cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 23 results. Next

A008290 Triangle T(n,k) of rencontres numbers (number of permutations of n elements with k fixed points).

Original entry on oeis.org

1, 0, 1, 1, 0, 1, 2, 3, 0, 1, 9, 8, 6, 0, 1, 44, 45, 20, 10, 0, 1, 265, 264, 135, 40, 15, 0, 1, 1854, 1855, 924, 315, 70, 21, 0, 1, 14833, 14832, 7420, 2464, 630, 112, 28, 0, 1, 133496, 133497, 66744, 22260, 5544, 1134, 168, 36, 0, 1, 1334961, 1334960, 667485, 222480, 55650, 11088, 1890, 240, 45, 0, 1
Offset: 0

Views

Author

Keywords

Comments

This is a binomial convolution triangle (Sheffer triangle) of the Appell type: (exp(-x)/(1-x),x), i.e., the e.g.f. of column k is (exp(-x)/(1-x))*(x^k/k!). See the e.g.f. given by V. Jovovic below. - Wolfdieter Lang, Jan 21 2008
The formula T(n,k) = binomial(n,k)*A000166(n-k), with the derangements numbers (subfactorials) A000166 (see also the Charalambides reference) shows the Appell type of this triangle. - Wolfdieter Lang, Jan 21 2008
T(n,k) is the number of permutations of {1,2,...,n} having k pairs of consecutive right-to-left minima (0 is considered a right-to-left minimum for each permutation). Example: T(4,2)=6 because we have 1243, 1423, 4123, 1324, 3124 and 2134; for example, 1324 has right-to-left minima in positions 0-1,3-4 and 2134 has right-to-left minima in positions 0,2-3-4, the consecutive ones being joined by "-". - Emeric Deutsch, Mar 29 2008
T is an example of the group of matrices outlined in the table in A132382--the associated matrix for the sequence aC(0,1). - Tom Copeland, Sep 10 2008
A refinement of this triangle is given by A036039. - Tom Copeland, Nov 06 2012
This triangle equals (A211229(2*n,2*k)) n,k >= 0. - Peter Bala, Dec 17 2014

Examples

			exp((y-1)*x)/(1-x) = 1 + y*x + (1/2!)*(1+y^2)*x^2 + (1/3!)*(2 + 3*y + y^3)*x^3 + (1/4!)*(9 + 8*y + 6*y^2 + y^4)*x^4 + (1/5!)*(44 + 45*y + 20*y^2 + 10*y^3 + y^5)*x^5 + ...
Triangle begins:
       1
       0      1
       1      0     1
       2      3     0     1
       9      8     6     0    1
      44     45    20    10    0    1
     265    264   135    40   15    0   1
    1854   1855   924   315   70   21   0  1
   14833  14832  7420  2464  630  112  28  0 1
  133496 133497 66744 22260 5544 1134 168 36 0 1
...
From _Peter Bala_, Feb 13 2017: (Start)
The infinitesimal generator has integer entries given by binomial(n,k)*(n-k-1)! for n >= 2 and 0 <= k <= n-2 and begins
   0
   0  0
   1  0  0
   2  3  0  0
   6  8  6  0 0
  24 30 20 10 0 0
...
It is essentially A238363 (unsigned and omitting the main diagonal), A211603 (with different offset) and appears to be A092271, again without the main diagonal. (End)
		

References

  • Ch. A. Charalambides, Enumerative Combinatorics, Chapman & Hall/CRC, Boca Raton, Florida, 2002, p. 173, Table 5.2 (without row n=0 and column k=0).
  • R. L. Graham, D. E. Knuth and O. Patashnik, Concrete Mathematics. Addison-Wesley, Reading, MA, 1990, p. 194.
  • Arnold Kaufmann, Introduction à la combinatorique en vue des applications, Dunod, Paris, 1968. See p. 92.
  • J. Riordan, An Introduction to Combinatorial Analysis, Wiley, 1958, p. 65.

Crossrefs

Mirror of triangle A098825.
Cf. A080955.
Cf. A000012, A000142 (row sums), A000354.
Cf. A170942. Sub-triangle of A211229.
T(2n,n) gives A281262.

Programs

  • Haskell
    a008290 n k = a008290_tabl !! n !! k
    a008290_row n = a008290_tabl !! n
    a008290_tabl = map reverse a098825_tabl
    -- Reinhard Zumkeller, Dec 16 2013
  • Maple
    T:= proc(n,k) T(n, k):= `if`(k=0, `if`(n<2, 1-n, (n-1)*
          (T(n-1, 0)+T(n-2, 0))), binomial(n, k)*T(n-k, 0))
        end:
    seq(seq(T(n, k), k=0..n), n=0..12);  # Alois P. Heinz, Mar 15 2013
  • Mathematica
    a[0] = 1; a[1] = 0; a[n_] := Round[n!/E] /; n >= 1 size = 8; Table[Binomial[n, k]a[n - k], {n, 0, size}, {k, 0, n}] // TableForm (* Harlan J. Brothers, Mar 19 2007 *)
    T[n_, k_] := Subfactorial[n-k]*Binomial[n, k]; Table[T[n, k], {n, 0, 10}, {k, 0, n}] // Flatten (* Jean-François Alcover, Jul 12 2017 *)
    T[n_, k_] := If[n<1, Boole[n==0 && k==0], T[n, k] = T[n-1, k-1] + T[n-1, k]*(n-1-k) + T[n-1, k+1]*(k+1)]; (* Michael Somos, Sep 13 2024 *)
    T[0, 0]:=1; T[n_, 0]:=T[n, 0]=n  T[n-1, 0]+(-1)^n; T[n_, k_]:=T[n, k]=n/k T[n-1, k-1];
    Flatten@Table[T[n, k], {n, 0, 9}, {k, 0, n}] (* Oliver Seipel, Nov 26 2024 *)
  • PARI
    {T(n, k) = if(k<0 || k>n, 0, n!/k! * sum(i=0, n-k, (-1)^i/i!))}; /* Michael Somos, Apr 26 2000 */
    

Formula

T(n, k) = T(n-1, k)*n + binomial(n, k)*(-1)^(n-k) = T(n, k-1)/k + binomial(n, k)*(-1)^(n-k)/(n-k+1) = T(n-1, k-1)*n/k = T(n-k, 0)*binomial(n, k) = A000166(n-k)*binomial(n,k) [with T(0, 0) = 1]; so T(n, n) = 1, T(n, n-1) = 0, T(n, n-2) = n*(n-1)/2 for n >= 0.
Sum_{k=0..n} T(n, k) = Sum_{k=0..n} k * T(n, k) = n! for all n > 0, n, k integers. - Wouter Meeussen, May 29 2001
From Vladeta Jovovic, Aug 12 2002: (Start)
O.g.f. for k-th column: (1/k!)*Sum_{i>=k} i!*x^i/(1+x)^(i+1).
O.g.f. for k-th row: k!*Sum_{i=0..k} (-1)^i/i!*(1-x)^i. (End)
E.g.f.: exp((y-1)*x)/(1-x). - Vladeta Jovovic, Aug 18 2002
E.g.f. for number of permutations with exactly k fixed points is x^k/(k!*exp(x)*(1-x)). - Vladeta Jovovic, Aug 25 2002
Sum_{k=0..n} T(n, k)*x^k is the permanent of the n X n matrix with x's on the diagonal and 1's elsewhere; for x = 0, 1, 2, 3, 4, 5, 6 see A000166, A000142, A000522, A010842, A053486, A053487, A080954. - Philippe Deléham, Dec 12 2003; for x = 1+i see A009551 and A009102. - John M. Campbell, Oct 11 2011
T(n, k) = Sum_{j=0..n} A008290(n, j)*k^(n-j) is the permanent of the n X n matrix with 1's on the diagonal and k's elsewhere; for k = 0, 1, 2 see A000012, A000142, A000354. - Philippe Deléham, Dec 13 2003
T(n,k) = Sum_{j=0..n} (-1)^(j-k)*binomial(j,k)*n!/j!. - Paul Barry, May 25 2006
T(n,k) = (n!/k!)*Sum_{j=0..n-k} ((-1)^j)/j!, 0 <= k <= n. From the Appell type of the triangle and the subfactorial formula.
T(n,0) = n*Sum_{j=0..n-1} (j/(j+1))*T(n-1,j), T(0,0)=1. From the z-sequence of this Sheffer triangle z(j)=j/(j+1) with e.g.f. (1-exp(x)*(1-x))/x. See the W. Lang link under A006232 for Sheffer a- and z-sequences. - Wolfdieter Lang, Jan 21 2008
T(n,k) = (n/k)*T(n-1,k-1) for k >= 1. See above. From the a-sequence of this Sheffer triangle a(0)=1, a(n)=0, n >= 1 with e.g.f. 1. See the W. Lang link under A006232 for Sheffer a- and z-sequences. - Wolfdieter Lang, Jan 21 2008
From Henk P. J. van Wijk, Oct 29 2012: (Start)
T(n,k) = T(n-1,k)*(n-1-k) + T(n-1,k+1)*(k+1) for k=0 and
T(n,k) = T(n-1,k-1) + T(n-1,k)*(n-1-k) + T(n-1,k+1)*(k+1) for k>=1.
(End)
T(n,k) = A098825(n,n-k). - Reinhard Zumkeller, Dec 16 2013
Sum_{k=0..n} k^2 * T(n, k) = 2*n! if n > 1. - Michael Somos, Jun 06 2017
From Tom Copeland, Jul 26 2017: (Start)
The lowering and raising operators of this Appell sequence of polynomials P(n,x) are L = d/dx and R = x + d/dL log[exp(-L)/(1-L)] = x-1 + 1/(1-L) = x + L + L^2 - ... such that L P(n,x) = n P(n-1,x) and R P(n,x) = P(n+1,x).
P(n,x) = (1-L)^(-1) exp(-L) x^n = (1+L+L^2+...)(x-1)^n = n! Sum_{k=0..n} (x-1)^k / k!.
The formalism of A133314 applies to the pair of entries A008290 and A055137.
The polynomials of this pair P_n(x) and Q_n(x) are umbral compositional inverses; i.e., P_n(Q.(x)) = x^n = Q_n(P.(x)), where, e.g., (Q.(x))^n = Q_n(x).
For more on the infinitesimal generator, noted by Bala below, see A238385. (End)
Sum_{k=0..n} k^m * T(n,k) = A000110(m)*n! if n >= m. - Zhujun Zhang, May 24 2019
Sum_{k=0..n} (k+1) * T(n,k) = A098558(n). - Alois P. Heinz, Mar 11 2022
From Alois P. Heinz, May 20 2023: (Start)
Sum_{k=0..n} (-1)^k * T(n,k) = A000023(n).
Sum_{k=0..n} (-1)^k * k * T(n,k) = A335111(n). (End)
T(n,k) = A145224(n,k)+A145225(n,k), refined by even and odd perms. - R. J. Mathar, Jul 06 2023

Extensions

Comments and more terms from Michael Somos, Apr 26 2000 and Christian G. Bower, Apr 26 2000

A000023 Expansion of e.g.f. exp(-2*x)/(1-x).

Original entry on oeis.org

1, -1, 2, -2, 8, 8, 112, 656, 5504, 49024, 491264, 5401856, 64826368, 842734592, 11798300672, 176974477312, 2831591702528, 48137058811904, 866467058876416, 16462874118127616, 329257482363600896, 6914407129633521664, 152116956851941670912
Offset: 0

Views

Author

Keywords

Comments

A010843, A000023, A000166, A000142, A000522, A010842, A053486, A053487 are successive binomial transforms with the e.g.f. exp(k*x)/(1-x) and recurrence b(n) = n*b(n-1)+k^n and are related to incomplete gamma functions at k. In this case k=-2, a(n) = n*a(n-1)+(-2)^n = Gamma(n+1,k)*exp(k) = Sum_{i=0..n} (-1)^(n-i)*binomial(n,i)*i^(n-i)*(i+k)^i. - Vladeta Jovovic, Aug 19 2002
a(n) is the permanent of the n X n matrix with -1's on the diagonal and 1's elsewhere. - Philippe Deléham, Dec 15 2003

Examples

			G.f. = 1 - x + 2*x^2 - 2*x^3 + 8*x^4 + 8*x^5 + 112*x^6 + 656*x^7 + ... - _Michael Somos_, Nov 20 2018
		

References

  • J. Riordan, An Introduction to Combinatorial Analysis, Wiley, 1958, p. 210.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Haskell
    a000023 n = foldl g 1 [1..n]
      where g n m = n*m + (-2)^m
    -- James Spahlinger, Oct 08 2012
    
  • Maple
    a := n -> n!*add(((-2)^k/k!), k=0..n): seq(a(n), n=0..27); # Zerinvary Lajos, Jun 22 2007
    seq(simplify(KummerU(-n, -n, -2)), n = 0..22); # Peter Luschny, May 10 2022
  • Mathematica
    FoldList[#1*#2 + (-2)^#2 &, 1, Range[22]] (* Robert G. Wilson v, Jul 07 2012 *)
    With[{r = Round[n!/E^2 - (-2)^(n + 1)/(n + 1)]}, r - (-1)^n Mod[(-1)^n r, 2^(n + Ceiling[-(2/n) - Log[2, n]])]] (* Stan Wagon May 02 2016 *)
    a[n_] := (-1)^n x D[1/x Exp[x], {x, n}] x^n Exp[-x]
    Table[a[n] /. x -> 2, {n, 0, 22}](* Gerry Martens , May 05 2016 *)
  • PARI
    a(n)=if(n<0,0,n!*polcoeff(exp(-2*x+x*O(x^n))/(1-x),n))
    
  • PARI
    my(x='x+O('x^66)); Vec( serlaplace( exp(-2*x)/(1-x)) ) \\ Joerg Arndt, Oct 06 2013
    
  • Python
    from sympy import exp, uppergamma
    def A000023(n):
        return exp(-2) * uppergamma(n + 1, -2)  # David Radcliffe, Aug 20 2025
  • Sage
    @CachedFunction
    def A000023(n):
        if n == 0: return 1
        return n * A000023(n-1) + (-2)**n
    [A000023(i) for i in range(23)]   # Peter Luschny, Oct 17 2012
    

Formula

a(n) = Sum_{k=0..n} A008290(n,k)*(-1)^k. - Philippe Deléham, Dec 15 2003
a(n) = Sum_{k=0..n} (-2)^(n-k)*n!/(n-k)! = Sum_{k=0..n} binomial(n, k)*k!*(-2)^(n-k). - Paul Barry, Aug 26 2004
a(n) = exp(-2)*Gamma(n+1,-2) (incomplete Gamma function). - Mark van Hoeij, Nov 11 2009
a(n) = b such that (-1)^n*Integral_{x=0..2} x^n*exp(x) dx = c + b*exp(2). - Francesco Daddi, Aug 01 2011
G.f.: hypergeom([1,k],[],x/(1+2*x))/(1+2*x) with k=1,2,3 is the generating function for A000023, A087981, and A052124. - Mark van Hoeij, Nov 08 2011
D-finite with recurrence: - a(n) + (n-2)*a(n-1) + 2*(n-1)*a(n-2) = 0. - R. J. Mathar, Nov 14 2011
E.g.f.: 1/E(0) where E(k) = 1 - x/(1-2/(2-(k+1)/E(k+1))); (continued fraction). - Sergei N. Gladkovskii, Nov 21 2011
G.f.: 1/Q(0), where Q(k) = 1 + 2*x - x*(k+1)/(1 - x*(k+1)/Q(k+1)); (continued fraction). - Sergei N. Gladkovskii, Apr 19 2013
G.f.: 1/Q(0), where Q(k) = 1 - x*(2*k-1) - x^2*(k+1)^2/Q(k+1); (continued fraction). - Sergei N. Gladkovskii, Sep 30 2013
a(n) = Sum_{k=0..n} (-1)^(n+k)*binomial(n, k)*!k, where !k is the subfactorial A000166. a(n) = (-2)^n*hypergeom([1, -n], [], 1/2). - Vladimir Reshetnikov, Oct 18 2015
For n >= 3, a(n) = r - (-1)^n mod((-1)^n r, 2^(n - floor((2/n) + log_2(n)))) where r = {n! * e^(-2) - (-2)^(n+1)/(n+1)}. - Stan Wagon, May 02 2016
0 = +a(n)*(+4*a(n+1) -2*a(n+3)) + a(n+1)*(+4*a(n+1) +3*a(n+2) -a(n+3)) +a(n+2)*(+a(n+2)) if n>=0. - Michael Somos, Nov 20 2018
a(n) = KummerU(-n, -n, -2). - Peter Luschny, May 10 2022

A010842 Expansion of e.g.f.: exp(2*x)/(1-x).

Original entry on oeis.org

1, 3, 10, 38, 168, 872, 5296, 37200, 297856, 2681216, 26813184, 294947072, 3539368960, 46011804672, 644165281792, 9662479259648, 154599668219904, 2628194359869440, 47307498477912064, 898842471080853504, 17976849421618118656, 377513837853982588928
Offset: 0

Views

Author

Keywords

Comments

Incomplete Gamma Function at 2, more precisely: a(n) = exp(2)*Gamma(1+n,2).
Let P(A) be the power set of an n-element set A. Then a(n) = the total number of ways to add 0 or more elements of A to each element x of P(A) where the elements to add are not elements of x and order of addition is important. - Ross La Haye, Nov 19 2007
a(n) is the number of ways to split the set {1,2,...,n} into two disjoint subsets S,T with S union T = {1,2,...,n} and linearly order S and then choose a subset of T. - Geoffrey Critzer, Mar 10 2009

References

  • M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, Tenth Printing, 1972, p. 262.
  • R. P. Stanley, Enumerative Combinatorics, Cambridge, Vol. 2, 1999; see Example 5.1.2.

Crossrefs

Programs

  • Magma
    m:=45; R:=PowerSeriesRing(Rationals(), m); b:=Coefficients(R!(Exp(2*x)/(1-x))); [Factorial(n-1)*b[n]: n in [1..m]]; // G. C. Greubel, Oct 16 2018
  • Maple
    G(x):=exp(2*x)/(1-x): f[0]:=G(x): for n from 1 to 19 do f[n]:=diff(f[n-1],x) od: x:=0: seq(f[n],n=0..19); # Zerinvary Lajos, Apr 03 2009
    seq(simplify(exp(1)^2*GAMMA(n+1, 2)), n=0..19); # Peter Luschny, Apr 28 2016
    seq(simplify(KummerU(-n, -n, 2)), n=0..21); # Peter Luschny, May 10 2022
  • Mathematica
    With[{r = Round[n! E^2 - 2^(n + 1)/(n + 1)]}, r - Mod[r, 2^(n - Floor[2/n + Log2[n]])]] (* for n>=4; Stan Wagon, Apr 28 2016 *)
    a[n_] := n! Sum[2^i/i!, {i, 0, n}]
    Table[a[n], {n, 0, 21}] (* Gerry Martens , May 06 2016 *)
    With[{nn=30},CoefficientList[Series[Exp[2x]/(1-x),{x,0,nn}],x] Range[ 0,nn]!] (* Harvey P. Dale, May 27 2019 *)
  • PARI
    x='x+O('x^44); Vec(serlaplace(exp(2*x)/(1-x))) \\ Joerg Arndt, Apr 29 2016
    

Formula

a(n) = row sums of A090802. - Ross La Haye, Aug 18 2006
a(n) = n*a(n-1) + 2^n = (n+2)*a(n-1) - (2*n-2)*a(n-2) = n!*Sum_{j=0..n} floor(2^j/j!). - Henry Bottomley, Jul 12 2001
a(n) is the permanent of the n X n matrix with 3's on the diagonal and 1's elsewhere. a(n) = Sum_{k=0..n} A008290(n, k)*3^k. - Philippe Deléham, Dec 12 2003
Binomial transform of A000522. - Ross La Haye, Sep 15 2004
a(n) = Sum_{k=0..n} k!*binomial(n, k)*2^(n-k). - Paul Barry, Apr 22 2005
a(n) = A066534(n) + 2^n. - Ross La Haye, Nov 16 2005
G.f.: hypergeom([1,k],[],x/(1-2*x))/(1-2*x) with k=1,2,3 is the generating function for A010842, A081923, and A082031. - Mark van Hoeij, Nov 08 2011
E.g.f.: 1/E(0), where E(k) = 1 - x/(1-2/(2+(k+1)/E(k+1))); (continued fraction). - Sergei N. Gladkovskii, Nov 21 2011
G.f.: 1/Q(0), where Q(k)= 1 - 2*x - x*(k+1)/(1-x*(k+1)/Q(k+1)); (continued fraction). - Sergei N. Gladkovskii, Apr 18 2013
a(n) ~ n! * exp(2). - Vaclav Kotesovec, Jun 01 2013
From Peter Bala, Sep 25 2013: (Start)
a(n) = n!*e^2 - Sum_{k >= 0} 2^(n + k + 1)/((n + 1)*...*(n + k + 1)).
= n!*e^2 - e^2*( Integral_{t = 0..2} t^n*exp(-t) dt )
= e^2*( Integral_{t >= 2} t^n*exp(-t) dt )
= e^2*( Integral_{t >= 0} t^n*exp(-t)*Heaviside(t-2) dt ),
an integral representation of a(n) as the n-th moment of a nonnegative function on the positive half-axis.
Bottomley's second-order recurrence above a(n) = (n + 2)*a(n-1) - 2*(n - 1)*a(n-2) has n! as a second solution. This yields the finite continued fraction expansion a(n)/n! = 1/(1 - 2/(3 - 2/(4 - 4/(5 - ... - 2*(n - 1)/(n + 2))))) valid for n >= 2. Letting n tend to infinity gives the infinite continued fraction expansion e^2 = 1/(1 - 2/(3 - 2/(4 - 4/(5 - ... - 2*(n - 1)/(n + 2 - ...))))). (End)
a(n) = 2^(n+1)*U(1, n+2, 2), where U is the Bessel U function. - Peter Luschny, Nov 26 2014
For n >= 4, a(n) = r - (r mod 2^(n - floor((2/n) + log_2(n)))) where r = n! * e^2 - 2^(n+1)/(n+1). - Stan Wagon, Apr 28 2016
G.f.: A(x) = 1/(1 - 2*x - x/(1 - x/(1 - 2*x - 2*x/(1 - 2*x/(1 - 2*x - 3*x/(1 - 3*x/(1 - 2*x - 4*x/(1 - 4*x/(1 - 2*x - ... ))))))))). - Peter Bala, May 26 2017
a(n) = Sum_{k=0..n} (-1)^(n-k)*A137346(n, k). - Mélika Tebni, May 10 2022 [This is equivalent to a(n) = KummerU(-n, -n, 2). - Peter Luschny, May 10 2022]
a(n) = F(n), where the function F(x) := 2^(x+1) * Integral_{t >= 0} e^(-2*t)*(1 + t)^x dt smoothly interpolates this sequence to all real values of x. - Peter Bala, Sep 05 2023

A055209 a(n) = Product_{i=0..n} i!^2.

Original entry on oeis.org

1, 1, 4, 144, 82944, 1194393600, 619173642240000, 15728001190723584000000, 25569049282962188245401600000000, 3366980847587422591723894776791040000000000, 44337041641882947649156022595410930014617600000000000000
Offset: 0

Views

Author

N. J. A. Sloane, Jul 18 2000

Keywords

Comments

a(n) is the discriminant of the polynomial x(x+1)(x+2)...(x+n). - Yuval Dekel (dekelyuval(AT)hotmail.com), Nov 13 2003
This is the Hankel transform (see A001906 for definition) of the sequence: 1, 0, 1, 0, 5, 0, 61, 0, 1385, 0, 50521, ... (see A000364: Euler numbers). - Philippe Deléham, Apr 06 2005
Also, for n>0, the quotient of (-1)^(n-1)S(u)^(n^2)/S(un) and the determinant of the (n-1) X (n-1) square matrix [P'(u), P''(u), ..., P^(n-1)(u); P''(u), P'''(u), ..., P^(n)(u); P'''(u), P^(4)(u), ..., P^(n+1)(u); ...; P^(n-1)(u), P^(n)(u), ..., P^(2n-3)(u)] where S and P are the Weierstrass Sigma and The Weierstrass P-function, respectively and f^(n) is the n-th derivative of f. See the King and Schwarz & Weierstrass references. - Balarka Sen, Jul 31 2013
a(n) is the number of idempotent monotonic labeled magmas. That is, prod(i,j) >= max(i,j) and prod(i,i) = i. - Chad Brewbaker, Nov 03 2013
Ramanujan's infinite nested radical sqrt(1+2*sqrt(1+3*sqrt(1+...))) = 3 can be written sqrt(1+sqrt(4+sqrt(144+...))) = sqrt(a(1)+sqrt(a(2)+sqrt(a(3)+...))). Vijayaraghavan used that to prove convergence of Ramanujan's formula. - Petros Hadjicostas and Jonathan Sondow, Mar 22 2014
a(n) is the determinant of the (n+1)-th order Hankel matrix whose (i,j)-entry is equal to A000142(i+j), i,j = 0,1,...,n. - Michael Shmoish, Sep 02 2020

References

  • R. Bruce King, Beyond The Quartic Equation, Birkhauser Boston, Berlin, 1996, p. 72.
  • Srinivasa Ramanujan, J. Indian Math. Soc., III (1911), 90 and IV (1912), 226.
  • T. Vijayaraghavan, in Collected Papers of Srinivasa Ramanujan, G.H. Hardy, P.V. Seshu Aiyar and B.M. Wilson, eds., Cambridge Univ. Press, 1927, p. 348; reprinted by Chelsea, 1962.

Crossrefs

Cf. A055209 is the Hankel transform (see A001906 for definition) of A000023, A000142, A000166, A000522, A003701, A010842, A010843, A051295, A052186, A053486, A053487.

Programs

  • Magma
    [1] cat [(&*[(Factorial(k))^2: k in [1..n]]): n in [1..10]]; // G. C. Greubel, Oct 14 2018
  • Maple
    seq(mul(mul(j^2,j=1..k), k=0..n), n=0..10); # Zerinvary Lajos, Sep 21 2007
  • Mathematica
    Table[Product[(i!)^2,{i,n}],{n,0,11}] (* Harvey P. Dale, Jul 06 2011 *)
    Table[BarnesG[n + 2]^2, {n, 0, 11}] (* Jan Mangaldan, May 07 2014 *)
  • PARI
    a(n)=prod(i=1,n,i!)^2 \\ Charles R Greathouse IV, Jan 12 2012
    
  • Sage
    def A055209(n) :
       return prod(factorial(i)^(2) for i in (0..n))
    [A055209(n) for n in (0..11)] # Jani Melik, Jun 06 2015
    

Formula

a(n) = A000178(n)^2. - Philippe Deléham, Mar 06 2004
a(n) = Product_{i=0..n} i^(2*n - 2*i + 2). - Charles R Greathouse IV, Jan 12 2012
Asymptotic: a(n) ~ exp(2*zeta'(-1)-3/2*(1+n^2)-3*n)*(2*Pi)^(n+1)*(n+1)^ (n^2+2*n+5/6). - Peter Luschny, Jun 23 2012
lim_{n->infinity} a(n)^(2^(-(n+1))) = 1. - Vaclav Kotesovec, Jun 06 2015
Sum_{n>=0} 1/a(n) = A258619. - Amiram Eldar, Nov 17 2020

A053487 E.g.f.: exp(4x)/(1-x).

Original entry on oeis.org

1, 5, 26, 142, 824, 5144, 34960, 261104, 2154368, 19651456, 197563136, 2177388800, 26145442816, 339957865472, 4759678552064, 71396252022784, 1142344327331840, 19419870744510464, 349557742120665088, 6641597375170543616, 132831948602922500096
Offset: 0

Views

Author

N. J. A. Sloane, Jan 15 2000

Keywords

Comments

a(n) is the binomial transform of A053486. More generally, for every integer k, the sequence whose e.g.f is exp((k+1)*x)/(1-x) is the binomial transform of the sequence whose e.g.f is exp(k*x)/(1-x). - Groux Roland, Mar 23 2011

Programs

  • Maple
    F(x) := exp(4*x)/(1-x): f[0]:=F(x): for n from 1 to 20 do f[n]:=diff(f[n-1],x) od: x:=0: seq(f[n],n=0..20); # Zerinvary Lajos, Apr 03 2009
    seq(simplify(KummerU(-n, -n, 4)), n = 0..20); # Peter Luschny, May 10 2022
  • Mathematica
    With[{nn=30},CoefficientList[Series[Exp[4x]/(1-x),{x,0,nn}],x] Range[0,nn]!] (* Harvey P. Dale, Jun 09 2013 *)

Formula

a(n) is the permanent of the n X n matrix with 5's on the diagonal and 1's elsewhere. a(n) = Sum_{k=0..n} A008290(n, k)*5^k. - Philippe Deléham, Dec 12 2003
E.g.f.: exp(4x)/(1-x)=1/E(0); E(k)=1-x/(1-4/(4+(k+1)/E(k+1))); (continued fraction). - Sergei N. Gladkovskii, Nov 21 2011
G.f.: 1/Q(0), where Q(k)= 1 - 4*x - x*(k+1)/(1-x*(k+1)/Q(k+1)); (continued fraction). - Sergei N. Gladkovskii, Apr 19 2013
a(n) ~ n! * exp(4). - Vaclav Kotesovec, Jun 21 2013
a(n) = exp(4)*Gamma(n+1,4). - Gerry Martens, Jul 24 2015
a(n) = KummerU(-n, -n, 4). - Peter Luschny, May 10 2022

A010843 Incomplete Gamma Function at -3.

Original entry on oeis.org

1, -2, 5, -12, 33, -78, 261, -360, 3681, 13446, 193509, 1951452, 23948865, 309740922, 4341155877, 65102989248, 1041690874689, 17708615729550, 318755470552389, 6056352778233924, 121127059051462881, 2543668229620367298
Offset: 1

Views

Author

Keywords

References

  • M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, Tenth Printing, 1972, p. 262.

Crossrefs

Programs

  • Maple
    a := n -> n!*add(((-3)^(k)/k!), k=0..n): seq(a(n), n=0..21); # Zerinvary Lajos, Jun 22 2007
    seq(simplify(KummerU(-n, -n, -3)), n = 0..21); # Peter Luschny, May 10 2022
  • Mathematica
    Table[ Gamma[ n, -3 ]*E^(-3), {n, 1, 24} ] (* corrected by Peter Luschny, Oct 17 2012 *)
    a[n_] := (-1)^n x D[1/x Exp[x], {x, n}] x^n Exp[-x]
    Table[a[n] /. x -> 3, {n, 0, 20}] (* Gerry Martens , May 05 2016 *)
  • PARI
    a(n)=if(n<0,0,n!*polcoeff(exp(-3*x+x*O(x^n))/(1-x),n)) /*  Michael Somos, Mar 06 2004 */
    
  • PARI
    a(n)=local(A,p);if(n<1,n==0,A=matrix(n,n,i,j,1-3*(i==j));sum(i=1,n!,if(p=numtoperm(n,i),prod(j=1,n,A[j,p[j]])))) /* Michael Somos, Mar 06 2004 */
    
  • Sage
    @CachedFunction
    def A010843(n):
        if (n) == 1 : return 1
        return (n-1)*A010843(n-1)+(-3)^(n-1)
    [A010843(i) for i in (1..22)]    # Peter Luschny, Oct 17 2012

Formula

E.g.f.: exp(-3x)/(1-x). - Michael Somos, Mar 06 2004
a(0) = 1 and for n>0, a(n) is the permanent of the n X n matrix with -2's on the diagonal and 1's elsewhere. a(n) = Sum(k=0..n, A008290(n, k)*(-2)^k ). a(n) = Sum(k=0..n, A008279(n, k)*(-3)^(n-k) ). - Philippe Deléham, Dec 15 2003
G.f.: hypergeom([1,1],[],x/(1+3*x))/(1+3*x). - Mark van Hoeij, Nov 08 2011
E.g.f.: 1/E(0) where E(k)=1-x/(1-3/(3-(k+1)/E(k+1))); (continued fraction). - Sergei N. Gladkovskii, Sep 13 2012
G.f.: 1/Q(0), where Q(k)= 1 + 3*x - x*(k+1)/(1-x*(k+1)/Q(k+1)); (continued fraction). - Sergei N. Gladkovskii, Apr 18 2013
G.f.: 1/Q(0), where Q(k) = 1 - x*(2*k-2) - x^2*(k+1)^2/Q(k+1); (continued fraction). - Sergei N. Gladkovskii, Sep 30 2013
a(n) ~ n! * exp(-3). - Vaclav Kotesovec, Oct 08 2013
a(n) = (-3)^(n-1)*hypergeom([1, 1-n], [], 1/3). - Vladimir Reshetnikov, Oct 18 2015
a(n) = KummerU(-n, -n, -3). - Peter Luschny, May 10 2022

A009102 Expansion of e.g.f. cos(x)/(1+x).

Original entry on oeis.org

1, -1, 1, -3, 13, -65, 389, -2723, 21785, -196065, 1960649, -21567139, 258805669, -3364473697, 47102631757, -706539476355, 11304631621681, -192178737568577, 3459217276234385, -65725128248453315, 1314502564969066301
Offset: 0

Views

Author

Keywords

Comments

The absolute value of a(n) equals the real part of the permanent of the n X n matrix with (1+i)'s along the main diagonal, and 1's everywhere else. - John M. Campbell, Jul 10 2011

Crossrefs

Cf. A009551, A000142, A000166, A000522, A000023, A053486, A010844 (incomplete Gamma function values at other points).

Programs

  • Magma
    m:=30; R:=PowerSeriesRing(Rationals(), m); b:=Coefficients(R!(Cos(x)/(1+x))); [Factorial(n-1)*b[n]: n in [1..m]]; // G. C. Greubel, Jul 26 2018
  • Maple
    G(x):=cos(x)/(1+x): f[0]:=G(x): for n from 1 to 20 do f[n]:=diff(f[n-1],x) od: x:=0: seq(f[n],n=0..20); # Zerinvary Lajos, Apr 03 2009
    g:= gfun:-rectoproc({a(0) = 1, a(1) = -1, a(2) = 1, a(n+3) = -(n+3)*a(n+2)-a(n+1)-(n+1)*a(n)},a(n),remember):
    seq(g(n),n=0..30); # Robert Israel, Oct 27 2015
  • Mathematica
    Table[SeriesCoefficient[Cos[x]/(1+x), {x, 0, n}] n!, {n, 0, 20}]
    Round@Table[(-1)^n Re[Gamma[n+1, I] E^I], {n, 0, 20}] (* Vladimir Reshetnikov, Oct 27 2015 *)
    With[{nn=20},CoefficientList[Series[Cos[x]/(1+x),{x,0,nn}],x] Range[0,nn]!] (* Harvey P. Dale, Feb 18 2024 *)
  • PARI
    x='x+O('x^30); Vec(serlaplace(cos(x)/(1+x))) \\ G. C. Greubel, Jul 26 2018
    

Formula

a(n) = (-1)^n*round(n!*cos(1)). - Vladeta Jovovic, Aug 11 2002
a(n) = (-1)^n * n! * Sum_{k=0..floor(n/2)} (-1)^k/(2k)!. Unsigned sequence satisfies e.g.f. cos(x)/(1-x). - Ralf Stephan, Apr 16 2004
E.g.f.: cos(x)/(1+x) = U(0)/(1-x^2) where U(k) = 1 - x/(1 - x/(x + (2*k+1)*(2*k+2)/U(k+1))) ; (continued fraction, 3-step). - Sergei N. Gladkovskii, Oct 17 2012
From Vladimir Reshetnikov, Oct 27 2015: (Start)
a(n) = Re((-i)^n*hypergeom([1,-n], [], i)).
a(n) = (-1)^n*(cos(1)*(n+2)!+cos(Pi*n/2)*hypergeom([1], [n/2+2,(n+3)/2], -1/4)+sin(Pi*n/2)*(n+2)*hypergeom([1], [n/2+1,(n+3)/2], -1/4))/(n^2+3*n+2).
a(n) = (-1)^n*Re(Gamma(n+1, i)*exp(i)) = (-1)^n*(Gamma(n+1, i)*exp(i)+Gamma(n+1, -i)*exp(-i))/2, where Gamma(a, x) is the upper incomplete Gamma function, i=sqrt(-1).
Gamma(n+1, i) = exp(-i)*((-1)^n*a(n) + A009551(n)*i).
a(0) = 1, a(1) = -1, a(2) = 1, a(n+3) = -(n+3)*a(n+2)-a(n+1)-(n+1)*a(n). (End)

Extensions

Extended with signs by Olivier Gérard, Mar 15 1997

A009551 Expansion of sin(x)/(1-x).

Original entry on oeis.org

0, 1, 2, 5, 20, 101, 606, 4241, 33928, 305353, 3053530, 33588829, 403065948, 5239857325, 73358002550, 1100370038249, 17605920611984, 299300650403729, 5387411707267122, 102360822438075317, 2047216448761506340
Offset: 0

Views

Author

Keywords

Comments

a(n) equals the imaginary part of the permanent of the n X n matrix with (1+i)'s along the main diagonal, and 1's everywhere else. - John M. Campbell, Jul 10 2011

Crossrefs

Cf. A009102, A000142, A000166, A000522, A000023, A053486, A010844 (incomplete Gamma function values at other points).

Programs

  • Magma
    I:=[1,2,5]; [0] cat [n le 3 select I[n] else n*Self(n-1)-Self(n-2)+(n-2)*Self(n-3): n in [1..30]]; // G. C. Greubel, Jan 19 2018
  • Maple
    restart: G(x):=sin(x)/(1-x): f[0]:=G(x): for n from 1 to 21 do f[n]:=diff(f[n-1],x) od: x:=0: seq(f[n],n=0..20); # Zerinvary Lajos, Apr 03 2009
  • Mathematica
    Table[n!*SeriesCoefficient[Sin[x]/(1-x),{x,0,n}],{n,0,20}] (* corrected by Vaclav Kotesovec, Oct 07 2012 *)
    With[{nn=30},CoefficientList[Series[Sin[x]/(1-x),{x,0,nn}],x] Range[0,nn]!] (* Harvey P. Dale, Apr 17 2013 *)
    Round@Table[Im[Gamma[n+1, I] E^I], {n, 0, 20}] (* Vladimir Reshetnikov, Oct 27 2015 *)
  • PARI
    a(n) = round(n!*sin(1))
    

Formula

a(n) = round(n!*sin(1)), n>=1. - Vladeta Jovovic, Aug 11 2002
a(n) = n! * Sum_{k=0..floor(n/2)} (-1)^k/(2k-1)!, n>0. - Ralf Stephan, Apr 16 2004
a(n) = n*a(n-1) - a(n-2) +(n-2)*a(n-3). - Vaclav Kotesovec, Oct 07 2012
From Vladimir Reshetnikov, Oct 27 2015: (Start)
a(n) = Im(i^n*hypergeom([1,-n], [], i)).
a(n) = n!*sin(1)-cos(Pi*n/2)*hypergeom([1], [n/2+1,(n+3)/2], -1/4)/(n+1) + sin(Pi*n/2)*hypergeom([1], [n/2+2,(n+3)/2], -1/4)/(n^2+3*n+2).
a(n) = Im(Gamma(n+1, i)*exp(i)) = (Gamma(n+1, i)*exp(i)-Gamma(n+1, -i)*exp(-i))/(2*i), where Gamma(a, x) is the upper incomplete Gamma function, i=sqrt(-1).
Gamma(n+1, i) = exp(-i)*((-1)^n*A009102(n) + a(n)*i). (End)

Extensions

More terms from Benoit Cloitre, Aug 13 2002

A080954 E.g.f. exp(5x)/(1-x).

Original entry on oeis.org

1, 6, 37, 236, 1569, 10970, 81445, 648240, 5576545, 52142030, 531185925, 5891873300, 70946620225, 923526766050, 12935478240325, 194062691183000, 3105155646818625, 52788408935369750, 950195175533921125
Offset: 0

Views

Author

Paul Barry, Feb 26 2003

Keywords

Comments

Binomial transform of A053487. 4th Binomial transform of A000522. Fifth binomial transform of n! = A000142.

Crossrefs

Programs

  • Maple
    F(x):= exp(5*x)/(1-x): f[0]:=F(x): for n from 1 to 20 do f[n]:=diff(f[n-1],x) od: x:=0: seq(f[n], n=0..18); # Zerinvary Lajos, Apr 03 2009
  • Mathematica
    With[{nn=20},CoefficientList[Series[Exp[5x]/(1-x),{x,0,nn}],x] Range[0, nn]!] (* Harvey P. Dale, Sep 19 2011 *)
    Table[n!*Sum[5^k/k!,{k,0,n}],{n,0,20}] (* Vaclav Kotesovec, Oct 28 2012 *)
    RecurrenceTable[{a[0]==1, a[n]==n*a[n-1] + 5^n}, a, {n, 20}] (* Vincenzo Librandi, Nov 15 2012 *)

Formula

a(n) = n! * Sum_{k=0..n} 5^k/k!.
a(n) is the permanent of the n X n matrix with 6's on the diagonal and 1's elsewhere. a(n) = Sum_{k=0..n} A008290(n, k)*6^k. - Philippe Deléham, Dec 12 2003
Conjecture: -a(n) + (n+5)*a(n-1) + 5*(1-n)*a(n-2) = 0. - R. J. Mathar, Nov 14 2011
a(n) ~ n!*exp(5). - Vaclav Kotesovec, Oct 13 2012
a(0)=0, a(n) = n * a(n-1) + 5^n. - Vincenzo Librandi, Nov 15 2012

A080955 Square array of numbers related to the incomplete gamma function, read by antidiagonals.

Original entry on oeis.org

1, 1, 1, 1, 2, 2, 1, 3, 5, 6, 1, 4, 10, 16, 24, 1, 5, 17, 38, 65, 120, 1, 6, 26, 78, 168, 326, 720, 1, 7, 37, 142, 393, 872, 1957, 5040, 1, 8, 50, 236, 824, 2208, 5296, 13700, 40320, 1, 9, 65, 366, 1569, 5144, 13977, 37200, 109601, 362880, 1, 10, 82, 538, 2760, 10970, 34960, 100026
Offset: 0

Views

Author

Paul Barry, Feb 26 2003

Keywords

Examples

			Array begins:
k=0: 1 1 2 6 24 ...
k=1: 1 2 5 16 65 ...
k=2: 1 3 10 38 168 ...
k=3: 1 4 17 78 393 ...
k=4: 1 5 26 142 824 ...
...
		

Crossrefs

Transposed version: A089258.

Programs

  • Mathematica
    T[0, k_] := k!; T[n_, k_] := k!*Sum[n^j/j!, {j, 0, k}];
    Table[T[n-k, k], {n, 0, 10}, {k, 0, n}] // Flatten (* Jean-François Alcover, Jan 17 2018 *)

Formula

T(k,n) = n! * Sum{j=0..n} k^j/j!.
E.g.f. of k-th row: exp(k*x)/(1-x).
T(k,n) = A089258(n,k).

Extensions

Corrected by Philippe Deléham, Dec 12 2003
Showing 1-10 of 23 results. Next