cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A001044 a(n) = (n!)^2.

Original entry on oeis.org

1, 1, 4, 36, 576, 14400, 518400, 25401600, 1625702400, 131681894400, 13168189440000, 1593350922240000, 229442532802560000, 38775788043632640000, 7600054456551997440000, 1710012252724199424000000, 437763136697395052544000000, 126513546505547170185216000000
Offset: 0

Views

Author

Keywords

Comments

Let M_n be the symmetrical n X n matrix M_n(i,j) = 1/Max(i,j); then for n > 0 det(M_n)=1/a(n). - Benoit Cloitre, Apr 27 2002
The n-th entry of the sequence is the value of the permanent of a k X k matrix A defined as follows: k is the n-th odd number; if we concatenate the rows of A to form a vector v of length n^2, v_{i}=1 if i=1 or a multiple of 2. - Simone Severini, Feb 15 2006
a(n) = number of set partitions of {1,2,...,3n-1,3n} into blocks of size 3 in which the entries of each block mod 3 are distinct. For example, a(2) = 4 counts 123-456, 156-234, 126-345, 135-246. - David Callan, Mar 30 2007
From Emeric Deutsch, Nov 22 2007: (Start)
Number of permutations of {1,2,...,2n} with no even entry followed by a smaller entry. Example: a(2)=4 because we have 1234, 1324, 3124 and 2314.
Number of permutations of {1,2,...,2n} with n even entries that are followed by a smaller entry. Example: a(2)=4 because we have 2143, 3421, 4213 and 4321.
Number of permutations of {1,2,...,2n-1} with no even entry followed by a smaller entry. Example: a(2)=4 because we have 123, 132, 312 and 231.
Number of permutations of {1,2,...,2n-1} with n-1 odd entries followed by a smaller entry. Example: a(2)=4 because we have 132, 312, 231 and 321.
(End)
G. Leibniz in his "Ars Combinatoria" established the identity P(n)^2 = P(n-1)[P(n+1)-P(n)], where P(n) = n!. (For example, see the Burton reference.) - Mohammad K. Azarian, Mar 28 2008
a(n) is also the determinant of the symmetric n X n matrix M defined by M(i,j) = sigma_2(gcd(i,j)) for 1 <= i,j <= n, and n>0, where sigma_2 is A001157. - Enrique Pérez Herrero, Aug 13 2011
The o.g.f. of 1/a(n) is BesselI(0,2*sqrt(x)). See Abramowitz-Stegun (reference and link under A008277), p. 375, 9.6.10. - Wolfdieter Lang, Jan 09 2012
Number of n x n x n cubes C of zeros and ones such that C(x,y,z) and C(u,v,w) can be nonzero simultaneously only if either x!=u, y!=v, or z!=w. This generalizes permutations which can be considered as n x n squares P of zeros and ones such that P(x,y) and P(u,v) can be nonzero simultaneously only if either x!=u or y!=v. - Joerg Arndt, May 28 2012
a(n) is the number of functions f:[n]->[n(n+1)/2] such that, if round(sqrt(2f(x))) = round(sqrt(2f(y))), then x=y. - Dennis P. Walsh, Nov 26 2012
From Jerrold Grossman, Jul 22 2018: (Start)
a(n) is the number of n X n 0-1 matrices whose row sums and column sums are both {1,2,...,n}.
a(n) is the number of linear arrangements of 2n blocks of n different colors, 2 of each color, such that there are an even number of blocks between each pair of blocks of the same color.
(End)
Number of ways to place n instances of a digit inside an n X n X n cube so that no two instances lie on a plane parallel to a face of the cube (see Khovanova link, Lemma 6, p. 22). - Tanya Khovanova and Wayne Zhao, Oct 17 2018
Number of permutations P of length 2n which maximize Sum_{i=1..2n} |P_i - i|. - Fang Lixing, Dec 07 2018

Examples

			Consider the square array
  1,  2,  3,  4,  5,  6, ...
  2,  4,  6,  8, 10, 12, ...
  3,  6,  9, 12, 15, 18, ...
  4,  8, 12, 16, 20, 24, ...
  5, 10, 15, 20, 25, 30, ...
  ...
then a(n) = product of n-th antidiagonal. - _Amarnath Murthy_, Apr 06 2003
a(3) = 36 since there are 36 functions f:[3]->[6] such that, if round(sqrt(2f(x))) = round(sqrt(2f(y))), then x=y. The functions, denoted by <f(1),f(2),f(3)>, are <1,2,4>, <1,2,5>, <1,2,6>, <1,3,4>, <1,3,5>, <1,3,6> and their respective permutations. - _Dennis P. Walsh_, Nov 26 2012
1 + x + 4*x^2 + 36*x^3 + 576*x^4 + 14400*x^5 + 518400*x^6 + ...
		

References

  • Archimedeans Problems Drive, Eureka, 22 (1959), 15.
  • David Burton, "The History of Mathematics", Sixth Edition, Problem 2, p. 433.
  • J. Dezert, editor, Smarandacheials, Mathematics Magazine, Aurora, Canada, No. 4/2004 (to appear).
  • S. M. Kerawala, The enumeration of the Latin rectangle of depth three by means of a difference equation, Bull. Calcutta Math. Soc., 33 (1941), 119-127.
  • J. Riordan, Combinatorial Identities, Wiley, 1968, p. 217.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • F. Smarandache, Back and Forth Factorials, Arizona State Univ., Special Collections, 1972.
  • R. P. Stanley, Enumerative Combinatorics, Cambridge, Vol. 2, 1999; see Problem 5.62(b).

Crossrefs

First right-hand column of triangle A008955.
Row n=2 of A225816.
Cf. A000290.
With signs, a row of A288580.

Programs

  • GAP
    List([0..20],n->Factorial(n)^2); # Muniru A Asiru, Oct 24 2018
    
  • Haskell
    import Data.List (genericIndex)
    a001044 n = genericIndex a001044_list n
    a001044_list = 1 : zipWith (*) (tail a000290_list) a001044_list
    -- Reinhard Zumkeller, Sep 05 2015
    
  • Magma
    [Factorial(n)^2: n in [0..20]]; // Vincenzo Librandi, Oct 24 2018
    
  • Maple
    seq((n!)^2,n=0..20); # Dennis P. Walsh, Nov 26 2012
  • Mathematica
    Table[n!^2, {n, 0, 20}] (* Stefan Steinerberger, Apr 07 2006 *)
    Join[{1},Table[Det[DiagonalMatrix[Range[n]^2]],{n,20}]] (* Harvey P. Dale, Mar 31 2020 *)
  • PARI
    a(n)=n!^2 \\ Charles R Greathouse IV, Jun 15 2011
    
  • Python
    import math
    for n in range(0,20): print(math.factorial(n)**2, end=', ') # Stefano Spezia, Oct 29 2018

Formula

a(n) = Integral_{x>=0} 2*BesselK(0, 2*sqrt(x))*x^n. This integral represents the n-th moment of a positive function defined on the positive half-axis. - Karol A. Penson, Oct 09 2001
a(n) ~ 2*Pi*n*e^(-2*n)*n^(2*n). - Joe Keane (jgk(AT)jgk.org), Jun 07 2002
a(n) = polygorial(n, 4) = A000142(n)/A000079(n)*A000165(n) = (n!/2^n)*Product_{i=0..n-1} (2*i + 2) = n!*Pochhammer(1, n) = n!^2. - Daniel Dockery (peritus(AT)gmail.com), Jun 13 2003
a(n) = Sum_{k>=0} (-1)^k*C(n, k)^2*k!*(2*n-k)!. - Philippe Deléham, Jan 07 2004
a(n) = !n!1 = !n! = Product{i=0, 1, 2, ... .}_{0 < |n-i| <= n}(n-i) = n(n-1)(n-2)...(2)(1)(-1)(-2)...(-n+2)(-n+1)(-n) = [(-1)^n][(n!)^2]. - J. Dezert (Jean.Dezert(AT)onera.fr), Mar 21 2004
D-finite with recurrence: a(0) = 1, a(n) = n^2*a(n-1). - Arkadiusz Wesolowski, Oct 04 2011
From Sergei N. Gladkovskii, Jun 14 2012: (Start)
A(x) = Sum_{n>=0,N) a(n)*x^n = 1 + x/(U(0;N-2)-x); N >= 4; U(k)= 1 + x*(k+1)^2 - x*(k+2)^2/G(k+1); besides U(0;infinity)=x; (continued fraction).
Let B(x) = Sum_{n>=0} a(n)*x^n/((n!)*(n+s)!), then B(0) = 1/(1-x) for abs(x) < 1 and B(1)= -1/x * log(1-x) for abs(x)< 1.
(End).
G.f.: 1 + x*(G(0) - 1)/(x-1) where G(k) = 1 - (k+1)^2*(1 - x*G(k+1)). - Sergei N. Gladkovskii, Jan 15 2013
a(n) = det(S(i+2,j), 1 <= i,j <= n), where S(n,k) are Stirling numbers of the second kind. - Mircea Merca, Apr 04 2013
a(n) = (2*n+1)!*2^(-4*n)*Sum_{k=0..n} (-1)^k*C(2*n+1,n-k)/(2*k+1). - Mircea Merca, Nov 12 2013
a(n) = A000290(A000142(n)). - Michel Marcus, Nov 12 2013
Sum_{n>=0} 1/a(n) = A070910 [Gradsteyn, Rzyhik 0.246.1]. - R. J. Mathar, Feb 25 2014. Corrected by Ilya Gutkovskiy, Aug 16 2016
From Ivan N. Ianakiev, Aug 16 2016: (Start)
a(n) = a(n-1) + 2*((n-1)^2)*sqrt(a(n-1)*a(n-2)) + ((n-1)^4)*a(n-2), for n > 1.
a(n) = a(n-1) - 2*(n^2 - 1)*sqrt(a(n-1)*a(n-2)) + (n^2 - 1)*a(n-2), for n > 1.
(End).
From Ilya Gutkovskiy, Aug 16 2016: (Start)
a(n) = A184877(n)*A184877(n-1).
Sum_{n>=0} (-1)^n/a(n) = BesselJ(0,2) = A091681. (End)
Sum_{n>=0} a(n)/(2*n+1)! = 2*Pi/sqrt(27). - Daniel Suteu, Feb 06 2017
a(n) = [x^n] Product_{k=1..n} (1 + k^2*x). - Vaclav Kotesovec, Feb 19 2022
a(n) = (2*n+1)! * [x^(2*n+1)] 4*arcsin(x/2)/sqrt(4-x^2). - Ira M. Gessel, Dec 10 2024

Extensions

More terms from James Sellers, Sep 19 2000
More terms from Simone Severini, Feb 15 2006

A288035 Number of (undirected) paths in the complete bipartite graph K_n,n.

Original entry on oeis.org

1, 12, 135, 2224, 55725, 2006316, 98309827, 6291829440, 509638185369, 50963818537900, 6166622043087231, 887993574204562992, 150070914040571147845, 29413899151951944980364, 6618127309189187620585275, 1694240591152432030869834496, 489635530843052856921382174257
Offset: 1

Views

Author

Eric W. Weisstein, Jun 04 2017

Keywords

Crossrefs

Main diagonal of A307027 and A360850.

Programs

  • Mathematica
    Table[Sum[(n!)^2/((n - Ceiling[k/2])! (n - Floor[k/2])!), {k, 2, 2 n}], {n, 20}] (* Eric W. Weisstein, Jun 13 2017 *)
    Table[n!^2 (BesselI[0, 2] + BesselI[1, 2] - HypergeometricPFQRegularized[{1}, {1 + n, 1 + n}, 1]) - n HypergeometricPFQ[{1}, {n, 1 + n}, 1], {n, 20}] // FunctionExpand (* Eric W. Weisstein, Jun 13 2017 *)
  • PARI
    a(n) = sum(k=2, 2*n, n!^2/((n-(k+1)\2)!*(n-k\2)!)); \\ Andrew Howroyd, Jun 10 2017
    
  • PARI
    a(n) = n!^2*sum(k=0, n-1, (1 + k)/(k!)^2) \\ Andrew Howroyd, Feb 24 2023

Formula

a(n) = Sum_{k=2..2*n} n!^2/((n-ceiling(k/2))!*(n-floor(k/2))!). - Andrew Howroyd, Jun 10 2017
a(n) = n!^2 * Sum_{k=0..n-1} (1 + k)/(k!^2). - Andrew Howroyd, Feb 24 2023

Extensions

Terms a(8) and beyond from Andrew Howroyd, Jun 10 2017

A261816 Number of basic semimagic squares of order n that can be formed from the numbers 1, ..., n^2.

Original entry on oeis.org

1, 0, 1, 477, 160845292
Offset: 1

Views

Author

Arkadiusz Wesolowski, Nov 18 2015

Keywords

Comments

In a basic semimagic square the entry in row 1, column 1, is smaller than the other entries.
Moreover, in a basic semimagic square of order n with n >= 3:
a) the entry in row 1, column 2, is smaller than the entry in row 2, column 1
b) every entry in row 1, column 1 < c < n, is smaller than the entry in row 1, column c + 1
c) every entry in row 1 < r < n, column 1, is smaller than the entry in row r + 1, column 1
For n > 1, the total number of semimagic squares of order n that can be formed from the numbers 1, ..., n^2 is a(n)*A048617(n) = A261815(n).

Examples

			An illustration of the unique basic semimagic square of order 3:
|---|---|---|
| 1 | 5 | 9 |
|---|---|---|
| 6 | 7 | 2 |
|---|---|---|
| 8 | 3 | 4 |
|---|---|---|
		

Crossrefs

Formula

a(n) = A261815(n)/A048617(n) for n > 1.

A063965 Size of the automorphism group of the group S_n x S_n (where S_n is the symmetric group).

Original entry on oeis.org

1, 6, 72, 1152, 28800, 4147200, 50803200, 3251404800, 263363788800, 26336378880000, 3186701844480000, 458885065605120000, 77551576087265280000, 15200108913103994880000
Offset: 1

Views

Author

Ahmed Fares (ahmedfares(AT)my-deja.com), Sep 04 2001

Keywords

Crossrefs

Programs

  • Maple
    a := proc(n) option remember: if n=1 then RETURN(1) fi: if n=2 then RETURN(6) fi: if n=6 then RETURN(4147200) fi: 2*(n!)^2: end: for n from 1 to 30 do printf(`%d,`,a(n)) od:
  • PARI
    { for (n=1, 100, if (n==1, a=1, if (n==2, a=6, if (n==6, a=4147200, a=2*(n!)^2))); write("b063965.txt", n, " ", a) ) } \\ Harry J. Smith, Sep 04 2009

Formula

Except for n = 1, 2, and 6, a(n) = A048617(n) = 2*(n!)^2.

Extensions

More terms from James Sellers, Sep 26 2001

A261815 Total number of semimagic squares of order n that can be formed from the numbers 1, ..., n^2.

Original entry on oeis.org

1, 0, 72, 549504, 4632344409600
Offset: 1

Views

Author

Arkadiusz Wesolowski, Nov 18 2015

Keywords

Crossrefs

Formula

a(n) = A261816(n)*A048617(n) for n > 1.

A382232 Irregular triangle read by rows: T(n,k) = [x^k] (1+x) * A_n(x)^2, where A_n(x) is the n-th Eulerian polynomial.

Original entry on oeis.org

1, 1, 1, 1, 1, 3, 3, 1, 1, 9, 26, 26, 9, 1, 1, 23, 165, 387, 387, 165, 23, 1, 1, 53, 860, 4292, 9194, 9194, 4292, 860, 53, 1, 1, 115, 3967, 38885, 160778, 314654, 314654, 160778, 38885, 3967, 115, 1, 1, 241, 17022, 307454, 2291375, 8041695, 14743812, 14743812, 8041695, 2291375, 307454, 17022, 241, 1
Offset: 0

Views

Author

Seiichi Manyama, Mar 19 2025

Keywords

Examples

			Irregular triangle begins:
  1,  1;
  1,  1;
  1,  3,   3,    1;
  1,  9,  26,   26,    9,    1;
  1, 23, 165,  387,  387,  165,   23,   1;
  1, 53, 860, 4292, 9194, 9194, 4292, 860, 53, 1;
  ...
		

Crossrefs

Row sums give A048617.

Programs

  • PARI
    a(n) = sum(k=0, n, k!*stirling(n, k, 2)*(x-1)^(n-k));
    T(n, k) = polcoef((1+x)*a(n)^2, k);
    for(n=0, 7, for(k=0, 2*(n+0^n)-1, print1(T(n, k), ", ")));

Formula

T(n,k) = T(n,2*n-1-k) for n > 0.
Showing 1-6 of 6 results.