 2008. The answer to Zizka's question is easily seen to be No: such an integer k would be positive and less than prime(n), but then k*(n + prime(n)) = prime(n)*n would be impossible. - Robert Israel, Apr 20 2015
Sums of rows of the triangle in A005145. - Reinhard Zumkeller, Aug 05 2009
Complement of A171520(n). - Jaroslav Krizek, Dec 13 2009
Partial sums of A090942. - Omar E. Pol, Apr 20 2015

Crossrefs

Cf. A005145 (primes repeated), A171520 (complement), A076146 (iterated).

Programs

Formula

a(n) = n * A000040(n) = n * A008578(n+1) = n * A158611(n+2). - Jaroslav Krizek, Aug 31 2009
a(n) = A007504(n) + A152535(n). - Omar E. Pol, Aug 09 2012
Sum_{n>=1} 1/a(n) = A124012. - Amiram Eldar, Oct 15 2020

Extensions

Correction for change of offset in A158611 and A008578 in Aug 2009 from Jaroslav Krizek, Jan 27 2010

A065890 Number of composites less than the n-th prime.

Original entry on oeis.org

0, 0, 1, 2, 5, 6, 9, 10, 13, 18, 19, 24, 27, 28, 31, 36, 41, 42, 47, 50, 51, 56, 59, 64, 71, 74, 75, 78, 79, 82, 95, 98, 103, 104, 113, 114, 119, 124, 127, 132, 137, 138, 147, 148, 151, 152, 163, 174, 177, 178, 181, 186, 187, 196, 201, 206, 211, 212, 217, 220, 221
Offset: 1

Views

Author

Labos Elemer and Robert G. Wilson v, Nov 28 2001

Keywords

Comments

First differences form A046933, which requires that for this sequence the parity of successive terms alternates.

Examples

			a(25) = 71 since prime(25) = 97 is the 25th prime and 96 is the 71st composite number in A002808.
		

Crossrefs

Programs

  • Magma
    [NthPrime(n)-n-1: n in [1..65]]; // Vincenzo Librandi, Aug 15 2015
    
  • Mathematica
    CompositePi[n_Integer] := (n - PrimePi[n] - 1); Table[ CompositePi[ Prime[n]], {n, 1, 75} ]
  • PARI
    a(n) = { prime(n) - n - 1 } \\ Harry J. Smith, Nov 03 2009
    
  • Python
    from sympy import prime
    def A065890(n): return prime(n)-n-1 # Chai Wah Wu, Oct 11 2024

Formula

a(n) = A065855(A000040(n)).
a(n) = A000040(n)-n-1 = A014689(n)-1 = A014692(n)-2.

A065310 Number of occurrences of n-th prime in A065308, where A065308(j) = prime(j - pi(j)).

Original entry on oeis.org

3, 2, 2, 1, 1, 2, 2, 1, 1, 2, 2, 1, 1, 2, 1, 1, 1, 1, 2, 2, 1, 1, 1, 1, 2, 1, 1, 2, 2, 1, 1, 2, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 2, 1, 1, 1, 1, 2, 1, 1, 2, 2, 1, 1, 1, 1, 2, 1, 1, 2, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 2, 1, 1, 2, 2, 1, 1, 2, 2, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 2, 1, 1, 1, 1, 2, 2
Offset: 1

Views

Author

Labos Elemer, Oct 29 2001

Keywords

Comments

Seems identical to A054546. Each odd prime arises once or twice!?
First differences of A018252 (positive nonprime numbers). Including 0 gives A054546. Removing 1 gives A073783. - Gus Wiseman, Sep 15 2024

Crossrefs

For twin 2's see A169643.
Positions of 1's are A375926, complement A014689 (except first term).
Other families of numbers and their first-differences:
For prime numbers (A000040) we have A001223.
For composite numbers (A002808) we have A073783.
For nonprime numbers (A018252) we have A065310 (this).
For perfect powers (A001597) we have A053289.
For non-perfect-powers (A007916) we have A375706.
For squarefree numbers (A005117) we have A076259.
For nonsquarefree numbers (A013929) we have A078147.
For prime-powers inclusive (A000961) we have A057820.
For prime-powers exclusive (A246655) we have A057820(>1).
For non-prime-powers inclusive (A024619) we have A375735.
For non-prime-powers exclusive (A361102) we have A375708.

Programs

  • Mathematica
    t=Table[Prime[w-PrimePi[w]], {w, a, b}] Table[Count[t, Prime[n]], {n, c, d}]
    Differences[Select[Range[100],!PrimeQ[#]&]] (* Gus Wiseman, Sep 15 2024 *)
  • PARI
    { p=1; f=2; m=1; for (n=1, 1000, a=0; p=nextprime(p + 1); while (p==f, a++; m++; f=prime(m - primepi(m))); write("b065310.txt", n, " ", a) ) } \\ Harry J. Smith, Oct 16 2009

A071403 Which squarefree number is prime? a(n)-th squarefree number equals n-th prime.

Original entry on oeis.org

2, 3, 4, 6, 8, 9, 12, 13, 16, 18, 20, 24, 27, 29, 31, 33, 37, 38, 42, 45, 46, 50, 52, 56, 61, 62, 64, 67, 68, 71, 78, 81, 84, 86, 92, 93, 96, 100, 103, 105, 109, 110, 117, 118, 121, 122, 130, 139, 141, 142, 145, 149, 150, 154, 158, 162, 166, 167, 170, 172, 174, 180
Offset: 1

Views

Author

Labos Elemer, May 24 2002

Keywords

Comments

Also the number of squarefree numbers <= prime(n). - Gus Wiseman, Dec 08 2024

Examples

			a(25)=61 because A005117(61) = prime(25) = 97.
From _Gus Wiseman_, Dec 08 2024: (Start)
The squarefree numbers up to prime(n) begin:
n = 1  2  3  4   5   6   7   8   9  10
    ----------------------------------
    2  3  5  7  11  13  17  19  23  29
    1  2  3  6  10  11  15  17  22  26
       1  2  5   7  10  14  15  21  23
          1  3   6   7  13  14  19  22
             2   5   6  11  13  17  21
             1   3   5  10  11  15  19
                 2   3   7  10  14  17
                 1   2   6   7  13  15
                     1   5   6  11  14
                         3   5  10  13
                         2   3   7  11
                         1   2   6  10
                             1   5   7
                                 3   6
                                 2   5
                                 1   3
                                     2
                                     1
The column-lengths are a(n).
(End)
		

Crossrefs

The strict version is A112929.
A000040 lists the primes, differences A001223, seconds A036263.
A005117 lists the squarefree numbers, differences A076259.
A013929 lists the nonsquarefree numbers, differences A078147.
A070321 gives the greatest squarefree number up to n.
Other families: A014689, A027883, A378615, A065890.
Squarefree numbers between primes: A061398, A068360, A373197, A373198, A377430, A112925, A112926.
Nonsquarefree numbers: A057627, A378086, A061399, A068361, A120327, A377783, A378032, A378033.

Programs

  • Mathematica
    Position[Select[Range[300], SquareFreeQ], ?PrimeQ][[All, 1]] (* _Michael De Vlieger, Aug 17 2023 *)
  • PARI
    lista(nn)=sqfs = select(n->issquarefree(n), vector(nn, i, i)); for (i = 1, #sqfs, if (isprime(sqfs[i]), print1(i, ", "));); \\ Michel Marcus, Sep 11 2013
    
  • PARI
    a(n,p=prime(n))=sum(k=1, sqrtint(p), p\k^2*moebius(k)) \\ Charles R Greathouse IV, Sep 13 2013
    
  • PARI
    a(n,p=prime(n))=my(s); forfactored(k=1, sqrtint(p), s+=p\k[1]^2*moebius(k)); s \\ Charles R Greathouse IV, Nov 27 2017
    
  • PARI
    first(n)=my(v=vector(n),pr,k); forsquarefree(m=1,n*logint(n,2)+3, k++; if(m[2][,2]==[1]~, v[pr++]=k; if(pr==n, return(v)))) \\ Charles R Greathouse IV, Jan 08 2018
    
  • Python
    from math import isqrt
    from sympy import prime, mobius
    def A071403(n): return (p:=prime(n))+sum(mobius(k)*(p//k**2) for k in range(2,isqrt(p)+1)) # Chai Wah Wu, Jul 20 2024

Formula

A005117(a(n)) = A000040(n) = prime(n).
a(n) ~ (6/Pi^2) * n log n. - Charles R Greathouse IV, Nov 27 2017
a(n) = A013928(A008864(n)). - Ridouane Oudra, Oct 15 2019
From Gus Wiseman, Dec 08 2024: (Start)
a(n) = A112929(n) + 1.
a(n+1) - a(n) = A373198(n) = A061398(n) - 1.
(End)

A000006 Integer part of square root of n-th prime.

Original entry on oeis.org

1, 1, 2, 2, 3, 3, 4, 4, 4, 5, 5, 6, 6, 6, 6, 7, 7, 7, 8, 8, 8, 8, 9, 9, 9, 10, 10, 10, 10, 10, 11, 11, 11, 11, 12, 12, 12, 12, 12, 13, 13, 13, 13, 13, 14, 14, 14, 14, 15, 15, 15, 15, 15, 15, 16, 16, 16, 16, 16, 16, 16, 17, 17, 17, 17, 17, 18, 18, 18, 18, 18
Offset: 1

Views

Author

Keywords

Comments

Conjecture: No two successive terms in the sequence differ by more than 1. Proof of this would prove the converse of the theorem that every prime is surrounded by two consecutive squares, namely |sqrt(p)|^2 and (|sqrt(p)|+1)^2. - Cino Hilliard, Jan 22 2003
Equals the number of squares less than prime(n). Cf. A014689. - Zak Seidov Nov 04 2007
The above conjecture is Legendre's conjecture that for n > 0 there is always a prime between n^2 and (n+1)^2. See A014085, number of primes between two consecutive squares, which is also the number of times n is repeated in the present sequence. - Jean-Christophe Hervé, Oct 25 2013

References

  • M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 2.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A014085.
See also A263846 (floor of cube root of prime(n)), A000196 (floor of sqrt(n)), A048766 (floor of cube root of n).

Programs

  • Haskell
    a000006 = a000196 . a000040  -- Reinhard Zumkeller, Mar 24 2012
    
  • Mathematica
    a[n_] := IntegerPart[Sqrt[Prime[n]]]
    IntegerPart[Sqrt[#]]&/@Prime[Range[80]] (* Harvey P. Dale, Mar 06 2012 *)
  • PARI
    (a(n)=sqrtint(prime(n))); vector(100,n,a(n)) \\ Edited by M. F. Hasler, Oct 19 2018
    
  • PARI
    apply(sqrtint,primes(100)) \\ Charles R Greathouse IV, Apr 26 2012
    
  • PARI
    apply( A000006=n->sqrtint(prime(n)), [1..100]) \\ M. F. Hasler, Oct 19 2018
    
  • Python
    from sympy import sieve
    A000006 = lambda n: int(sieve[n]**.5)
    print([A000006(n) for n in range(1,100+1)])
    # Albert Lahat, Jun 25 2020

Formula

a(n) = A000196(A000040(n)). - Reinhard Zumkeller, Mar 24 2012
Showing 1-10 of 76 results. Next